1
|
Fan M, Li Y, Hu Z, Bian L, Wu W, Liu W, Li M, Wang X, Ren J, Wu L, Li X. Oropharyngeal swab sampling for PRRSV detection in large-scale pig farms: a convenient and reliable method for mass sampling. Porcine Health Manag 2024; 10:39. [PMID: 39390617 PMCID: PMC11465849 DOI: 10.1186/s40813-024-00392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) has significant productivity and economic impacts in swine herds. Accurately determining the PRRSV status at the herd level is crucial for producers and veterinarians to implement strategies to control and eliminate the virus from infected herds. This study collected oropharyngeal swabs (OSs), nasal swabs (NSs), oral fluid swabs (OFs), rectal swabs (RSs), and serum samples continuously from PRRSV challenged pigs under experimental conditions and growing pigs under field conditions. Additionally, OSs and serum samples were collected from individual sows from 50 large-scale breeding farms, and the collection of OSs does not require the sows to be restrained. Ct values of PRRSV were detected in all samples using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). RESULTS In PRRSV challenged pigs, OSs showed a higher PRRSV-positive rate until the end of the observation period. The Ct values of OSs were significantly lower than those of NSs, OFs, and RSs at 2, 8, 12, 14 and 20 days post-challenge (DPC) (P < 0.05). For growing pigs, the positivity rate of PRRSV in OSs was higher than that in other sample types at 30, 70, and 110 days of age. In sows, 24,718 OSs and 6259 serum samples were collected, with PRRSV-positive rate in OSs (9.4%) being significantly higher than in serum (4.1%) (P < 0.05). However, the Ct values of PRRSV RNA in serum were significantly lower than those in OSs (P < 0.001). CONCLUSIONS The OSs sample type yielded higher PRRSV-positive rates for longer periods compared to NSs, RSs, OFs and serum samples for PRRSV detection in infected pigs. Therefore, OSs has a good potential to be a convenient, practical, and reliable sample type for implementing mass sampling and testing of PRRSV in large-scale pig farms.
Collapse
Affiliation(s)
- Mingyu Fan
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
- Shandong Swine-Health-Station Agriculture and Animal Husbandry Technology Co., Ltd., No.1288 Sanba East Road, Changhe Street, Tianqu New District, Dezhou, 253000, Shandong, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yang Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
| | - Zhiqiang Hu
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
- College of Animal Science, Xichang University, No.1, Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, China
| | - Lujie Bian
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
| | - Weisheng Wu
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
| | - Wei Liu
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
| | - Meng Li
- Shandong Swine Health Data and Intelligent Monitoring Project Laboratory, Dezhou University, Dezhou, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Ren
- Shandong Swine Health Data and Intelligent Monitoring Project Laboratory, Dezhou University, Dezhou, China
| | - Lili Wu
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China
| | - Xiaowen Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, Shandong, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Kikuti M, Melini CM, Yue X, Culhane M, Corzo CA. Postmortem Sampling in Piglet Populations: Unveiling Specimens Accuracy for Porcine Reproductive and Respiratory Syndrome Detection. Pathogens 2024; 13:649. [PMID: 39204249 PMCID: PMC11356954 DOI: 10.3390/pathogens13080649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Specimens collected from dead pigs are a welfare-friendly and cost-effective active surveillance. This study aimed to evaluate the accuracy of different postmortem specimens from dead piglets for disease detection, using PRRSV as an example. Three farrow-to-wean farms undergoing PRRSV elimination were conveniently selected. Samples were collected at approximately 8- and 20-weeks post-outbreak. Postmortem specimens included nasal (NS), oral (OS), and rectal (RS) swabs, tongue-tip fluids (TTF), superficial inguinal lymph nodes (SIL), and intracardiac blood. These were tested individually for PRRSV by RT-PCR. Sensitivity, specificity, negative and positive predictive values, and agreement of postmortem specimens were calculated using intracardiac sera as the gold standard. OS and SIL had the best overall performance, with sensitivities of 94.6-100%, specificities of 83.9-85.1%, and negative predictive values of 97.3-100%. TTF had high sensitivity (92.2%) but low specificity (53.9%) and positive predictive value (48.3%). While challenges in meeting sampling targets due to variable pre-weaning mortality were noted, PRRS was detected in all postmortem specimens. OS and NS showed promising results for disease monitoring, though TTF, despite their sensitivity, had lower specificity, making them less suitable for individual infection assessment but useful for assessing environmental contamination.
