1
|
Siddiqui MI, Khan A, Memon KI, Farid MI, Kashif M, Mirjat D, Ahmad M, Raza T, Amjad MH. The Role of Advanced Magnetic Resonance Imaging Sequences in Multiple Sclerosis. Cureus 2024; 16:e67759. [PMID: 39323687 PMCID: PMC11422243 DOI: 10.7759/cureus.67759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Background The neurological condition known as multiple sclerosis (MS) is crippling and has a complicated pathogenesis as well as a wide range of clinical symptoms, including fatigue, difficulty walking, numbness or tingling, muscle spasms and spasticity, weakness, vision problems, dizziness and vertigo, bladder and bowel dysfunction, cognitive impairment, and emotional changes. The complete scope of MS pathology cannot be fully captured by conventional magnetic resonance imaging (MRI) sequences, which has led to the investigation of sophisticated MRI methods for better diagnosis and treatment. Objective This study aims to evaluate the clinical relevance of advanced MRI sequences in multiple sclerosis. Methodology A retrospective cohort study was conducted across multiple specialized medical centers renowned for treating neurological disorders, particularly multiple sclerosis, and involved 310 patients with diverse geography seeking treatment throughout 2022. Records were searched to obtain patient information, demographics, and treatment history. Descriptive statistics and t-tests were among the statistical studies that investigated relationships between MRI biomarkers and clinical factors to help with the diagnosis and treatment of MS. A p-value of <0.05 was significant. Results The research group consisted of 310 MS patients, the majority of whom were female (67.42%) and had a mean age of 34.7 years. With hypertension (14.52%) and hyperlipidemia (19.35%) as prevalent comorbidities, the majority of patients (72.26%) were on disease-modifying treatments. The results of advanced MRI showed that lesions with white matter had higher mean diffusivity (1.25 ± 0.15 mm²/s) on DWI, lesions with reduced magnetization transfer ratio (MTR) (0.15 ± 0.03) on MTI, and lesions with reduced fractional anisotropy (FA) (0.40 ± 0.08) on diffusion tensor imaging (DTI). Additionally, the blood oxygen level-dependent (BOLD) signals in cognitive processing regions (0.75 ± 0.10) on functional MRI were different from those with normal-appearing white matter (0.40 ± 0.08). Conclusion Advanced MRI sequences are essential for bettering MS diagnosis, prognosis, and treatment because they link imaging biomarkers to important clinical parameters, which improves patient care and quality of life.
Collapse
Affiliation(s)
- Muhammad I Siddiqui
- Department of Diagnostic Radiology, North West General Hospital and Research Center, Peshawar, PAK
- Department of Clinical Imaging, Sheikh Shakhbout Medical City, Abu Dhabi, ARE
| | | | - Kamran I Memon
- Department of Clinical Imaging, Sheikh Shakhbout Medical City, Abu Dhabi, ARE
| | - Muhammad I Farid
- Department of Electrical and Computer Engineering, Air University, Islamabad, PAK
| | - Muhammad Kashif
- Department of Medicine, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, USA
| | - Dureali Mirjat
- Department of Medicine and Surgery, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, USA
| | - Maryam Ahmad
- Department of Medicine and Surgery, Shalamar Medical and Dental College, Lahore, PAK
| | - Tauseef Raza
- Department of Orthopedics, Khyber Medical University (KMU) Institute of Medical Sciences, Kohat, PAK
| | | |
Collapse
|
2
|
Mooshage CM, Schimpfle L, Tsilingiris D, Kender Z, Aziz-Safaie T, Hohmann A, Szendroedi J, Nawroth P, Sturm V, Heiland S, Bendszus M, Kopf S, Jende JME, Kurz FT. Magnetization transfer ratio of the sciatic nerve differs between patients in type 1 and type 2 diabetes. Eur Radiol Exp 2024; 8:6. [PMID: 38191821 PMCID: PMC10774497 DOI: 10.1186/s41747-023-00405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Previous studies on magnetic resonance neurography (MRN) found different patterns of structural nerve damage in type 1 diabetes (T1D) and type 2 diabetes (T2D). Magnetization transfer ratio (MTR) is a quantitative technique to analyze the macromolecular tissue composition. We compared MTR values of the sciatic nerve in patients with T1D, T2D, and healthy controls (HC). METHODS 3-T MRN of the right sciatic nerve at thigh level was performed in 14 HC, 10 patients with T1D (3 with diabetic neuropathy), and 28 patients with T2D (10 with diabetic neuropathy). Results were subsequently correlated with clinical and electrophysiological data. RESULTS The sciatic nerve's MTR was lower in patients with T2D (0.211 ± 0.07, mean ± standard deviation) compared to patients with T1D (T1D 0.285 ± 0.03; p = 0.015) and HC (0.269 ± 0.05; p = 0.039). In patients with T1D, sciatic MTR correlated positively with tibial nerve conduction velocity (NCV; r = 0.71; p = 0.021) and negatively with hemoglobin A1c (r = - 0.63; p < 0.050). In patients with T2D, we found negative correlations of sciatic nerve's MTR peroneal NCV (r = - 0.44; p = 0.031) which remained significant after partial correlation analysis controlled for age and body mass index (r = 0.51; p = 0.016). CONCLUSIONS Lower MTR values of the sciatic nerve in T2D compared to T1D and HC and diametrical correlations of MTR values with NCV in T1D and T2D indicate that there are different macromolecular changes and pathophysiological pathways underlying the development of neuropathic nerve damage in T1D and T2D. TRIAL REGISTRATION https://classic. CLINICALTRIALS gov/ct2/show/NCT03022721 . 16 January 2017. RELEVANCE STATEMENT Magnetization transfer ratio imaging may serve as a non-invasive imaging method to monitor the diseases progress and to encode the pathophysiology of nerve damage in patients with type 1 and type 2 diabetes. KEY POINTS • Magnetization transfer imaging detects distinct macromolecular nerve lesion patterns in diabetes patients. • Magnetization transfer ratio was lower in type 2 diabetes compared to type 1 diabetes. • Different pathophysiological mechanisms drive nerve damage in type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Christoph M Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Dimitrios Tsilingiris
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Taraneh Aziz-Safaie
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Anja Hohmann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.
- German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
3
|
Bosticardo S, Schiavi S, Schaedelin S, Battocchio M, Barakovic M, Lu PJ, Weigel M, Melie-Garcia L, Granziera C, Daducci A. Evaluation of tractography-based myelin-weighted connectivity across the lifespan. Front Neurosci 2024; 17:1228952. [PMID: 38239829 PMCID: PMC10794573 DOI: 10.3389/fnins.2023.1228952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Recent studies showed that the myelin of the brain changes in the life span, and demyelination contributes to the loss of brain plasticity during normal aging. Diffusion-weighted magnetic resonance imaging (dMRI) allows studying brain connectivity in vivo by mapping axons in white matter with tractography algorithms. However, dMRI does not provide insight into myelin; thus, combining tractography with myelin-sensitive maps is necessary to investigate myelin-weighted brain connectivity. Tractometry is designated for this purpose, but it suffers from some serious limitations. Our study assessed the effectiveness of the recently proposed Myelin Streamlines Decomposition (MySD) method in estimating myelin-weighted connectomes and its capacity to detect changes in myelin network architecture during the process of normal aging. This approach opens up new possibilities compared to traditional Tractometry. Methods In a group of 85 healthy controls aged between 18 and 68 years, we estimated myelin-weighted connectomes using Tractometry and MySD, and compared their modulation with age by means of three well-known global network metrics. Results Following the literature, our results show that myelin development continues until brain maturation (40 years old), after which degeneration begins. In particular, mean connectivity strength and efficiency show an increasing trend up to 40 years, after which the process reverses. Both Tractometry and MySD are sensitive to these changes, but MySD turned out to be more accurate. Conclusion After regressing the known predictors, MySD results in lower residual error, indicating that MySD provides more accurate estimates of myelin-weighted connectivity than Tractometry.
