1
|
Luo Q, Zeng Q, Wang C, Zhang C, Yu H, Yang Y, Guan X. Ultrasensitive Single-Molecule Biosensor by Periodic Modulation of Magnetic Particle Motion. NANO LETTERS 2024; 24:13998-14003. [PMID: 39441689 DOI: 10.1021/acs.nanolett.4c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ultrasensitive detection of low-abundance biomarkers by modern single-molecule technologies is critical for better diagnosis of severe diseases, but inevitable nonspecific bindings often cause fluctuations in the single-molecule counting results. Here we present an approach to improve the specificity in a single-molecule immunoassay by translating molecular binding signals into periodic nanomotion of magnetic particles. The sandwiched immunoassay is modified by using a long linker to tether one antibody onto a gold-covered substrate and a magnetic particle with another antibody coated as the reporter. By actively oscillating the particles with alternating magnetic fields, we could reliably identify specific binding through intensity fluctuation in plasmonic images of single particles. As a proof of concept, we demonstrate the detection of IFN-γ at the femtomolar level by the digital counting of specifically bound molecules. This active strategy outperforms existing passive motion-based approaches in sensitivity and speed, paving the way for disease diagnosis with low-abundance biomarkers.
Collapse
Affiliation(s)
- Qingqing Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiang Zeng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xinping Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Pongma C, Songthammanuphap S, Puthong S, Buakeaw A, Prammananan T, Warit S, Tipkantha W, Kaewkhunjob E, Jairak W, Kongmakee P, Pabutta C, Sripiboon S, Yindeeyoungyeon W, Palaga T. Using whole blood cultures in interferon gamma release assays to detect Mycobacterium tuberculosis complex infection in Asian elephants (Elephas maximus). PLoS One 2023; 18:e0288161. [PMID: 37498897 PMCID: PMC10374124 DOI: 10.1371/journal.pone.0288161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Elephants are susceptible to Mycobacterium tuberculosis (M. tb) complex (MTBC) infections. Diagnosis of tuberculosis (TB) in elephants is difficult, and most approaches used for human TB diagnosis are not applicable. An interferon gamma release assay (IGRA) to diagnose TB in Asian elephants (Elephas maximus) using peripheral blood mononuclear cells (PBMCs) has been previously developed. Although the assay is shown to be valid in determining MTBC infection status, the laborious PBMC isolation process makes it difficult to use. In this study, we simplified the method by using whole blood cultures (WC) as the starting material. Using PBMC cultures for IGRA, the MTBC infection status of 15 elephants was first confirmed. Among these animals, one has been previously confirmed for M. tb infection by both TB culture and PCR and the other was confirmed for MTBC infection in this study by droplet digital PCR (ddPCR) method. WC for IGRA consisted of an unstimulated sample, a mitogen stimulated sample, and sample stimulated with recombinant M. tb antigens, ESAT6 and CFP10. Using WC for IGRA in the 15 enrolled elephants, the results showed that 7 out of 15 samples yielded MTBC infection positive status that were completely concordant with those from the results using PBMCs. To test this method, WC for IGRA were applied in another elephant cohort of 9 elephants. The results from this cohort revealed a perfect match between the results from PBMC and WC. Responses to ESAT6 or CFP10 by PBMC and WC were not completely concordant, arguing for the use of at least two M. tb antigens for stimulation. Given the ease of sample handling, smaller blood sample volumes and equivalent efficacy relative to the PBMC approach, using WC for IGRA provides a novel, rapid, and user-friendly TB diagnostic method for determining the MTBC infection in elephants.