Collapse
Affiliation(s)
| | | | | | | | - Cesar A. Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.); (C.M.M.); (X.Y.); (M.C.)
| |
Collapse
|
3
|
Dürlinger S, Kreutzmann H, Unterweger C, Martin V, Hamar F, Knecht C, Auer A, Dimmel K, Rümenapf T, Griessler A, Voglmayr T, Maurer R, Oppeneder A, Ladinig A. Detection of PRRSV-1 in tongue fluids under experimental and field conditions and comparison of different sampling material for PRRSV sow herd monitoring. Porcine Health Manag 2024; 10:18. [PMID: 38764057 PMCID: PMC11104003 DOI: 10.1186/s40813-024-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Infection with porcine reproductive and respiratory syndrome virus (PRRSV) leads to significant economic losses worldwide. One of the initial measures following an outbreak is to stabilise the herd and to prevent vertical transmission of PRRSV. The objective of this study was to detect PRRSV in different sampling material, both in an experimental model and on a commercial piglet producing farm, with a focus on evaluating the suitability of tongue fluid samples. RESULTS In the experimental model, PRRSV negative pregnant gilts were infected with PRRSV-1 AUT15-33 on gestation day 85 and necropsy of gilts and foetuses was performed three weeks later. 38.3% of individual foetal serum and 39.4% of individual foetal thymus samples were considered PRRSV RT-qPCR positive. Tongue fluids from individual foetuses showed a 33.0% positivity rate. PRRSV RNA was detected in all but one sample of litter-wise pooled processing fluids and tongue fluids. In the field study, the investigated farm remained PRRSV positive and unstable for five consecutive farrowing groups after the start of the sampling process. Tongue fluid samples pooled by litter in the first investigated farrowing group had a 54.5% positivity rate, with the overall highest viral load obtained in the field study. In this farrowing group, 33.3% of investigated litter-wise pooled processing fluid samples and all investigated serum samples (pools of 4-6 individuals, two piglets per litter) were considered positive. Across all investigated farrowing groups, tongue fluid samples consistently showed the highest viral load. Moreover, tongue fluid samples contained the virus in moderate amounts for the longest time compared to the other investigated sampling material. CONCLUSION It can be concluded that the viral load in individual foetuses is higher in serum or thymus compared to tongue fluid samples. However, litter-wise pooled tongue fluid samples are well-suited for detecting vertical transmission within the herd, even when the suspected prevalence of vertical transmission events is low.
Collapse
Affiliation(s)
- Sophie Dürlinger
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Heinrich Kreutzmann
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
- GD Animal Health Service, P.O. Box 9, 7400 AA, Deventer, The Netherlands.
| | - Christine Unterweger
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Vera Martin
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Flora Hamar
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Christian Knecht
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Angelika Auer
- Department of Biological Sciences and Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Katharina Dimmel
- Department of Biological Sciences and Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Till Rümenapf
- Department of Biological Sciences and Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Alfred Griessler
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Thomas Voglmayr
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Roland Maurer
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Alexander Oppeneder
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Andrea Ladinig
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
4
|
Shen YF, Arruda AG, Koscielny MP, Cheng TY. Contrasting PRRSV temporal lineage patterns at the individual farm, production system, and regional levels in Ohio and neighboring states from 2017 to 2021. Prev Vet Med 2024; 226:106186. [PMID: 38518657 DOI: 10.1016/j.prevetmed.2024.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Porcine reproductive and respiratory virus (PRRSV), one of the most significant viruses in the swine industry, has been challenging to control due to its high mutation and recombination rates and complexity. This retrospective study aimed to describe and compare the distribution of PRRSV lineages obtained at the individual farm, production system, and regional levels. PRRSV-2 (type 2) sequences (n = 482) identified between 2017 - 2021 were provided by a regional state laboratory (Ohio Department of Agriculture, Animal Disease Diagnostic Center (ODA-ADDL)) collected from swine farms in Ohio and neighboring states, including Indiana, Michigan, Pennsylvania, and West Virginia. Additional sequences (n = 138) were provided by one collaborating swine production system. The MUSCLE algorithm on Geneious Prime® was used to align the ORF5 region of PRRSV-2 sequences along with PRRSV live attenuated vaccine strains (n = 6) and lineage anchors (n = 169). Sequenced PRRSV-2 were assigned to the most identical lineage anchors/vaccine strains. Among all sequences (n = 620), 29.8% (185/620) were ≥ 98.0% identity with the vaccine strains, where 93.5% (173/185) and 6.5% (12/185) were identical with the L5 Ingelvac PRRS® MLV and L8 Fostera® PRRS vaccine strains, respectively, and excluded from the analysis. At the regional level across five years, the top five most identified lineages included L1A, L5, L1H, L1C, and L8. Among non-vaccine sequences with production system known, L1A sequences were mostly identified (64.3% - 100.0%) in five systems, followed by L1H (0.0% - 28.6%), L1C (0.0% - 10.5%), L5 (0.0% - 14.4%), L8 (0.0% - 1.3%), and L1F (0.0% - 0.5%). Furthermore, among non-vaccine sequences with the premise identification available (n = 262), the majority of sequences from five individual farms were either classified into L1A or L5. L1A and L5 sequences coexisted in three farms, while samples submitted by one farm contained L1A, L1H, and L5 sequences. Additionally, the lineage classification results of non-vaccine sequences were associated with their restriction fragment length polymorphism (RFLP) patterns (Fisher's exact test, p < 0.05). Overall, our results show that individual farm and production system-level PRRSV-2 lineage patterns do not necessarily correspond to regional-level patterns, highlighting the influence of individual farms and systems in shaping PRRSV occurrence within those levels, and highlighting the crucial goal of within-farm and system monitoring and early detection for accurate knowledge on PRRSV-2 lineage occurrence and emergence.