Collapse
Affiliation(s)
- Sara Bosticardo
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Simona Schiavi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
- ASG Superconductors S.p.A., Genoa, Italy
| | - Sabine Schaedelin
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Matteo Battocchio
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Département d’Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Daducci
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Xiang B, Wen J, Schmidt RE, Sukstanskii AL, Mamah D, Yablonskiy DA, Cross AH. Evaluating brain damage in multiple sclerosis with simultaneous multi-angular-relaxometry of tissue. Ann Clin Transl Neurol 2022; 9:1514-1527. [PMID: 36178006 PMCID: PMC9539387 DOI: 10.1002/acn3.51621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a common demyelinating central nervous system disease. MRI methods that can quantify myelin loss are needed for trials of putative remyelinating agents. Quantitative magnetization transfer MRI introduced the macromolecule proton fraction (MPF), which correlates with myelin concentration. We developed an alternative approach, Simultaneous-Multi-Angular-Relaxometry-of-Tissue (SMART) MRI, to generate MPF. Our objective was to test SMART-derived MPF metric as a potential imaging biomarker of demyelination. METHODS Twenty healthy control (HC), 11 relapsing-remitting MS (RRMS), 22 progressive MS (PMS), and one subject with a biopsied tumefactive demyelinating lesion were scanned at 3T using SMART MRI. SMART-derived MPF metric was determined in normal-appearing cortical gray matter (NAGM), normal-appearing subcortical white matter (NAWM), and demyelinating lesions. MPF metric was evaluated for correlations with physical and cognitive test scores. Comparisons were made between HC and MS and between MS subtypes. Furthermore, correlations were determined between MPF and neuropathology in the biopsied person. RESULTS SMART-derived MPF in NAGM and NAWM were lower in MS than HC (p < 0.001). MPF in NAGM, NAWM and lesions differentiated RRMS from PMS (p < 0.01, p < 0.001, p < 0.001, respectively), whereas lesion volumes did not. MPF in NAGM, NAWM and lesions correlated with the Expanded Disability Status Scale (p < 0.01, p < 0.001, p < 0.001, respectively) and nine-hole peg test (p < 0.001, p < 0.001, p < 0.01, respectively). MPF was lower in the histopathologically confirmed inflammatory demyelinating lesion than the contralateral NAWM and increased in the biopsied lesion over time, mirroring improved clinical performance. INTERPRETATION SMART-derived MPF metric holds potential as a quantitative imaging biomarker of demyelination and remyelination.
Collapse
Affiliation(s)
- Biao Xiang
- Department of RadiologyWashington UniversitySt. LouisMissouri63110USA
| | - Jie Wen
- Department of RadiologyWashington UniversitySt. LouisMissouri63110USA
| | - Robert E. Schmidt
- Department of PathologyWashington UniversitySt. LouisMissouri63110USA
| | | | - Daniel Mamah
- Department of PsychiatryWashington UniversitySt. LouisMissouri63110USA
| | | | - Anne H. Cross
- Department of NeurologyWashington UniversitySt. LouisMissouri63110USA
| |
Collapse
|
5
|
York EN, Thrippleton MJ, Meijboom R, Hunt DPJ, Waldman AD. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. Brain Commun 2022; 4:fcac088. [PMID: 35652121 PMCID: PMC9149789 DOI: 10.1093/braincomms/fcac088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Myelin-sensitive MRI such as magnetization transfer imaging has been widely used in multiple sclerosis. The influence of methodology and differences in disease subtype on imaging findings is, however, not well established. Here, we systematically review magnetization transfer brain imaging findings in relapsing-remitting multiple sclerosis. We examine how methodological differences, disease effects and their interaction influence magnetization transfer imaging measures. Articles published before 06/01/2021 were retrieved from online databases (PubMed, EMBASE and Web of Science) with search terms including 'magnetization transfer' and 'brain' for systematic review, according to a pre-defined protocol. Only studies that used human in vivo quantitative magnetization transfer imaging in adults with relapsing-remitting multiple sclerosis (with or without healthy controls) were included. Additional data from relapsing-remitting multiple sclerosis subjects acquired in other studies comprising mixed disease subtypes were included in meta-analyses. Data including sample size, MRI acquisition protocol parameters, treatments and clinical findings were extracted and qualitatively synthesized. Where possible, effect sizes were calculated for meta-analyses to determine magnetization transfer (i) differences between patients and healthy controls; (ii) longitudinal change and (iii) relationships with clinical disability in relapsing-remitting multiple sclerosis. Eighty-six studies met inclusion criteria. MRI acquisition parameters varied widely, and were also underreported. The majority of studies examined the magnetization transfer ratio in white matter, but magnetization transfer metrics, brain regions examined and results were heterogeneous. The analysis demonstrated a risk of bias due to selective reporting and small sample sizes. The pooled random-effects meta-analysis across all brain compartments revealed magnetization transfer ratio was 1.17 per cent units (95% CI -1.42 to -0.91) lower in relapsing-remitting multiple sclerosis than healthy controls (z-value: -8.99, P < 0.001, 46 studies). Linear mixed-model analysis did not show a significant longitudinal change in magnetization transfer ratio across all brain regions [β = 0.12 (-0.56 to 0.80), t-value = 0.35, P = 0.724, 14 studies] or normal-appearing white matter alone [β = 0.037 (-0.14 to 0.22), t-value = 0.41, P = 0.68, eight studies]. There was a significant negative association between the magnetization transfer ratio and clinical disability, as assessed by the Expanded Disability Status Scale [r = -0.32 (95% CI -0.46 to -0.17); z-value = -4.33, P < 0.001, 13 studies]. Evidence suggests that magnetization transfer imaging metrics are sensitive to pathological brain changes in relapsing-remitting multiple sclerosis, although effect sizes were small in comparison to inter-study variability. Recommendations include: better harmonized magnetization transfer acquisition protocols with detailed methodological reporting standards; larger, well-phenotyped cohorts, including healthy controls; and, further exploration of techniques such as magnetization transfer saturation or inhomogeneous magnetization transfer ratio.
Collapse
Affiliation(s)
- Elizabeth N. York
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | | | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic,
University of Edinburgh, Edinburgh, UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Edwards EM, Wu W, Fritz NE. Using Myelin Water Imaging to Link Underlying Pathology to Clinical Function in Multiple Sclerosis: A Scoping Review. Mult Scler Relat Disord 2022; 59:103646. [DOI: 10.1016/j.msard.2022.103646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 01/29/2022] [Indexed: 12/28/2022]
|
7
|
Neurosteroid Activation of GABA-A Receptors: A Potential Treatment Target for Symptoms in Primary Biliary Cholangitis? Can J Gastroenterol Hepatol 2022; 2022:3618090. [PMID: 36523650 PMCID: PMC9747297 DOI: 10.1155/2022/3618090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Aims A third of patients with primary biliary cholangitis (PBC) experience poorly understood cognitive symptoms, with a significant impact on quality of life (QOL), and no effective medical treatment. Allopregnanolone, a neurosteroid, is a positive allosteric modulator of gamma-aminobutyricacid-A (GABA-A) receptors, associated with disordered mood, cognition, and memory. This study explored associations between allopregnanolone and a disease-specific QOL scoring system (PBC-40) in PBC patients. Method Serum allopregnanolone levels were measured in 120 phenotyped PBC patients and 40 age and gender-matched healthy controls. PBC subjects completed the PBC-40 at recruitment. Serum allopregnanolone levels were compared across PBC-40 domains for those with none/mild symptoms versus severe symptoms. Results There were no overall differences in allopregnanolone levels between healthy controls (median = 0.03 ng/ml (IQR = 0.025)) and PBC patients (0.031 (0.42), p = 0.42). Within the PBC cohort, higher allopregnanolone levels were observed in younger patients (r (120) = -0.53, p < 0.001) but not healthy controls (r (39) = -0.21, p = 0.21). Allopregnanolone levels were elevated in the PBC-40 domains, cognition (u = 1034, p = 0.02), emotional (u = 1374, p = 0.004), and itch (u = 795, p = 0.03). Severe cognitive symptoms associated with a younger age: severe (50 (12)) vs. none (60 (13); u = 423 p = 0.001). Conclusion Elevated serum allopregnanolone is associated with severe cognitive, emotional, and itch symptoms in PBC, in keeping with its known action on GABA-A receptors. Existing novel compounds targeting allopregnanolone could offer new therapies in severely symptomatic PBC, satisfying a significant unmet need.
