1
|
Finnie JW. Clostridium perfringens Type D Epsilon Toxin Causes Blood-Retinal Barrier Microvascular Damage and Diffuse Retinal Vasogenic Oedema. Vet Sci 2023; 11:2. [PMID: 38275918 PMCID: PMC10818779 DOI: 10.3390/vetsci11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Clostridium perfringens type D epsilon toxin (ETX) causes severe retinal microvascular endothelial injury in the rat. The resulting blood-retinal barrier (BRB) breakdown leads to increased vascular permeability, which was detected immunohistochemically by the extravasation of plasma albumin as a vascular tracer, and ensuing severe, diffuse, vasogenic retinal oedema. This microvascular damage was also confirmed by a loss of endothelial barrier antigen, a marker of an intact BRB in rats. Since similar microvascular lesions are found in EXT-exposed laboratory rodent and sheep brains, and the BRB resembles the BBB, they are also likely to occur in the eyes of naturally epsilon-intoxicated sheep and goats, but this remains to be determined. Moreover, while retinal oedema is a common and important component of many human and veterinary ocular disorders, more effective treatments are required. Accordingly, the retinal vasogenic oedema reliably and reproducibly induced by ETX in rats provides a useful model in which to study the pathogenesis of retinal oedema development and evaluate its prevention or amelioration by putative pharmacological interventions.
Collapse
Affiliation(s)
- John W Finnie
- Division of Research and Innovation, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Pudineh Moarref M, Alimolaei M, Emami T, Koohi MK. Development and evaluation of cell membrane-based biomimetic nanoparticles loaded by Clostridium perfringens epsilon toxin: a novel vaccine delivery platform for Clostridial-associated diseases. Nanotoxicology 2023; 17:420-431. [PMID: 37695263 DOI: 10.1080/17435390.2023.2252899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
As Clostridium perfringens (C. perfringens) epsilon toxin (ETX) ranks as the third most potent clostridial toxin after botulinum and tetanus toxins, vaccination is necessary for creatures that can be affected by it to be safe from the effects of this toxin. Nowadays, nanostructures are good choices for carriers for biological environments. We aimed to synthesize biomimetic biodegradable nanodevices to enhance the efficiency of the ETX vaccine. For this purpose, poly(lactic-co-glycolic acid) (PLGA) copolymer loaded with purified epsilon protoxin (proETX) to create nanoparticles called nanotoxins (NTs) and then coated by RBC membrane-derived vesicles (RVs) to form epsilon nanotoxoids (RV-NTs). The resulting RV-NTs shaped smooth spherical surfaces with double-layer core/shell structure with an average particle size of 105.9 ± 35.1 nm and encapsulation efficiency of 97.5% ± 0.13%. Compared with NTs, the RV-NTs were more stable for 15 consecutive days. In addition, although both structures showed a long-term cumulative release, the release rates from RV-NTs were slower than NTs during 144 hours. According to the results of cell viability, ETX loading in PLGA and entrapment in the RBC membrane decreased the toxicity of the toxin. The presence of PLGA enhances the uptake of proETX, and the synthesized structures showed no significant lesion after injection. These results demonstrate that NTs and RV-NTs could serve as an effective vaccine platform to deliver ETX for future in vivo assays.
Collapse
Affiliation(s)
- Mokarameh Pudineh Moarref
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Alimolaei
- Research and Development Department, Kerman Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| | - Tara Emami
- Department of Proteomics and Biochemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Pathology and Pathogenesis of Brain Lesions Produced by Clostridium perfringens Type D Epsilon Toxin. Int J Mol Sci 2022; 23:ijms23169050. [PMID: 36012315 PMCID: PMC9409160 DOI: 10.3390/ijms23169050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens type D epsilon toxin (ETX) produces severe, and frequently fatal, neurologic disease in ruminant livestock. The disorder is of worldwide distribution and, although vaccination has reduced its prevalence, ETX still causes substantial economic loss in livestock enterprises. The toxin is produced in the intestine as a relatively inactive prototoxin, which is subsequently fully enzymatically activated to ETX. When changed conditions in the intestinal milieu, particularly starch overload, favor rapid proliferation of this clostridial bacterium, large amounts of ETX can be elaborated. When sufficient toxin is absorbed from the intestine into the systemic circulation and reaches the brain, two neurologic syndromes can develop from this enterotoxemia. If the brain is exposed to large amounts of ETX, the lesions are fundamentally vasculocentric. The neurotoxin binds to microvascular endothelial receptors and other brain cells, the resulting damage causing increased vascular permeability and extravasation of plasma protein and abundant fluid into the brain parenchyma. While plasma protein, particularly albumin, pools largely perivascularly, the vasogenic edema becomes widely distributed in the brain, leading to a marked rise in intracranial pressure, coma, sometimes cerebellar herniation, and, eventually, often death. When smaller quantities of ETX are absorbed into the bloodstream, or livestock are partially immune, a more protracted clinical course ensues. The resulting brain injury is characterized by bilaterally symmetrical necrotic foci in certain selectively vulnerable neuroanatomic sites, termed focal symmetrical encephalomalacia. ETX has also been internationally listed as a potential bioterrorism agent. Although there are no confirmed human cases of ETX intoxication, the relatively wide species susceptibility to this toxin and its high toxicity mean it is likely that human populations would also be vulnerable to its neurotoxic actions. While the pathogenesis of ETX toxicity in the brain is incompletely understood, the putative mechanisms involved in neural lesion development are discussed.