Collapse
Affiliation(s)
- Yi-Fan Shen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Preis G, Benjamin NR, Murray D, Taylor EB, Copeland S, Allison G, Corzo CA. First assessment of weeks-to-negative processing fluids in breeding herds after a Senecavirus A outbreak. Porcine Health Manag 2024; 10:2. [PMID: 38183156 PMCID: PMC10768445 DOI: 10.1186/s40813-023-00353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
Senecavirus A (SVA) causes vesicular disease in swine and has been responsible for a rampant increase in the yearly number of foreign animal disease investigations conducted in the United States. Diagnostic investigations for SVA are typically performed by sampling animals individually, which is labor-intensive and stressful. Developing an alternative aggregate sampling method would facilitate the detection of this virus at the population level. In a preliminary study, SVA was detected in processing fluids (PF) collected in a breeding herd before and after outbreak detection. The objective of this study was to estimate the average number of weeks PF remain SVA-positive after an SVA outbreak. Ten farrow-to-wean breeding herds volunteered to participate in this studyby longitudinally collecting PF samples after an SVA outbreak was detected and submitting samples for RT-rtPCR testing. The PF samples from the 10 farms were SVA-positive for an average of 11.8 weeks after the outbreak. Here, we show that testing of PF may be a cost-effective method to detect SVA and help halt its spread in SVA-endemic regions.
Collapse
Affiliation(s)
- Guilherme Preis
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Neal R Benjamin
- The Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana- Champaign, Urbana-Champaign, IL, USA
| | | | | | | | | | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
6
|
Lebret A, Normand V, Berton P, Nicolazo T, Teixeira Costa C, Chevance C, Brissonnier M, Boulbria G. Alternative Samples for Porcine Reproductive and Respiratory Syndrome Surveillance in an Endemic PRRSV-1-Infected Breeding Herd: A Descriptive Study. Vet Sci 2023; 10:558. [PMID: 37756080 PMCID: PMC10537479 DOI: 10.3390/vetsci10090558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Knowing porcine reproductive and respiratory syndrome (PRRS) status is essential for designing herd management protocols. For this, weaning-age pigs are a key subpopulation. Recently, different alternatives to blood sampling have been introduced because they are easier, welfare-friendly and cost-saving tools. Moreover, most of them allow the testing of more animals and seem to be more sensitive in low-prevalence scenarios. However, these studies were implemented mainly in PRRSV-2-infected herds. The first objective of our study was to compare the rate of detection of PRRSV-1 by RT-qPCR in individual serum samples, family oral fluid samples (FOF) and udder wipes (UW) collected the day before weaning. The second objective was to evaluate the suitability of pooling. The study was performed on a 210-sow farrow-to-finish farm which was PRRSV-1 infected and unstable. A total of 119 litters were sampled. The rate of detection of PRRSV-1 in blood samples, FOF and UW was 10.9%, 7.6% and 0.8%, respectively. The agreement between sera and FOF was almost perfect even if the detection capacity of sera was numerically superior to FOF. The Ct values of positive sera were statistically lower than those of FOF. Two modalities of pooling (1:3 and 1:5) were tested for sera and FOF. For sera, both modalities did not impact the PRRSV-1 status either at the litter level or at the batch one. On the other hand, whatever the modality (pooled by 3 or 5), most of the pools of FOF gave negative results, misclassifying many litters and batches.