Collapse
|
8
|
Nuñez-Peralta C, Montesinos P, Alonso-Jiménez A, Alonso-Pérez J, Reyes-Leiva D, Sánchez-González J, Llauger-Roselló J, Segovia S, Belmonte I, Pedrosa I, Martínez-Noguera A, Matellini-Mosca B, Walter G, Díaz-Manera J. Magnetization Transfer Ratio in Lower Limbs of Late Onset Pompe Patients Correlates With Intramuscular Fat Fraction and Muscle Function Tests. Front Neurol 2021; 12:634766. [PMID: 33796064 PMCID: PMC8009135 DOI: 10.3389/fneur.2021.634766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives: Magnetization transfer (MT) imaging exploits the interaction between bulk water protons and protons contained in macromolecules to induce signal changes through a special radiofrequency pulse. MT detects muscle damage in patients with neuromuscular conditions, such as limb-girdle muscular dystrophies or Charcot-Marie-Tooth disease, which are characterized by progressive fiber loss and replacement by fatty tissue. In Pompe disease, in which there is, in addition, an accumulation of glycogen inside the muscle fibers, MT has not been tested yet. Our aim is to estimate MT ratio (MTR) in the skeletal muscle of these patients and correlate it with intramuscular fat fraction (FF) and results of muscle function tests. Methods: We obtained two-point axial Dixon and Dixon-MT sequences of the right thigh on a 1.5 Teslas MRI scanner in 60 individuals, including 29 late onset Pompe disease patients, 2 patients with McArdle disease, and 29 age and sex matched healthy controls. FF and MTR were estimated. Muscle function using several muscle function tests, including quantification of muscle strength, timed test quality of life scales, conventional spirometry obtaining forced vital capacity while sitting and in the supine position, were assessed in all patients. Results: MTR was significantly lower in Pompe patients compared with controls (45.5 ± 8.5 vs. 51.7 ± 2.3, Student T-test, p < 0.05). There was a negative correlation between the MTR and FF muscles studied (correlation coefficient: −0.65, Spearman test: p < 0.05). MTR correlated with most of the muscle function test results. We analyzed if there was any difference in MTR values between Pompe patients and healthy controls in those muscles that did not have an increase in fat, a measure that could be related to the presence of glycogen in skeletal muscles, but we did not identify significant differences except in the adductor magnus muscle (48.4 ± 3.6 in Pompe vs. 51 ± 1.3 in healthy controls, Student T-test = 0.023). Conclusions: MTR is a sensitive tool to identify muscle loss in patients with Pompe disease and shows a good correlation with muscle function tests. Therefore, the MT technique can be useful in monitoring muscle degeneration in Pompe disease in clinical trials or natural history studies.
Collapse
Affiliation(s)
| | | | - Alicia Alonso-Jiménez
- Neuromuscular Reference Center, Neurology Department, University Hospital of Antwerp, Edegem, Belgium
| | - Jorge Alonso-Pérez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Reyes-Leiva
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | - Sonia Segovia
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Izaskun Belmonte
- Rehabilitation Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Irene Pedrosa
- Rehabilitation Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Afshari R, Santini F, Heule R, Meyer CH, Pfeuffer J, Bieri O. One-minute whole-brain magnetization transfer ratio imaging with intrinsic B 1 -correction. Magn Reson Med 2020; 85:2686-2695. [PMID: 33349950 DOI: 10.1002/mrm.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE Magnetization transfer ratio (MTR) histograms are used widely for the assessment of diffuse pathological changes in the brain. For broad clinical application, MTR scans should not only be fast, but confounding factors should also be minimized for high reproducibility. To this end, a 1-minute whole-brain spiral MTR method with intrinsic B1 -field correction is introduced. METHODS A spiral multislice spoiled gradient-echo sequence with adaptable magnetization-transfer saturation pulses (angle β) is proposed. After a low-resolution single-shot spiral readout and a dummy preparation period, high-resolution images are acquired using an interleaved spiral readout. For whole-brain MTR imaging, 50 interleaved slices with three different magnetization-transfer contrasts (β = 0°, 350°, and 550°) together with an intrinsic B1 -field map are recorded in 58.5 seconds on a clinical 3T system. From the three contrasts, two sets of MTR images are derived and used for subsequent B1 correction, assuming a linear dependency on β. For validation, a binary spin bath model is used. RESULTS For the proposed B1 -correction scheme, numerical simulations indicate for brain tissue a decrease of about a factor of 10 for the B1 -related bias on MTR. As a result, following B1 correction, MTR differences in gray and white matter become markedly accentuated, and the reproducibility of MTR histograms from scan-rescan experiments is improved. Furthermore, B1 -corrected MTR histograms show a lower variability for age-matched normal-appearing brain tissue. CONCLUSION From its speed and offering intrinsic B1 correction, the proposed method shows excellent prospects for clinical studies that explore magnetization-transfer effects based on MTR histogram analysis.
Collapse
Affiliation(s)
- Roya Afshari
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Rahel Heule
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Erlangen, Germany
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
van Gelderen P, Duyn JH. Background suppressed magnetization transfer MRI. Magn Reson Med 2020; 83:883-891. [PMID: 31502706 PMCID: PMC11492287 DOI: 10.1002/mrm.27978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE Up to 30% of the hydrogen atoms in brain tissue are part of molecules ("semisolids") other than water. In MRI, their magnetization is typically not observed directly, but can influence the water magnetization through magnetization transfer (MT). Comparison of MRI scans differentially sensitized to MT allows estimation of the semisolid fraction and potential changes with disease. Here, we present an approach designed to improve this estimate by measuring the size of the MT effect in a single scan. METHODS A stimulated echo sequence was used to generate a spatial pattern in the longitudinal water magnetization, which was then given time to exchange with semisolids. After saturating the remaining water magnetization, reverse exchange was allowed to partly re-establish the original water magnetization pattern. The third excitation pulse then formed a stimulated echo out of this pattern. RESULTS MT data were obtained on 10 human subjects at 7 T with varying exchange times. The images showed the expected time dependence of signal associated with the forward and reverse exchange processes. Excellent suppression of non-exchanging background signal was achieved. As expected, this suppression came at the price of a substantial reduction in exchange-related signal (by ~75% compared to the signal in saturation recovery MT), in part because of the reliance on a 2-step exchange process. CONCLUSION The results demonstrate an MT signal can be observed in a single acquisition without subtraction. This may be advantageous for MT measurements when signal instabilities related to motion and physiological variations exceed thermal noise sources.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Lee J, Hyun JW, Lee J, Choi EJ, Shin HG, Min K, Nam Y, Kim HJ, Oh SH. So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. J Magn Reson Imaging 2020; 53:360-373. [PMID: 32009271 DOI: 10.1002/jmri.27059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin water imaging (MWI) is an MRI imaging biomarker for myelin. This method can generate an in vivo whole-brain myelin water fraction map in approximately 10 minutes. It has been applied in various applications including neurodegenerative disease, neurodevelopmental, and neuroplasticity studies. In this review we start with a brief introduction of myelin biology and discuss the contributions of myelin in conventional MRI contrasts. Then the MRI properties of myelin water and four different MWI methods, which are categorized as T2 -, T2 *-, T1 -, and steady-state-based MWI, are summarized. After that, we cover more practical issues such as availability, interpretation, and validation of these methods. To illustrate the utility of MWI as a clinical research tool, MWI studies for two diseases, multiple sclerosis and neuromyelitis optica, are introduced. Additional topics about imaging myelin in gray matter and non-MWI methods for myelin imaging are also included. Although technical and physiological limitations exist, MWI is a potent surrogate biomarker of myelin that carries valuable and useful information of myelin. Evidence Level: 5 Technical Efficacy: 1 J. MAGN. RESON. IMAGING 2021;53:360-373.