Collapse
|
4
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Giannitti F, García JP, Rood JI, Adams V, Armendano JI, Beingesser J, Uzal FA. Cardiopulmonary Lesions in Sheep Produced by Experimental Acute Clostridium Perfringens Type D Enterotoxemia. Vet Pathol 2020; 58:103-113. [PMID: 33054683 DOI: 10.1177/0300985820965554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enterotoxemia caused by Clostridium perfringens type D is one of the most prevalent clostridial diseases of sheep. The lesions of the acute form of this disease, particularly the cerebral lesions, are well characterized; however, detailed descriptions of the cardiac and pulmonary lesions are lacking. Here we describe cardiopulmonary lesions in experimental acute type D enterotoxemia in sheep and determine the role of epsilon toxin (ETX) in the development of these lesions. Four groups of 6 sheep were intraduodenally inoculated with either a wild-type C. perfringens type D strain; its etx knockout mutant, which is unable to produce ETX; the etx mutant complemented with the wild-type etx gene, which regains the ETX toxigenic ability; or sterile culture medium as a control. All sheep were subjected to postmortem examination within 24 hours of inoculation. Lesion scores were compared between groups for pulmonary edema; hydrothorax; ascites; hydropericardium; endocardial, myocardial and epicardial hemorrhages; microscopic lesions of acute myocardial degeneration and necrosis; and myocardial, endocardial, and epicardial edema, hemorrhage, and inflammation. Only sheep inoculated with the wild-type and complemented ETX-toxigenic bacterial strains developed cardiopulmonary lesions, which were present in varying degrees of severity and proportions. These lesions were not present in sheep inoculated with the etx mutant or in the negative control. We conclude that severe acute cardiopulmonary lesions in sheep with experimental enterotoxemia are associated with the capacity of the strains to produce ETX. These changes are likely contributors to the clinical signs and even death of affected animals.
Collapse
Affiliation(s)
- Federico Giannitti
- 153579Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Jorge P García
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | | | - Vicki Adams
- 2541Monash University, Clayton, Victoria, Australia
| | - Joaquín I Armendano
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | | | | |
Collapse
|
6
|
Babele P, Kumar RB, Rajoria S, Rashid F, Malakar D, Bhagyawant SS, Kamboj DV, Alam SI. Putative serum protein biomarkers for epsilon toxin exposure in mouse model using LC-MS/MS analysis. Anaerobe 2020; 63:102209. [PMID: 32387808 DOI: 10.1016/j.anaerobe.2020.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens Type B or type D strains, is a potential biological and toxin warfare (BTW) agent, largely for its very high toxicity. The toxin is implicated in several animal diseases. Using LC-MS/MS analysis, we report here elucidation of putative serum maker proteins for ETX exposure with an objective of the early diagnosis of intoxication. Of 166 consensus proteins (488 peptides), showing ETX-induced alterations, 119 proteins exhibited increase and 47 proteins showed decreased abundance in serum, as revealed by SWATH (DIA) acquisition on LC-MS/MS and label free quantitative analysis of control and test samples. Complement and coagulation cascade, nitrogen metabolism, negative regulation of peptidase activity, and response to ROS were among the biological processes and pathways perturbed by the ETX exposure. Interaction network indicated enzyme inhibitor activity, detoxification of ROS, and steroid binding functions were the major interaction networks for the proteins with increased abundance, while, hemostasis and structural molecule activity were the prominent networks for the down-regulated proteins. Validation studies were carried out by immunoprecipitation, ELISA, and Western blot analysis of selected proteins to demonstrate diagnostic potential of the putative marker proteins of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Gurugram, Haryana, India
| | - Dipankar Malakar
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
7
|
Finnie JW, Navarro MA, Uzal FA. Pathogenesis and diagnostic features of brain and ophthalmic damage produced by Clostridium perfringens type D epsilon toxin. J Vet Diagn Invest 2020; 32:282-286. [PMID: 31955669 DOI: 10.1177/1040638719900190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clostridium perfringens type D epsilon toxin (EXT) causes an important neurologic disorder of sheep, goats and, rarely, cattle. The disease can occur in peracute, acute, subacute, and chronic forms. High circulating levels of ETX produce vasculocentric brain lesions, in which microvascular endothelial injury results in diagnostically useful perivascular and intramural extravasations of plasma protein, especially in sheep, and less frequently in goats. With lower toxin doses, a more protracted clinical course tends to occur, particularly in sheep, leading to focal, bilaterally symmetrical, necrotic foci in certain brain regions. Although these morphologic features usually permit the diagnostic pathologist to make a definitive etiologic diagnosis, there are many aspects of the pathogenesis of these cerebral lesions that are not completely understood. ETX has also been shown to produce microvascular damage in the retina of rats, resulting in severe, diffuse vasogenic edema, similar to that found in brains exposed to this neurotoxin. The pathoclisis and vascular theories offer alternative explanations of the differential susceptibility of different brain regions to the same neurotoxic insult.
Collapse
Affiliation(s)
- John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia (Finnie).,California Animal Health and Food Safety Laboratory System-San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| | - Mauricio A Navarro
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia (Finnie).,California Animal Health and Food Safety Laboratory System-San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| | - Francisco A Uzal
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia (Finnie).,California Animal Health and Food Safety Laboratory System-San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA (Navarro, Uzal)
| |
Collapse
|