Collapse
Affiliation(s)
- Arnaud Lebret
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Valérie Normand
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Pauline Berton
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Théo Nicolazo
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | | | - Céline Chevance
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Mathieu Brissonnier
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Gwenaël Boulbria
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| |
Collapse
|
7
|
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Front Vet Sci 2023; 10:1200376. [PMID: 37635762 PMCID: PMC10449646 DOI: 10.3389/fvets.2023.1200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.
Collapse
Affiliation(s)
| | - Guilherme A. Cezar
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Rodrigo C. Paiva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Daniel C. A. Moraes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Isadora F. Machado
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Edison S. Magalhaes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | | | - Mafalda Mil-Homens
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Li Peng
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Swaminathan Jayaraman
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Giovani Trevisan
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Gustavo S. Silva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine Department of the College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|
8
|
Sanhueza JM, Schwartz M, Corzo CA, Kikuti M, Yeske P, Leuwerke B, Schelkopf A, Williams T, Feuerbach S, Johnson C, Toohill E, Tapia-Escarate D, Yang M, Schroeder D, Vilalta C. Assessing the role of sow parity on PRRSv detection by RT-qPCR through weekly processing fluids monitoring in breeding herds. Prev Vet Med 2023; 213:105854. [PMID: 36758300 DOI: 10.1016/j.prevetmed.2023.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/18/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
The use of processing fluids to monitor the breeding herd's porcine reproductive and respiratory syndrome (PRRS) status has gained industry acceptance. However, little is known about PRRS virus RT-qPCR detection dynamics in processing fluids and factors that may contribute to maintain PRRS virus in the herd after an outbreak. This study aimed to describe weekly RT-qPCR processing fluid results in breeding herds after an outbreak and to evaluate the proportion of RT-qPCR positive results among parity groups. Processing tissues of 15 first parity (P1), 15 second parity (P2), and 15 third parity or higher (P3+) litters (parity groups) were collected weekly for between 19 and 46 weeks in nine breeding herds. Processing fluids were aggregated, and RT-qPCR tested by parity group weekly. Additionally, a subset of 743 processing fluid samples of litters that formed 50 parity groups, as previously described, were RT-qPCR tested individually at the litter level. The agreement between RT-qPCR results of processing fluid samples of parity groups (15 litters) and results based on individual litter testing was assessed using overall percent of agreement, Kappa statistic, and McNemar test. The association between RT-qPCR results and the parity group was evaluated using a generalized estimating equations model, after accounting for the effects of sampling week, breeding herd PRRS control strategy (i.e., open to replacements v/s closed) and herd. An autoregressive correlation structure was used to account for the repeated samplings within a herd in time. The overall agreement was 98 %, and Kappa statistic 0.955 (McNemar p = 1.0). Sensitivity of parity group processing fluid samples was estimated at 100 % (95 % CI 89-100 %), while specificity was estimated at 94 % (95 % CI 71-100 %). Although P1 aggregated litters had on average a higher proportion of RT-qPCR positive results from outbreak week 25 onwards, the proportion was not significantly different to the one observed for P2 and P3+ aggregated litters (p > 0.13). Additionally, herds that interrupted gilt entry had lower odds of PRRS RT-qPCR positivity than herds that continued entering gilts (OR = 0.35, 95 % CI 0.16-0.78). PRRS virus persistence in processing fluids was not affected by the sow parity effect in most of the breeding herds studied. No evidence of disagreement between RT-qPCR results of an aggregated sample of 15 litters and those of individual litters was observed. This level of litter aggregation testing strategy may be of particular use at the last stages of an elimination program under low PRRS virus prevalence.
Collapse
Affiliation(s)
- Juan Manuel Sanhueza
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile.