Collapse
Affiliation(s)
- Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Jieun Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Korea.,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Spatial normalization of multiple sclerosis brain MRI data depends on analysis method and software package. Magn Reson Imaging 2020; 68:83-94. [PMID: 32007558 DOI: 10.1016/j.mri.2020.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Spatially normalizing brain MRI data to a template is commonly performed to facilitate comparisons between individuals or groups. However, the presence of multiple sclerosis (MS) lesions and other MS-related brain pathologies may compromise the performance of automated spatial normalization procedures. We therefore aimed to systematically compare five commonly used spatial normalization methods for brain MRI - including linear (affine), and nonlinear MRIStudio (LDDMM), FSL (FNIRT), ANTs (SyN), and SPM (CAT12) algorithms - to evaluate their performance in the presence of MS-related pathologies. METHODS 3 Tesla MRI images (T1-weighted and T2-FLAIR) were obtained for 20 participants with MS from an ongoing cohort study (used to assess a real dataset) and 1 healthy control participant (used to create a simulated lesion dataset). Both raw and lesion-filled versions of each participant's T1-weighted brain images were warped to the Montreal Neurological Institute (MNI) template using all five normalization approaches for the real dataset, and the same procedure was then repeated using the simulated lesion dataset (i.e., total of 400 spatial normalizations). As an additional quality-assurance check, the resulting deformations were also applied to the corresponding lesion masks to evaluate how each processing pipeline handled focal white matter lesions. For each normalization approach, inter-subject variability (across normalized T1-weighted images) was quantified using both mutual information (MI) and coefficient of variation (COV), and the corresponding normalized lesion volumes were evaluated using paired-sample t-tests. RESULTS All four nonlinear warping methods outperformed conventional linear normalization, with SPM (CAT12) yielding the highest MI values, lowest COV values, and proportionately-scaled lesion volumes. Although lesion-filling improved spatial normalization accuracy for each of the methods tested, these effects were small compared to differences between normalization algorithms. CONCLUSIONS SPM (CAT12) warping, ideally combined with lesion-filling, is recommended for use in future MS brain imaging studies requiring spatial normalization.
Collapse
|
13
|
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182:101663. [PMID: 31374243 DOI: 10.1016/j.pneurobio.2019.101663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in MS mouse models and humans with MS (in vivo and ex vivo), to promote a better understanding of the pathophysiology that underlies conventional MRI, diffusion tensor and magnetization transfer imaging findings in MS patients. Moreover, it provides a critical view on imaging capabilities and results in MS patients and mouse models and for future studies recommends how to combine those particular MR sequences and parameters whose underlying pathophysiological basis could be partly clarified. Further combined longitudinal in vivo imaging and histopathological studies on rationally selected, appropriate mouse models are required.
Collapse
|
14
|
Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced Magnetic Resonance Imaging Techniques in Management of Brain Metastases. Front Oncol 2019; 9:440. [PMID: 31214496 PMCID: PMC6558019 DOI: 10.3389/fonc.2019.00440] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Brain metastases are the most common intracranial tumors and occur in 20–40% of all cancer patients. Lung cancer, breast cancer, and melanoma are the most frequent primary cancers to develop brain metastases. Treatment options include surgical resection, whole brain radiotherapy, stereotactic radiosurgery, and systemic treatment such as targeted or immune therapy. Anatomical magnetic resonance imaging (MRI) of the tumor (in particular post-Gadolinium T1-weighted and T2-weighted FLAIR) provide information about lesion morphology and structure, and are routinely used in clinical practice for both detection and treatment response evaluation for brain metastases. Advanced MRI biomarkers that characterize the cellular, biophysical, micro-structural and metabolic features of tumors have the potential to improve the management of brain metastases from early detection and diagnosis, to evaluating treatment response. Magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), quantitative magnetization transfer (qMT), diffusion-based tissue microstructure imaging, trans-membrane water exchange mapping, and magnetic susceptibility weighted imaging (SWI) are advanced MRI techniques that will be reviewed in this article as they pertain to brain metastases.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Jay Detsky
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
15
|
Righi V, Starkey M, Dai G, Rahme LG, Tzika AA. Magnetization transfer contrast MRI in GFP‑tagged live bacteria. Mol Med Rep 2018; 19:617-621. [PMID: 30483743 PMCID: PMC6297796 DOI: 10.3892/mmr.2018.9669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/22/2018] [Indexed: 11/29/2022] Open
Abstract
Green fluorescent protein (GFP) is a widely utilized molecular reporter of gene expression. However, its use in in vivo imaging has been restricted to transparent tissue mainly due to the tissue penetrance limitation of optical imaging. Magnetization transfer contrast (MTC) is a magnetic resonance imaging (MRI) methodology currently utilized to detect macromolecule changes such as decrease in myelin and increase in collagen content. MTC MRI imaging was performed to detect GFP in both in vitro cells and in an in vivo mouse model to determine if MTC imaging could be used to detect infection from Pseudomonas aeruginosa in murine tissues. It was demonstrated that the approach produces values that are protein specific and concentration dependent. This method provides a valuable, non-invasive imaging tool to study the impact of novel antibacterial therapeutics on bacterial proliferation and perhaps viability within the host system, and could potentially suggest the modulation of bacterial gene expression within the host when exposed to such compounds.
Collapse
Affiliation(s)
- Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melissa Starkey
- Molecular Surgery Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA
| | - George Dai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA 02114, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Aria A Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Mehrabian H, Lam WW, Myrehaug S, Sahgal A, Stanisz GJ. Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter. J Neurooncol 2018; 139:97-106. [PMID: 29594656 DOI: 10.1007/s11060-018-2846-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The objective was to investigate (with quantitative MRI) whether the normal appearing white matter (NAWM) of glioblastoma (GBM) patients on the contralateral side (cNAWM) was different from NAWM of healthy controls. METHODS Thirteen patients with newly diagnosed GBM and nine healthy age-matched controls were MRI-scanned with quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), and transverse relaxation time (T2)-mapping. MRI scans were performed after surgery and before chemo-radiation treatment. Comprehensive qMT, CEST, T2 data were acquired. A two-pool MT model was fit to qMT data in transient state, to calculate MT model parameters [Formula: see text]. CEST signal was isolated by removing the contributions from the MT and direct water saturation, and CEST signal was calculated for Amide (CESTAmide), Amine (CESTAmine) and nuclear overhauser effect, NOE (CESTNOE). RESULTS There was no difference between GBM patients and normal controls in the qMT properties of the macromolecular pool [Formula: see text]. However, their free water pool spectrum was different (1/RaT2a,patient = 28.1 ± 3.9, 1/RaT2a,control = 25.0 ± 1.1, p = 0.03). This difference could be attributed to the difference in their T2 time ([Formula: see text] = 83 ± 4, [Formula: see text] = 88 ± 1, p = 0.004). CEST signals were statistically significantly different with the CESTAmide having the largest difference between the two cohorts (CESTAmide,patient = 2.8 ± 0.4, CESTAmide,control = 3.4 ± 0.5, p = 0.009). CONCLUSIONS CEST in cNAWM of GBM patients was lower than healthy controls which could be caused by modified brain metabolism due to tumor cell infiltration. There was no difference in MT properties of the patients and controls, however, the differences in free water pool properties were mainly due to reduced T2 in cNAWM of the patients (resulting from structural changes and increased cellularity).