Collapse
Affiliation(s)
- Chitsuda Pongma
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | | | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Therdsak Prammananan
- The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Saradee Warit
- The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wanlaya Tipkantha
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Erngsiri Kaewkhunjob
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Waleemas Jairak
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Piyaporn Kongmakee
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Choenkwan Pabutta
- Elephant Kingdom Project, Zoological Park Organization of Thailand, Surin, Thailand
| | - Supaphen Sripiboon
- Department of Large Animals and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Wandee Yindeeyoungyeon
- The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Dwyer R, Witte C, Buss P, Manamela T, Freese L, Hausler G, Goosen WJ, Miller M. Reduced capability of refrigerated white rhinoceros whole blood to produce interferon-gamma upon mitogen stimulation. Vet Immunol Immunopathol 2022; 252:110485. [PMID: 36113392 DOI: 10.1016/j.vetimm.2022.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Ante-mortem surveillance for Mycobacterium bovis (M. bovis) infection in the Kruger National Park (KNP) rhinoceros population currently relies on results from the QuantiFERON-TB Gold (In-Tube) Plus (QFT)-interferon gamma (IFN-γ) release assay (IGRA). However, same-day processing of rhinoceros blood samples for this test is a logistical challenge. Therefore, a pilot study was performed to compare mitogen-stimulated and unstimulated IFN-γ concentrations in plasma from rhinoceros whole blood processed within 6 h of collection or stored at 4°C for 24 and 48 h prior to incubation in QFT tubes. Replicate samples of heparinized whole blood from seven subadult male white rhinoceros were used. Results showed no change in IFN-γ levels in unstimulated samples, however the relative concentrations of IFN-γ (based on optical density values) in mitogen plasma decreased significantly with increased time blood was stored post-collection and prior to QFT stimulation. These findings support a need for same-day processing of rhinoceros blood samples for QFT-IGRA testing as per the current practice. Further investigation using TB-antigen stimulated samples is warranted to properly assess the impact of blood storage on TB test results in rhinoceros.
Collapse
Affiliation(s)
- Rebecca Dwyer
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, Private Bag X402, Skukuza 1350, South Africa
| | - Tebogo Manamela
- Veterinary Wildlife Services, Kruger National Park, Private Bag X402, Skukuza 1350, South Africa
| | - Leana Freese
- Veterinary Wildlife Services, Kruger National Park, Private Bag X402, Skukuza 1350, South Africa
| | - Guy Hausler
- Veterinary Wildlife Services, Kruger National Park, Private Bag X402, Skukuza 1350, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
4
|
Epidemiology of Mycobacterium bovis infection in free-ranging rhinoceros in Kruger National Park, South Africa. Proc Natl Acad Sci U S A 2022; 119:e2120656119. [PMID: 35666877 PMCID: PMC9214499 DOI: 10.1073/pnas.2120656119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
African rhinoceros survival is threatened by poaching, habitat loss, and climate effects. The presence of Mycobacterium bovis in wild populations creates an additional potential threat to health and conservation programs. This study reports a large survey of M. bovis infection in free-ranging rhinoceros. Our findings confirm a widespread, high infection burden in the rhinoceros population of Kruger National Park, South Africa and identify risk factors for infection. These findings provide a foundation for understanding the spread of bovine tuberculosis in complex ecosystems. This study reflects the complexity of investigating a multihost pathogen in a previously naïve system. It provides an opportunity to increase awareness of the global impact that tuberculosis can have on animal populations, food security, and conservation. Mycobacterium bovis infection, which is a prominent cause of bovine tuberculosis, has been confirmed by mycobacterial culture in African rhinoceros species in Kruger National Park (KNP), South Africa. In this population-based study of the epidemiology of M. bovis in 437 African rhinoceros (Diceros bicornis, Ceratotherium simum), we report an estimated prevalence of 15.4% (95% CI: 10.4 to 21.0%), based on results from mycobacterial culture and an antigen-specific interferon gamma release assay from animals sampled between 2016 and 2020. A significant spatial cluster of cases was detected near the southwestern park border, although infection was widely distributed. Multivariable logistic regression models, including demographic and spatiotemporal variables, showed a significant, increasing probability of M. bovis infection in white rhinoceros based on increased numbers of African buffalo (Syncerus caffer) herds in the vicinity of the rhinoceros sampling location. Since African buffaloes are important maintenance hosts for M. bovis in KNP, spillover of infection from these hosts to white rhinoceros sharing the environment is suspected. There was also a significantly higher proportion of M. bovis infection in black rhinoceros in the early years of the study (2016–2018) than in 2019 and 2020, which coincided with periods of intense drought, although other temporal factors could be implicated. Species of rhinoceros, age, and sex were not identified as risk factors for M. bovis infection. These study findings provide a foundation for further epidemiological investigation of M. bovis, a multihost pathogen, in a complex ecosystem that includes susceptible species that are threatened and endangered.