| | | | - Cesar A Corzo
- Population Medicine Department, University of Minnesota, United States of America
| | - Mariana Kikuti
- Population Medicine Department, University of Minnesota, United States of America
| | - Paul Yeske
- Swine Vet Center, Saint Peter, MN, United States of America
| | - Brad Leuwerke
- Swine Vet Center, Saint Peter, MN, United States of America
| | - Adam Schelkopf
- Pipestone Veterinary Services, Pipestone, MN, United States of America
| | - Todd Williams
- Pipestone Veterinary Services, Pipestone, MN, United States of America
| | - Steven Feuerbach
- Pipestone Veterinary Services, Pipestone, MN, United States of America
| | - Clayton Johnson
- Carthage Veterinary Service, Ltd., Carthage, IL, United States of America
| | - Elise Toohill
- Carthage Veterinary Service, Ltd., Carthage, IL, United States of America
| | - Daniela Tapia-Escarate
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile
| | - My Yang
- Population Medicine Department, University of Minnesota, United States of America
| | - Declan Schroeder
- Population Medicine Department, University of Minnesota, United States of America
| | - Carles Vilalta
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
| |
Collapse
|
9
|
Kikuti M, Vilalta C, Sanhueza J, Melini CM, Corzo CA. Porcine reproductive and respiratory syndrome prevalence and processing fluids use for diagnosis in United States breeding herds. Front Vet Sci 2022; 9:953918. [PMID: 36504858 PMCID: PMC9730796 DOI: 10.3389/fvets.2022.953918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Processing fluids have been recently adopted by the U.S. swine industry as a breeding herd PRRS monitoring tool due to their increased representativeness of animals within the herd. Here, we use the Morrison Swine Health Monitoring Project (MSHMP) database, representative of ~50% of the U.S. swine breeding herd, to describe processing fluids submissions for PRRS diagnosis and their relation to PRRS prevalence and time to stability over time between 2009 and 2020. Methods An ecological time series Poisson regression modeling the number of status 1 farms and weekly percentage of processing fluids submissions for PRRS diagnosis was done. Time to stability was calculated for sites that detected a PRRS outbreak within the study period and modeled through a proportional hazards mixed effect survival model using production system as a random-effect factor and epiweek as a panel variable. Results Processing fluids diagnosis submissions increased starting in 2017. The difference between each year's highest and lowest weekly prevalence averaged 10.9% between 2009 and 2017, whereas it averaged 5.0% in 2018-2020 period. Each year's lowest weekly prevalence ranged from 11.3 to 19.5% in 2009-2017 and from 22.4 to 29.2% in 2018-2020. We also detected an increasing proportion of breeding sites that did not reach stability within 1 year of reporting an outbreak (chi-square for trend p < 0.0001). The total time to stability was not associated with the region of the country in which the site was located, the site's air filtration status, its PRRS status before the outbreak, or the different statuses a site achieved to be classified as stable, when accounting for the production system in the multivariate model. However, a higher proportion of system-wide processing fluids use was associated with increased time to stability. Discussion Altogether, the temporal concurrence of processing fluids used for PRRS virus monitoring suggests that the adoption of this sampling strategy may help explain the changes observed in PRRS status 1 prevalence since 2018, although further studies are still needed.
Collapse
Affiliation(s)
- Mariana Kikuti
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Carles Vilalta
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States,Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain,Instituto de Investigación y Tecnología Agroalimentaria (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Juan Sanhueza
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States,Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Claudio Marcello Melini
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States,*Correspondence: Cesar A. Corzo
| |
Collapse
|
10
|
López W, Zimmerman J, Gauger P, Harmon K, Magtoto R, Bradner L, Holtkamp D, Zhang M, Zhang J, Ramirez A, Linhares D, Giménez-Lirola L. Considerations in the use of processing fluids for the detection of PRRSV RNA and antibody. J Vet Diagn Invest 2022; 34:859-863. [PMID: 35949154 PMCID: PMC9446294 DOI: 10.1177/10406387221114855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Surveillance is mandatory for tracking the progress of porcine reproductive and respiratory syndrome virus (PRRSV) control and elimination efforts in breeding herds. Processing fluids, the fluid recovered from tissues collected at castration and/or tail docking, are used for breeding herd surveillance by large segments of the industry, but the basic diagnostic characteristics of processing fluids are largely undescribed. We undertook 3 studies to address this information gap. In study 1, we found no differences among the PRRSV RT-rtPCR results obtained with 4 commercial RNA extraction kits. In study 2, we found that PRRSV RNA was highly stable in processing fluid samples at -20°C or 4°C, but detrimental effects were observed at ≥22°C within 24 h. In study 3, using a modified PRRSV ELISA at a sample:positive cutoff of ≥0.5, we found excellent discrimination in the detection of PRRSV antibody (IgM, IgA, IgG) in processing fluids from herds of known PRRSV status. Judicious handling of processing fluid samples from sow herds, and the use of methods available in veterinary diagnostic laboratories, can provide a foundation for reliable PRRSV surveillance.