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), 1700 - 4th St., Suite BH 201, San Francisco, CA, 94158, USA.
| | - Wilfred W Lam
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
17
|
Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ. Quantitative Magnetization Transfer in Monitoring Glioblastoma (GBM) Response to Therapy. Sci Rep 2018; 8:2475. [PMID: 29410469 PMCID: PMC5802834 DOI: 10.1038/s41598-018-20624-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022] Open
Abstract
Quantitative magnetization transfer (qMT) was used as a biomarker to monitor glioblastoma (GBM) response to chemo-radiation and identify the earliest time-point qMT could differentiate progressors from non-progressors. Nineteen GBM patients were recruited and MRI-scanned before (Day0), two weeks (Day14), and four weeks (Day28) into the treatment, and one month after the end of the treatment (Day70). Comprehensive qMT data was acquired, and a two-pool MT model was fit to the data. Response was determined at 3-8 months following the end of chemo-radiation. The amount of magnetization transfer ([Formula: see text]) was significantly lower in GBM compared to normal appearing white matter (p < 0.001). Statistically significant difference was observed in [Formula: see text] at Day0 between non-progressors (1.06 ± 0.24) and progressors (1.64 ± 0.48), with p = 0.006. Changes in several qMT parameters between Day14 and Day0 were able to differentiate the two cohorts with [Formula: see text] providing the best separation (relative [Formula: see text] = 1.34 ± 0.21, relative [Formula: see text] = 1.07 ± 0.08, p = 0.031). Thus, qMT characteristics of GBM are more sensitive to treatment effects compared to clinically used metrics. qMT could assess tumor aggressiveness and identify early progressors even before the treatment. Changes in qMT parameters within the first 14 days of the treatment were capable of separating early progressors from non-progressors, making qMT a promising biomarker to guide adaptive radiotherapy for GBM.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
18
|
Dayan M, Hurtado Rúa SM, Monohan E, Fujimoto K, Pandya S, LoCastro EM, Vartanian T, Nguyen TD, Raj A, Gauthier SA. MRI Analysis of White Matter Myelin Water Content in Multiple Sclerosis: A Novel Approach Applied to Finding Correlates of Cortical Thinning. Front Neurosci 2017; 11:284. [PMID: 28603479 PMCID: PMC5445177 DOI: 10.3389/fnins.2017.00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
A novel lesion-mask free method based on a gamma mixture model was applied to myelin water fraction (MWF) maps to estimate the association between cortical thickness and myelin content, and how it differs between relapsing-remitting (RRMS) and secondary-progressive multiple sclerosis (SPMS) groups (135 and 23 patients, respectively). It was compared to an approach based on lesion masks. The gamma mixture distribution of whole brain, white matter (WM) MWF was characterized with three variables: the mode (most frequent value) m1 of the gamma component shown to relate to lesion, the mode m2 of the component shown to be associated with normal appearing (NA) WM, and the mixing ratio (λ) between the two distributions. The lesion-mask approach relied on the mean MWF within lesion and within NAWM. A multivariate regression analysis was carried out to find the best predictors of cortical thickness for each group and for each approach. The gamma-mixture method was shown to outperform the lesion-mask approach in terms of adjusted R2, both for the RRMS and SPMS groups. The predictors of the final gamma-mixture models were found to be m1 (β = 1.56, p < 0.005), λ (β = −0.30, p < 0.0005) and age (β = −0.0031, p < 0.005) for the RRMS group (adjusted R2 = 0.16), and m2 (β = 4.72, p < 0.0005) for the SPMS group (adjusted R2 = 0.45). Further, a DICE coefficient analysis demonstrated that the lesion mask had more overlap to an ROI associated with m1, than to an ROI associated with m2 (p < 0.00001), and vice versa for the NAWM mask (p < 0.00001). These results suggest that during the relapsing phase, focal WM damage is associated with cortical thinning, yet in SPMS patients, global WM deterioration has a much stronger influence on secondary degeneration. Through these findings, we demonstrate the potential contribution of myelin loss on neuronal degeneration at different disease stages and the usefulness of our statistical reduction technique which is not affected by the typical bias associated with approaches based on lesion masks.
Collapse
Affiliation(s)
- Michael Dayan
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Pattern Analysis and Computer Vision, Istituto Italiano di TecnologiaGenova, Italy
| | - Sandra M Hurtado Rúa
- Department of Mathematics, Cleveland State UniversityCleveland, OH, United States
| | - Elizabeth Monohan
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Kyoko Fujimoto
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Eve M LoCastro
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Tim Vartanian
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Brain and Mind Institute, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Ashish Raj
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Brain and Mind Institute, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| |
Collapse
|
19
|
Al-Radaideh AM, Rababah EM. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review. Clin Imaging 2016; 40:987-96. [DOI: 10.1016/j.clinimag.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
|
20
|
Brass SD, Benedict RHB, Weinstock-Guttman B, Munschauer F, Bakshi R. Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Mult Scler 2016; 12:437-44. [PMID: 16900757 DOI: 10.1191/135248506ms1301oa] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Grey matter hypointensity on T2-weighted magnetic resonance imaging (MRI) scans, suggesting iron deposition, has been described in multiple sclerosis (MS) and is related to physical disability, disease course and brain atrophy. We tested the hypothesis that subcortical grey matter T2 hypointensity is related to cognitive impairment after adjusting for the effect of MRI lesion and atrophy measures. We studied 33 patients with MS and 14 healthy controls. Normalized T2 signal intensity in the caudate, putamen, globus pallidus and thalamus, total brain T1-hypointense lesion volume (T1LV), fluid-attenuated inversion-recovery-hyperintense lesion volume (FLLV) and brain parenchymal fraction (BPF) were obtained quantitatively. A neuropsychological composite score (NCS) encompassed new learning, attention, working memory, spatial processing and executive function. In each of the regions of interest, the normalized T2 intensity was lower in the MS versus control group (all P <0.001). Regression modelling tested the relative association between all MRI variables and NCS. Globus pallidus T2 hypointensity was the only variable selected in the final model ( R2 = 0.301, P = 0.007). Pearson correlations between MRI and NCS were T1LV: r = -0.319; FLLV: r = -0.347; BPF: r = 0.374; T2 hypointensity of the caudate: r = 0.305; globus pallidus: r = 0.395; putamen: r = 0.321; and thalamus: r = 0.265. Basal ganglia T2 hypointensity and BPF demonstrated the strongest associations with cognitive impairment on individual cognitive subtests. Subcortical grey matter T2 hypointensity is related to cognitive impairment in MS, supporting the clinical relevance of T2 hypointensity as a biological marker of MS tissue damage. These data implicate a role for basal ganglia iron deposition in neuropsychological dysfunction.