Collapse
|
5
|
Goosen WJ, Kleynhans L, Kerr TJ, van Helden PD, Buss P, Warren RM, Miller MA. Improved detection of Mycobacterium tuberculosis and M. bovis in African wildlife samples using cationic peptide decontamination and mycobacterial culture supplementation. J Vet Diagn Invest 2021; 34:61-67. [PMID: 34510986 PMCID: PMC8688974 DOI: 10.1177/10406387211044192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In South Africa, mycobacterial culture is regarded as the gold standard for the detection of Mycobacterium tuberculosis complex (MTBC) infection in wildlife even though it is regarded as “imperfect.” We compared a novel decontamination and mycobacterial culture technique (TiKa) to the conventional mycobacterium growth indicator tube (MGIT) system using known amounts of bacilli and clinical samples from MTBC-infected African buffaloes (Syncerus caffer), white rhinoceros (Ceratotherium simum), and African elephants (Loxodonta africana). Use of the TiKa-KiC decontamination agent on samples spiked with 10,000 to 10 colony forming units (cfu) of M. bovis (SB0121) and M. tuberculosis (H37Rv) had no effect on isolate recovery in culture. In contrast, decontamination with MGIT MycoPrep resulted in no growth of M. bovis samples at concentrations < 1,000 cfu and M. tuberculosis samples < 100 cfu. Subsequently, we used the TiKa system with stored clinical samples (various lymphatic tissues) collected from wildlife and paucibacillary bronchoalveolar lavage fluid, trunk washes, and endotracheal tube washes from 3 species with known MTBC infections. Overall, MTBC recovery by culture was improved significantly (p < 0.01) by using TiKa compared to conventional MGIT, with 54 of 57 positive specimens versus 25 of 57 positive specimens, respectively. The TiKa mycobacterial growth system appears to significantly enhance the recovery of MTBC members from tissue and paucibacillary respiratory samples collected from African buffaloes, African elephants, and white rhinoceros. Moreover, the TiKa system may improve success of MTBC culture from various sample types previously deemed unculturable from other species.
Collapse
Affiliation(s)
- Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, South African National Parks, Skukuza, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
de Waal CR, Kleynhans L, Parsons SDC, Goosen WJ, Hausler G, Buss PE, Warren RM, van Helden PD, Landolfi JA, Miller MA, Kerr TJ. Development of a cytokine gene expression assay for the relative quantification of the African elephant (Loxodonta africana) cell-mediated immune responses. Cytokine 2021; 141:155453. [PMID: 33548797 DOI: 10.1016/j.cyto.2021.155453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
Abstract
Immunological assays are the basis for many diagnostic tests for infectious diseases in animals and humans. Application in wildlife species, including the African elephant (Loxodonta africana), is limited however due to lack of information on immune responses. Since many immunoassays require both identified biomarkers of immune activation as well as species-specific reagents, it is crucial to have knowledge of basic immunological responses in the species of interest. Cytokine gene expression assays (GEAs) used to measure specific immune responses in wildlife have frequently shown that targeted biomarkers are often species-specific. Therefore, the aim of this study was to identify elephant-specific cytokine biomarkers to detect immune activation and to develop a GEA, using pokeweed mitogen stimulated whole blood from African elephants. This assay will provide the foundation for the development of future cytokine GEAs that can be used to detect antigen specific immune responses and potentially lead to various diagnostic tests for this species.
Collapse
Affiliation(s)
- Candice R de Waal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sven D C Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Guy Hausler
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter E Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jennifer A Landolfi
- University of Illinois Zoological Pathology Program, 3300 Golf Road, Brookfield, IL, 60153, USA
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
7
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Goosen WJ, Kerr TJ, Kleynhans L, Warren RM, van Helden PD, Persing DH, Parsons SDC, Buss P, Miller MA. The Xpert MTB/RIF Ultra assay detects Mycobacterium tuberculosis complex DNA in white rhinoceros (Ceratotherium simum) and African elephants (Loxodonta africana). Sci Rep 2020; 10:14482. [PMID: 32879401 PMCID: PMC7468236 DOI: 10.1038/s41598-020-71568-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
The study describes the novel use of the Xpert MTB/RIF Ultra assay for detection of Mycobacterium tuberculosis complex (MTBC) DNA in samples from white rhinoceros (Ceratotherium simum) and African elephants (Loxodonta africana). Culture negative respiratory sample matrices were spiked to determine if the Ultra could detect MTBC DNA in rhinoceros and elephant samples. Rhinoceros bronchial alveolar lavage fluid (BALF) was found to have an inhibitory effect on the Ultra. In this study, the limit of detection (LOD) of M. tuberculosis H37Rv in all spiked animal samples were 2 CFU/ml compared to 15.6 CFU/ml for humans, while the LOD for M. bovis SB0121 was 30 CFU/ml compared to 143.4 CFU/ml for M. bovis BCG in humans. Screening was performed on stored tissue and respiratory samples from known MTBC-infected animals and MTBC DNA was detected in 92% of samples collected from six rhinoceros and two elephants. Conversely, 83% of culture-negative tissue and respiratory samples from uninfected animals tested negative on the Ultra. In conclusion, the Ultra assay appears to be a sensitive and rapid diagnostic test for the detection of MTBC DNA from tissue and respiratory samples collected from African elephants and rhinoceros. Furthermore, the Ultra assay could provide a new tool for the detection of MTBC in various sample types from other wildlife species.