Collapse
Affiliation(s)
- Will López
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; PIC
North America, Hendersonville, TN, USA
| | - Jeff Zimmerman
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Phil Gauger
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Karen Harmon
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Laura Bradner
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Derald Holtkamp
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Min Zhang
- Department of Statistics, College of Liberal Arts and
Sciences
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal
Medicine, College of Veterinary Medicine
| | - Alejandro Ramirez
- Department of Veterinary Diagnostic and Production
Animal Medicine, College of Veterinary Medicine
| | - Daniel Linhares
- Department of Veterinary Diagnostic and Production
Animal Medicine, College of Veterinary Medicine
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production
Animal Medicine, College of Veterinary Medicine
| |
Collapse
|
11
|
Effect of pooling family oral fluids on the probability of PRRSV RNA detection by RT-rtPCR. Prev Vet Med 2022; 206:105701. [DOI: 10.1016/j.prevetmed.2022.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022]
|
12
|
Campler MR, Cheng TY, Schroeder DC, Yang M, Mor SK, Ferreira JB, Arruda AG. A longitudinal study on PRRSV detection in swine herds with different demographics and PRRSV management strategies. Transbound Emerg Dis 2021; 69:e1005-e1014. [PMID: 34747126 DOI: 10.1111/tbed.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 01/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been one of the major health-related concerns in the swine production industry. Through its rapid transmission and mutation, the simultaneous circulation of multiple PRRSV strains can be a challenge in PRRSV diagnostic, control and surveillance. The objective of this longitudinal study was to describe the temporal detection of PRRSV in swine farms with different production types and PRRS management strategies. Tonsil scraping (n = 344) samples were collected from three breeding and two growing herds for approximately one year. In addition, processing fluids (n = 216) were obtained from piglet processing batches within the three breeding farms while pen-based oral fluids (n = 125) were collected in the two growing pig farms. Viral RNA extraction and reverse-transcription quantitative PCR (RT-qPCR) were conducted for all samples. The sample positivity threshold was set at quantification cycle (Cq) of ≤ 37. Statistical analyses were performed using generalized linear modelling and post hoc pairwise comparisons with Bonferroni adjustments using R statistical software. The results suggested a higher probability of detection in processing fluids compared to tonsil scraping specimens [odds ratio (OR) = 3.86; p = .096] in breeding farms whereas oral fluids were outperformed by tonsil scrapings (OR = 0.26; p < .01) in growing pig farms. The results described herein may lead to an improvement in PRRSV diagnostic and surveillance by selecting proper specimens.
Collapse
Affiliation(s)
- Magnus R Campler
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - M Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Sunil K Mor
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Juliana B Ferreira
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Trevisan G, Johnson C, Benjamin N, Bradner L, Linhares DCL. Description of changes of key performance indicators and PRRSV shedding over time in a naïve breeding herd following a PRRS MLV exposure. Transbound Emerg Dis 2021; 68:3230-3235. [PMID: 34553831 DOI: 10.1111/tbed.14327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important economic swine disease. The usage of PRRS-modified live vaccines (MLV) is the predominant breeding herd immunologic solution used in the United States to minimize the economic losses associated with wild-type PRRS infection. Most of the current information on the effects of contemporary PRRS MLV vaccination on breeding herd performance under field conditions comes from herds with previous PRRS virus (PRRSV) exposure. Hence, there is little information on key performance indicators (KPI) changes after the exposure to a PRRS MLV in PRRSV-naïve breeding herds. The main objective of this longitudinal observational study was to describe selected KPI changes in a naïve breeding herd after PRRS MLV exposure. The secondary objective was to describe the pattern of detection of PRRSV RNA by the quantitative reverse transcriptase-polymerase chain reaction in processing fluid samples. There were transient increases for mummies during weeks 4-23 (+0.86%); increased pre-weaning mortality on weeks 3-5 (+3.76%); a decrease in live born on weeks 4-5 (-0.46) leading to a decreased pig weaned/litter on weeks 5-10 (-0.69) and increased repeated services on weeks 3-23 (+5.53%). Transient changes observed after PRRS MLV exposures did not move total pigs weaned to outside the control intervals. Starting on week 83 and for 53 consecutive weeks, there was no PRRSV detection in processing fluids, even though two whole-herd MLV exposures occurred within that period.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Neil Benjamin
- Carthage Veterinary Service, Carthage, Illinois, USA
| | - Laura Bradner
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel C L Linhares
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
14
|
de Lara AC, Garrido-Mantilla J, Lopez-Moreno G, Yang M, Barcellos DESN, Torremorell M. Effect of pooling udder skin wipes on the detection of influenza A virus in preweaning pigs. J Vet Diagn Invest 2021; 34:133-135. [PMID: 34404296 DOI: 10.1177/10406387211039462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) active surveillance in pigs prior to weaning is commonly conducted by collecting individual samples, mostly nasal swabs. Recently, the use of udder skin wipes collected from lactating sows was identified as an effective sampling method to indicate IAV status of suckling piglets prior to weaning. However, there is limited information on the effect of pooling multiple udder wipes on the ability to detect IAV. We evaluated the effect of pooling 3, 5, or 10 udder wipes on the sensitivity of detecting IAV and compared the results with testing the wipes individually. The likelihood of detecting positive udder wipes decreased with pooling when the initial positive cycle threshold value was ≥31.5; pooling of up to 3 samples could be performed without affecting sensitivity significantly. Our results support pooling of udder skin wipes to conduct surveillance of IAV in pigs prior to weaning.