Collapse
Affiliation(s)
- S D Brass
- Department of Neurology, Center for Neurological Imaging, Partners Multiple Sclerosis Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Delli Castelli D, Ferrauto G, Di Gregorio E, Terreno E, Aime S. Sensitive MRI detection of internalized T1 contrast agents using magnetization transfer contrast. NMR IN BIOMEDICINE 2015; 28:1663-1670. [PMID: 26474109 DOI: 10.1002/nbm.3423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
This work addresses the possibility of using Magnetization Transfer Contrast (MTC) for an improved MRI detection of T1 relaxation agents. The need to improve the detection threshold of MRI agents is particularly stringent when the contrast agents failed to accumulate to the proper extent in targeting procedures. The herein reported approach is based on the T1 dependence of MT contrast. It has been assessed that MT contrast can allow the detection of a Gd-containing agent at a lower detection threshold than the one accessible by acquiring T1W images. Measurements have been carried out either in TS/A cells or in vivo in a syngeneic murine breast cancer model. The reported data showed that in cellular experiments the MTC method displays a better sensitivity with respect to the common T1W experiments. In particular, the reached detection threshold allowed the visualization of samples containing only 2% of Gd-labeled cells diluted in unlabeled cells. In vivo experiments displayed a more diversified scheme. In particular, the tumor region showed two distinct behaviors accordingly with the localization of the imaging probe. The probe located in the tumor core could be detected to the same extent either by T1w or MTC contrast. Conversely, the agent located in the tumor rim was detected with a larger sensitivity by the MTC method herein described.
Collapse
Affiliation(s)
- Daniela Delli Castelli
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giuseppe Ferrauto
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enza Di Gregorio
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- IBB-CNR- UOS, University of Torino, Torino, Italy
| | - Silvio Aime
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- IBB-CNR- UOS, University of Torino, Torino, Italy
| |
Collapse
|
22
|
Liu Z, Pardini M, Yaldizli Ö, Sethi V, Muhlert N, Wheeler-Kingshott CAM, Samson RS, Miller DH, Chard DT. Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis. Brain 2015; 138:1239-46. [PMID: 25823475 DOI: 10.1093/brain/awv065] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/17/2015] [Indexed: 01/27/2023] Open
Abstract
In multiple sclerosis, there is increasing evidence that demyelination, and neuronal damage occurs preferentially in cortical grey matter next to the outer surface of the brain. It has been suggested that this may be due to the effects of pathology outside the brain parenchyma, in particular meningeal inflammation or through cerebrospinal fluid mediated factors. White matter lesions are often located adjacent to the ventricles of the brain, suggesting the possibility of a similar outside-in pathogenesis, but an investigation of the relationship of periventricular normal-appearing white matter abnormalities with distance from the ventricles has not previously been undertaken. The present study investigates this relationship in vivo using quantitative magnetic resonance imaging and compares the abnormalities between secondary progressive and relapsing remitting multiple sclerosis. Forty-three patients with relapsing remitting and 28 with secondary progressive multiple sclerosis, and 38 healthy control subjects were included in this study. T1-weighted volumetric, magnetization transfer and proton density/T2-weighted scans were acquired for all subjects. From the magnetization transfer data, magnetization transfer ratio maps were prepared. White matter tissue masks were derived from SPM8 segmentations of the T1-weighted images. Normal-appearing white matter masks were generated by subtracting white matter lesions identified on the proton density/T2 scan, and a two-voxel perilesional ring, from the SPM8 derived white matter masks. White matter was divided in concentric bands, each ∼1-mm thick, radiating from the ventricles toward the cortex. The first periventricular band was excluded from analysis to mitigate partial volume effects, and normal-appearing white matter and lesion magnetization transfer ratio values were then computed for the 10 bands nearest to the ventricles. Compared with controls, magnetization transfer ratio in the normal-appearing white matter bands was significantly lower in patients with multiple sclerosis. In controls, magnetization transfer ratio was highest in the band adjacent to the ventricles and declined with increasing distance from the ventricles. In the multiple sclerosis groups, relative to controls, reductions in magnetization transfer ratio were greater in the secondary progressive multiple sclerosis compared with relapsing remitting multiple sclerosis group, and these reductions were greatest next to the ventricles and became smaller with distance from them. White matter lesion magnetization transfer ratio reductions were also more apparent adjacent to the ventricle and decreased with distance from the ventricles in both the relapsing remitting and secondary progressive multiple sclerosis groups. These findings suggest that in people with multiple sclerosis, and more so in secondary progressive than relapsing remitting multiple sclerosis, tissue structural abnormalities in normal-appearing white matter and white matter lesions are greatest near the ventricles. This would be consistent with a cerebrospinal fluid or ependymal mediated pathogenesis.
Collapse
Affiliation(s)
- Zheng Liu
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK 2 Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Matteo Pardini
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK 3 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Özgür Yaldizli
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK 4 Multiple Sclerosis Centre, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Varun Sethi
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Nils Muhlert
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK 5 School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Claudia A M Wheeler-Kingshott
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Rebecca S Samson
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - David H Miller
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK 6 National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Declan T Chard
- 1 Queen Square Multiple Sclerosis Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK 6 National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, UK
| |
Collapse
|
23
|
Matthews PM, Geraghty OC. Understanding the pharmacology of stroke and multiple sclerosis through imaging. Curr Opin Pharmacol 2014; 14:34-41. [PMID: 24565010 DOI: 10.1016/j.coph.2013.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Stroke and multiple sclerosis (MS) illustrate how clinical imaging can facilitate early phase drug development and most effective medicine use in the clinic. Imaging has enhanced understanding of the dynamics of evolution of disease pathophysiology, better defining treatment targets. Imaging measures can enable stratification of patients for clinical trials and for most cost-effective use in the clinic. In MS, imaging has allowed smaller Phase II clinical trials and contributed to medicine differentiation. It also has led to consideration of suppression of inflammation and neurodegeneration as meaningfully distinct pharmacodynamic concepts. Similar imaging measures can be used in preclinical and clinical studies. Testing translational pharmacological hypotheses using clinical imaging more explicitly could improve the success of the next generation of stroke therapeutics.
Collapse
Affiliation(s)
- Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK; Neurosciences Therapeutic Area Unit, GlaxoSmithKline Research and Development, Brentford, UK.
| | - Olivia C Geraghty
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| |
Collapse
|
24
|
Franklin RJM, Gallo V. The translational biology of remyelination: past, present, and future. Glia 2014; 62:1905-15. [PMID: 24446279 DOI: 10.1002/glia.22622] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/07/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023]
Abstract
Amongst neurological diseases, multiple sclerosis (MS) presents an attractive target for regenerative medicine. This is because the primary pathology, the loss of myelin-forming oligodendrocytes, can be followed by a spontaneous and efficient regenerative process called remyelination. While cell transplantation approaches have been explored as a means of replacing lost oligodendrocytes, more recently therapeutic approaches that target the endogenous regenerative process have been favored. This is in large part due to our increasing understanding of (1) the cell types within the adult brain that are able to generate new oligodendrocytes, (2) the mechanisms and pathways by which this achieved, and (3) an emerging awareness of the reasons why remyelination efficiency eventually fails. Here we review some of these advances and also highlight areas where questions remain to be answered in both the biology and translational potential of this important regenerative process.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-MRC Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | | |
Collapse
|
25
|
Pérez-Torres CJ, Reynolds JO, Pautler RG. Use of magnetization transfer contrast MRI to detect early molecular pathology in Alzheimer's disease. Magn Reson Med 2013; 71:333-8. [PMID: 23413044 DOI: 10.1002/mrm.24665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/09/2013] [Indexed: 01/04/2023]
Abstract
PURPOSE The purpose of this study was to determine if magnetization transfer contrast (MTC) imaging could be used to detect early macromolecular accumulation in a mouse model of early Alzheimer's disease. METHODS We obtained MTC images at 9.4 T at three different age points in the Tg2576 mouse model of Alzheimer's disease. The Tg2576 mouse exhibits increased amyloid beta deposition that eventually progresses into amyloid beta plaque formation, increased hyper-phosphorylated tau but does not exhibit neurodegeneration. RESULTS Our results show an increase in the MTC signal that predates plaque formation and reported learning and memory deficits in the Tg2576 mouse. This increase in the MTC signal was reversed in a model of antioxidant therapy. CONCLUSION MTC magnetic resonance imaging can be used to detect early macromolecular changes in the Tg2576 mouse model of Alzheimer's disease. The source of the MTC contrast is likely complex and warrants further investigation in additional preclinical models that represent early and late stage Alzheimer's disease pathologies.