Collapse
Affiliation(s)
- Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | | | - Sven D C Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, South African National Parks, Skukuza, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| |
Collapse
|
9
|
Goosen WJ, Kerr TJ, Kleynhans L, Buss P, Cooper D, Warren RM, van Helden PD, Schröder B, Parsons SDC, Miller MA. The VetMAX™ M. tuberculosis complex PCR kit detects MTBC DNA in antemortem and postmortem samples from white rhinoceros (Ceratotherium simum), African elephants (Loxodonta africana) and African buffaloes (Syncerus caffer). BMC Vet Res 2020; 16:220. [PMID: 32600471 PMCID: PMC7325085 DOI: 10.1186/s12917-020-02438-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bovine tuberculosis and tuberculosis are chronic infectious diseases caused by the Mycobacterium tuberculosis complex members, Mycobacterium bovis and Mycobacterium tuberculosis, respectively. Infection with M. bovis and M. tuberculosis have significant implications for wildlife species management, public health, veterinary disease control, and conservation endeavours. RESULTS Here we describe the first use of the VetMAX™ Mycobacterium tuberculosis complex (MTBC) DNA quantitative real-time polymerase chain reaction (qPCR) detection kit for African wildlife samples. DNA was extracted from tissues harvested from 48 African buffaloes and MTBC DNA was detected (test-positive) in all 26 M. bovis culture-confirmed animals with an additional 12 PCR-positive results in culture-negative buffaloes (originating from an exposed population). Of six MTBC-infected African rhinoceros tested, MTBC DNA was detected in antemortem and postmortem samples from five animals. The PCR was also able to detect MTBC DNA in samples from two African elephants confirmed to have M. bovis and M. tuberculosis infections (one each). Culture-confirmed uninfected rhinoceros and elephants' samples tested negative in the PCR assay. CONCLUSIONS These results suggest this new detection kit is a sensitive screening test for the detection of MTBC-infected African buffaloes, African elephants and white rhinoceros.
Collapse
Affiliation(s)
- Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa.
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Limpopo, South Africa
| | - David Cooper
- Enzemvelo KZN Wildlife, P.O. Box 25, Mtubatuba, 3935, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Björn Schröder
- Thermo Fisher Scientific; Prionics AG, Wagistrasse 27A; Schlieren, Zurich, Switzerland
| | - Sven D C Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| |
Collapse
|
10
|
An interferon-gamma release assay for the diagnosis of the Mycobacterium bovis infection in white rhinoceros (Ceratotherium simum). Vet Immunol Immunopathol 2019; 217:109931. [PMID: 31522092 DOI: 10.1016/j.vetimm.2019.109931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/20/2022]
Abstract
Mycobacterium bovis (M. bovis), the cause of bovine tuberculosis, is endemic in Kruger National Park (KNP), South Africa. The risk of spread of M. bovis infection currently prevents translocation of white rhinoceros (Ceratotherium simum) from this population. Therefore, accurate assays are necessary for screening this threatened species. Interferon gamma (IFN-γ) release assays (IGRA) are commonly used for tuberculosis diagnosis in humans and other wildlife species. Hence, the aim of this study was to develop an IGRA for M. bovis detection in white rhinoceros. Heparinized whole blood was collected from immobilized white rhinoceros in KNP (n = 131) and incubated overnight in QuantiFERON®-TB Gold (QFT) blood collection tubes, after which the plasma was harvested following centrifugation. Tissue samples for mycobacterial culture were available from a subset of 21 rhinoceros. The concentration of IFN-γ in plasma samples was measured using the Mabtech equine IFN-γ ELISAPRO kit. An IGRA result was calculated as the difference in IFN-γ concentrations in the QFT Nil and TB antigen tubes. Using test results for the white rhinoceros with known infection status, a diagnostic cut-off value was calculated as 21 pg/ml. Additionally, cut-off values for IFN-γ concentrations for plasma from QFT Nil and QFT Mitogen tubes were calculated to increase confidence in IGRA result interpretation. The combination of the QFT stimulation platform and Mabtech equine IFN-γ ELISA is a promising diagnostic test to distinguish between of M. bovis-infected and -uninfected white rhinoceros.
Collapse
|