Collapse
Affiliation(s)
- Anne C de Lara
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Porto Alegre, RS, Brazil
| | | | - Gustavo Lopez-Moreno
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - My Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - David E S N Barcellos
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Porto Alegre, RS, Brazil
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
15
|
Trevisan G, Sharma A, Gauger P, Harmon KM, Zhang J, Main R, Zeller M, Linhares LCM, Linhares DCL. PRRSV2 genetic diversity defined by RFLP patterns in the United States from 2007 to 2019. J Vet Diagn Invest 2021; 33:920-931. [PMID: 34180734 DOI: 10.1177/10406387211027221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) increases over time. In 1998, restriction-fragment length polymorphism (RFLP) pattern analysis was introduced to differentiate PRRSV wild-type strains from VR2332, a reference strain from which a commercial vaccine (Ingelvac PRRS MLV) was derived. We have characterized here the PRRSV genetic diversity within selected RFLP families over time and U.S. geographic space, using available ISU-VDL data from 2007 to 2019. The 40,454 ORF5 sequences recovered corresponded to 228 distinct RFLPs. Four RFLPs [2-5-2 (21.2%), 1-7-4 (15.6%), 1-4-4 (11.8%), and 1-8-4 (9.9%)] represented 58.5% of all ORF5 sequences and were used for cluster analysis. Over time, there was increased detection of RFLPs 2-5-2, 1-7-4, 1-3-4, 1-3-2, and 1-12-4; decreased detection of 1-4-2, 1-18-4, 1-18-2, and 1-2-2; and different detection trends for 1-8-4, 1-4-4, 1-26-1, 1-22-2, and 1-2-4. An over-time cluster analysis revealed a single cluster for RFLP 2-5-2, supporting that sequences within RFLP 2-5-2 are still relatively conserved. For 1-7-4, 1-4-4, and 1-8-4, there were multiple clusters. State-wise cluster analysis demonstrated 4 main clusters for RFLP 1-7-4 and 1-8-4, and 6 for RFLP 1-4-4. For the other RFLPs, there was a significant genetic difference within them, particularly between states. RFLP typing is limited in its ability to discriminate among different strains of PRRSV. Understanding the magnitude of genetic divergence within RFLPs helps develop PRRSV regional control programs, placement, herd immunization strategies, and design of appropriate animal movements across borders to minimize the risk of PRRSV transmission.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Aditi Sharma
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Michael Zeller
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Leticia C M Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel C L Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
16
|
Assessing the litter level agreement of RT-PCR results for porcine reproductive and respiratory syndrome virus in testicles, tails and udder wipes diagnostic samples relative to serum from piglets. Prev Vet Med 2020; 186:105211. [PMID: 33310196 DOI: 10.1016/j.prevetmed.2020.105211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is currently the most detrimental disease in the U.S swine industry. Clinical signs of PRRS virus (PRRSv) infection in breeding herds include reproductive failure with abortions, stillbirths, premature farrowings and increased pre-weaning mortality. Serum from due-to-wean piglets is considered the most suitable specimen to monitor PRRSv infection and stability in breeding herds. However, processing fluids (PF - the serosanguinous exudate resultant of the collection of tails and testicles during processing) are a new specimen proposed to monitor piglets at processing (3-5 days of age) and udder wipes (UW) of lactating sows is yet another specimen to monitor infection status of suckling piglets indirectly. Here, we assessed which specimen type (e.g. sera, testicles, tails or UW) should be used to accurately establish the PRRSv status of a litter. Twenty-four litters were conveniently selected on a farm at 10 weeks post PRRSv outbreak. Blood samples, tails and testicles from every piglet in a litter, and an udder skin wipe from the sow were collected at processing (3-5 days). Individual litter testicles and tails as well as the udder wipe were placed each in a reclosable bag to prevent cross-contamination. Sensitivity (Se), specificity (Sp), negative predictive value (NPV), positive predictive value (PPV) and global agreement at the litter level were calculated using the sera results of the litter as the gold standard. The optimum cycle threshold (Ct) value to classify a sample as negative was ≥35 for serum and ≥36 for the aggregated samples (testicles, tails, and UW) based on the ROC curve analysis. Using those thresholds, the fluid collected from the testicles showed the best overall performance (Se = 92 % [62-100]; Sp = 82 % [48-98], NPV = 90 % [55-100], PPV = 85 % [55-98], global agreement = 87 %) compared to tail fluid and UW. Sensitivity of the tail fluid was 62 % (32-86) and the UW was 23 % (5-54), both of which yielded a 100 % specificity and PPV. This study provides information on the contribution of each of the tissues collected at processing on the detection of PRRSv, which becomes relevant in countries were castration and/or tail docking is banned.