Collapse
Affiliation(s)
- Carlos J Pérez-Torres
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
26
|
Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE. A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 2012; 72:215-20. [PMID: 22386453 PMCID: PMC3398189 DOI: 10.1016/j.biopsych.2012.01.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/13/2012] [Accepted: 01/23/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Several lines of evidence suggest that autism may be associated with abnormalities in white matter development. However, inconsistencies remain in the literature regarding the nature and extent of these abnormalities, partly because of the limited types of measurements that have been used. Here, we used magnetization transfer imaging to provide insight into the myelination of the corpus callosum in children with autism. METHODS Magnetization transfer imaging scans were obtained in 101 children with autism and 35 typically developing children who did not significantly differ with regard to gender or age. The midsagittal area of the corpus callosum was manually traced and the magnetization transfer ratio (MTR) was calculated for each voxel within the corpus callosum. Mean MTR and height and location of the MTR histogram peak were analyzed. RESULTS Mean MTR and MTR histogram peak height and location were significantly higher in children with autism than in typically developing children, suggesting abnormal myelination of the corpus callosum in autism. CONCLUSIONS The differences in callosal myelination suggested by these results may reflect an alteration in the normally well-regulated process of myelination of the brain, with broad implications for neuropathology, diagnosis, and treatment of autism.
Collapse
Affiliation(s)
- Marta Gozzi
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1255, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 2012; 15:528-36. [PMID: 22426254 PMCID: PMC3660656 DOI: 10.1038/nn.3045] [Citation(s) in RCA: 1116] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human brain imaging has identified structural changes in gray and white matter that occur with learning. However, ascribing imaging measures to underlying cellular and molecular events is challenging. Here we review human neuroimaging findings of structural plasticity and then discuss cellular and molecular level changes that could underlie observed imaging effects. Greater dialog between researchers in these different fields would help to facilitate cross-talk between cellular and systems level explanations of how learning sculpts brain structure.
Collapse
Affiliation(s)
- Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
28
|
In vivo magnetization transfer MRI shows dysmyelination in an ischemic mouse model of periventricular leukomalacia. J Cereb Blood Flow Metab 2011; 31:2009-18. [PMID: 21540870 PMCID: PMC3208153 DOI: 10.1038/jcbfm.2011.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periventricular leukomalacia, PVL, is the leading cause of cerebral palsy in prematurely born infants, and therefore more effective interventions are required. The objective of this study was to develop an ischemic injury model of PVL in mice and to determine the feasibility of in vivo magnetization transfer (MT) magnetic resonance imaging (MRI) as a potential monitoring tool for the evaluation of disease severity and experimental therapeutics. Neonatal CD-1 mice underwent unilateral carotid artery ligation on postnatal day 5 (P5); at P60, in vivo T2-weighted (T2w) and MT-MRI were performed and correlated with postmortem histopathology. In vivo T2w MRI showed thinning of the right corpus callosum, but no significant changes in hippocampal and hemispheric volumes. Magnetization transfer MRI revealed significant white matter abnormalities in the bilateral corpus callosum and internal capsule. These quantitative MT-MRI changes correlated highly with postmortem findings of reduced myelin basic protein in bilateral white matter tracts. Ventriculomegaly and persistent astrogliosis were observed on the ligated side, along with evidence of axonopathy and fewer oligodendrocytes in the corpus callosum. We present an ischemia-induced mouse model of PVL, which has pathologic abnormalities resembling autopsy reports in infants with PVL. We further validate in vivo MRI techniques as quantitative monitoring tools that highly correlate with postmortem histopathology.
Collapse
|
29
|
Kitzler HH, Su J, Zeineh M, Harper-Little C, Leung A, Kremenchutzky M, Deoni SC, Rutt BK. Deficient MWF mapping in multiple sclerosis using 3D whole-brain multi-component relaxation MRI. Neuroimage 2011; 59:2670-7. [PMID: 21920444 DOI: 10.1016/j.neuroimage.2011.08.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/14/2022] Open
Abstract
Recent multiple sclerosis (MS) MRI research has highlighted the need to move beyond the lesion-centric view and to develop and validate new MR imaging strategies that quantify the invisible burden of disease in the brain and establish much more sensitive and specific surrogate markers of clinical disability. One of the most promising of such measures is myelin-selective MRI that allows the acquisition of myelin water fraction (MWF) maps, a parameter that is correlated to brain white matter (WM) myelination. The aim of our study was to apply the newest myelin-selective MRI method, multi-component Driven Equilibrium Single Pulse Observation of T1 and T2 (mcDESPOT) in a controlled clinical MS pilot trial. This study was designed to assess the capabilities of this new method to explain differences in disease course and degree of disability in subjects spanning a broad spectrum of MS disease severity. The whole-brain isotropically-resolved 3D acquisition capability of mcDESPOT allowed for the first time the registration of 3D MWF maps to standard space, and consequently a formalized voxel-based analysis of the data. This approach combined with image segmentation further allowed the derivation of new measures of MWF deficiency: total deficient MWF volume (DV) in WM, in WM lesions, in diffusely abnormal white matter and in normal appearing white matter (NAWM). Deficient MWF volume fraction (DVF) was derived from each of these by dividing by the corresponding region volume. Our results confirm that lesion burden does not correlate well with clinical disease activity measured with the extended disability status scale (EDSS) in MS patients. In contrast, our measurements of DVF in NAWM correlated significantly with the EDSS score (R2=0.37; p<0.001). The same quantity discriminated clinically isolated syndrome patients from a normal control population (p<0.001) and discriminated relapsing-remitting from secondary-progressive patients (p<0.05); hence this new technique may sense early disease-related myelin loss and transitions to progressive disease. Multivariate analysis revealed that global atrophy, mean whole-brain myelin water fraction and white matter atrophy were the three most important image-derived parameters for predicting clinical disability (EDSS). Overall, our results demonstrate that mcDESPOT-defined measurements in NAWM show great promise as imaging markers of global clinical disease activity in MS. Further investigation will determine if this measure can serve as a risk factor for the conversion into definite MS and for the secondary transition into irreversible disease progression.
Collapse
Affiliation(s)
- Hagen H Kitzler
- Department of Neuroadiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
De Stefano N, Stromillo ML, Rossi F, Battaglini M, Giorgio A, Portaccio E, Hakiki B, Malentacchi G, Gasperini C, Santangelo M, Bartolozzi ML, Sormani MP, Federico A, Amato MP. Improving the characterization of radiologically isolated syndrome suggestive of multiple sclerosis. PLoS One 2011; 6:e19452. [PMID: 21559385 PMCID: PMC3084867 DOI: 10.1371/journal.pone.0019452] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as "radiologically isolated syndrome" (RIS). METHODS Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex. RESULTS LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values. CONCLUSIONS Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Neurological and Behavioral Sciences, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Underhill HR, Rostomily RC, Mikheev AM, Yuan C, Yarnykh VL. Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. Neuroimage 2011; 54:2052-65. [PMID: 21029782 PMCID: PMC3008309 DOI: 10.1016/j.neuroimage.2010.10.065] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022] Open
Abstract
Cross-relaxation imaging (CRI) is a quantitative magnetic resonance technique that measures the kinetic parameters of magnetization transfer between protons bound to water and protons bound to macromolecules. In this study, in vivo, four-parameter CRI of normal rat brains (N=5) at 3.0 T was first directly compared to histology. The bound pool fraction, f, was strongly associated with myelin density (Pearson's r=0.99, p<0.001). The correlation persisted in separate analyses of gray matter (GM; r=0.89, p=0.046) and white matter (WM; r=0.97, p=0.029). Subsequently, a new time-efficient approach for solely capturing the whole-brain parametric map of f was proposed, validated with histology, and used to estimate myelin density. Since the described approach for the rapid acquisition of f applied constraints to other CRI parameters, a theoretical analysis of error was performed. Estimates of f in normal and pathologic tissue were expected to have <10% error. A comparison of values for f obtained from the traditional four-parameter fit of CRI data versus the proposed rapid acquisition of f was within this expected margin for in vivo rat brain gliomas (N=4; mean±SE; 3.9±0.2% vs. 4.0±0.2%, respectively). In both whole-brain f maps and myelin density maps, replacement of normal GM and WM by proliferating and invading tumor cells could be readily identified. The rapid, whole-brain acquisition of the bound pool fraction may provide a reliable method for detection of glioma invasion in both GM and WM during animal and human imaging.