Collapse
|
17
|
Turlewicz-Podbielska H, Włodarek J, Pomorska-Mól M. Noninvasive strategies for surveillance of swine viral diseases: a review. J Vet Diagn Invest 2020; 32:503-512. [PMID: 32687007 DOI: 10.1177/1040638720936616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In view of the intensive development of the swine industry, monitoring and surveillance of infectious diseases require low-cost, effective, and representative population sampling methods. We present herein the state of knowledge, to date, in the use of alternative strategies in the monitoring of swine health. Blood sampling, the most commonly used method in veterinary medicine to obtain samples for monitoring swine health, is labor-intensive and expensive, which has resulted in a search for alternative sampling strategies. Oral fluid (OF) is a good alternative to serum for pooled sample analysis, especially for low-prevalence pathogens. Detection of viral nucleic acids or antiviral antibodies in OF is used to detect numerous viruses in the swine population. Meat juice is used as an alternative to serum in serologic testing. Processing fluid obtained during processing of piglets (castration and tail-docking) may also be used to detect viruses. These matrices are simple, safe, cost-effective, and allow testing of many individuals at the same time. The latest methods, such as snout swabs and udder skin wipes, are also promising. These alternative samples are easy to acquire, and do not affect animal welfare negatively.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań, University of Life Sciences, Poznań, Poland
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań, University of Life Sciences, Poznań, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań, University of Life Sciences, Poznań, Poland
| |
Collapse
|
18
|
Vilalta C, Garcia‐Morante B, Sanhueza JM, Schwartz M, Pieters M. PCR detection of
Mycoplasma hyopneumoniae
in piglet processing fluids in the event of a clinical respiratory disease outbreak. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2019-001045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Carles Vilalta
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | | | | | - Mark Schwartz
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Maria Pieters
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| |
Collapse
|
19
|
Vilalta C, Sanhueza J, Garrido J, Murray D, Morrison R, Corzo CA, Torremorell M. Indirect assessment of porcine reproductive and respiratory syndrome virus status in pigs prior to weaning by sampling sows and the environment. Vet Microbiol 2019; 237:108406. [PMID: 31585654 DOI: 10.1016/j.vetmic.2019.108406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/03/2023]
Abstract
There is a need to develop cost effective approaches to sample large populations in particular to determine the disease status of pigs prior to weaning. In this study we assessed the presence of the porcine reproductive and respiratory syndrome virus (PRRSV) in the environment (surfaces and air) of farrowing rooms, and udder skin of lactating sows as an indirect measure of piglet PRRSV status. Samples were collected at processing and weaning every three weeks for 23 weeks after a PRRSV outbreak was diagnosed in a swine breeding herd. PRRSV was detected at processing in udder skin wipes, environmental wipes and airborne deposited particle samples up to 14 weeks post outbreak and at weaning in udder skin wipes up to 17 weeks post outbreak. Similar sensitivities were observed for udder skin wipes (43% [95% CI: 23%-66%]) and surface wipes (57% [95% CI: 34%-77%]) when compared to serum at the litter level from piglets at processing. PRRSV was detected in the environment and the udder skin of lactating sows, which indicates that aggregate samples of the environment or lactating sows may be used to evaluate the PRRSV status of the herd in pigs prior to weaning. However, the use of environmental samples to detect PRRSV by RT-PCR should not be used as the single method to assess the PRRSV status at the litter level. Furthermore, our findings also highlight potential sources of PRRSV infection for piglets in breeding herds.
Collapse
Affiliation(s)
- Carles Vilalta
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA.
| | - Juan Sanhueza
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA
| | - Jorge Garrido
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA
| | | | - Robert Morrison
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA
| |
Collapse
|