Collapse
Affiliation(s)
- Hunter R Underhill
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
32
|
Zakrzewska-Pniewska B, Gołębiowski M, Zajda M, Szeszkowski W, Podlecka-Piętowska A, Nojszewska M. Sex hormone patterns in women with multiple sclerosis as related to disease activity — a pilot study. Neurol Neurochir Pol 2011; 45:536-542. [DOI: 10.1016/s0028-3843(14)60120-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Stikov N, Perry LM, Mezer A, Rykhlevskaia E, Wandell BA, Pauly JM, Dougherty RF. Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure. Neuroimage 2010; 54:1112-21. [PMID: 20828622 DOI: 10.1016/j.neuroimage.2010.08.068] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 08/21/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022] Open
Abstract
Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combined BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model.
Collapse
Affiliation(s)
- Nikola Stikov
- Electrical Engineering, Stanford University, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rovira A, Tintoré M, Álvarez-Cermeño J, Izquierdo G, Prieto J. Recomendaciones para la utilización e interpretación de los estudios de resonancia magnética en la esclerosis múltiple. Neurologia 2010. [DOI: 10.1016/j.nrl.2010.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Rovira A, Tintoré M, Álvarez-Cermeño J, Izquierdo G, Prieto J. Recommendations for using and interpreting magnetic resonance imaging in multiple sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(10)70049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Mougin OE, Coxon RC, Pitiot A, Gowland PA. Magnetization transfer phenomenon in the human brain at 7 T. Neuroimage 2009; 49:272-81. [PMID: 19683581 DOI: 10.1016/j.neuroimage.2009.08.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
Magnetization transfer is an important source of contrast in magnetic resonance imaging which is sensitive to the concentration of macromolecules and other solutes present in the tissue. Magnetization transfer effects can be visualized in magnetization transfer ratio images or quantified via the z-spectrum. This paper presents methods of measuring the z-spectrum and of producing high-resolution MTR images and maps of z-spectrum asymmetry in vivo at 7 T, within SAR limits. It also uses a 3-compartment model to measure chemical exchange and magnetization transfer parameters from the z-spectrum data. The peak in the z-spectrum associated with chemical exchange between amide and water protons (amide proton transfer, APT, effects) is much more apparent at 7 T than at 3 T. Furthermore at 7 T quantitative APT results varied between the corpus callosum and other white matter structures, suggesting that quantitative APT imaging could be used as a method of measuring myelination. The results also suggest that chemical exchange is not responsible for the phase shift observed in susceptibility weighted images between grey matter and white matter.
Collapse
Affiliation(s)
- O E Mougin
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, UK
| | | | | | | |
Collapse
|
37
|
Kitsos G, Zikou AK, Bagli E, Kosta P, Argyropoulou MI. Conventional MRI and magnetisation transfer imaging of the brain and optic pathway in primary open-angle glaucoma. Br J Radiol 2009; 82:896-900. [PMID: 19433483 DOI: 10.1259/bjr/55866125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neuropathological studies in experimental and human glaucoma have shown degenerative changes in the optic pathway. The purpose of the study was to evaluate, with conventional MRI and magnetisation transfer imaging, the brain and the optic pathway of patients with primary open-angle glaucoma (POAG). 26 patients, aged 67.4+/-8.6 years, and 26 control subjects were studied. The presence of white matter hyperintensities (WMH) was evaluated on fluid-attenuated inversion recovery images of the brain. The area of the optic nerves was assessed on coronal short tau inversion recovery images. Magnetisation transfer ratio (MTR) was measured in the chiasm and in the grey and white matter (CGM and CWM) of the calcarine fissure. More WMH were observed in patients (total 261, mean 10.8, standard deviation 12.7) than in control subjects (total 127, mean 4.7, standard deviation 5.7; p<0.001). The area (mm(2)) of optic nerves (10.7+/-5.7) and the MTR (%) of the chiasm (53.7+/-8.4), the CWM (60.9+/-4.2) and the CGM (53.6+/-5.6) were all lower in patients than in control subjects (13.6+/-4.3, 62.1+/-6.2, 67.6+/-8.6 and 57.0+/-4.6, respectively; p<0.05). The area of optic nerves showed significant correlation with the MTR of the chiasm (R = 0.41), the MTR of the CGM (R = 0.33), the MTR of the CWM (R = 0.34) and the cup to disc ratio (R = -0.46). POAG leads to optic nerve atrophy and degeneration of the optic pathway. The finding of an increase in the number of WMH suggests that cerebrovascular disease may play a role in the pathogenesis of POAG.
Collapse
Affiliation(s)
- G Kitsos
- Departments of 1Ophthalmology and 2Radiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | |
Collapse
|
38
|
Bellmann-Strobl J, Stiepani H, Wuerfel J, Bohner G, Paul F, Warmuth C, Aktas O, Wandinger KP, Zipp F, Klingebiel R. MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: a combined cross-sectional and longitudinal study. Eur Radiol 2009; 19:2066-74. [PMID: 19308417 DOI: 10.1007/s00330-009-1364-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 01/12/2009] [Accepted: 01/21/2009] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to correlate magnetic resonance imaging (MRI)-based lesion load assessment with clinical disability in early relapsing remitting multiple sclerosis (RRMS). Seventeen untreated patients (ten women, seven men; mean age 33.0 +/- 7.9 years) with the initial diagnosis of RRMS were included for cross-sectional as well as longitudinal (24 months) clinical and MRI-based assessment in comparison with age-matched healthy controls. Conventional MR sequences, MR spectroscopy (MRS) and magnetisation transfer imaging (MTI) were performed at 1.5 T. Lesion number and volume, MRS and MTI measurements for lesions and normal appearing white matter (NAWM) were correlated to clinical scores [Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC)] for monitoring disease course after treatment initiation (interferon beta-1a). MTI and MRS detected changes [magnetisation transfer ratio (MTR), N-acetylaspartate (NAA)/creatine ratio] in NAWM over time. EDSS and lesional MTR increases correlated throughout the disease course. Average MTR of NAWM raised during the study (p < 0.05) and correlated to the MSFC score (r = 0.476, p < 0.001). At study termination, NAA/creatine ratio of NAWM correlated to the MSFC score (p < 0.05). MTI and MRS were useful for initial disease assessment in NAWM. MTI and MRS correlated with clinical scores, indicating potential for monitoring the disease course and gaining new insights into treatment-related effects.
Collapse
Affiliation(s)
- J Bellmann-Strobl
- Cecilie Vogt Clinic for Neurology, Charité-University Medicine Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arnold JFT, Kotas M, Pyzalski RW, Pracht ED, Flentje M, Jakob PM. Potential of magnetization transfer MRI for target volume definition in patients with non-small-cell lung cancer. J Magn Reson Imaging 2009; 28:1417-24. [PMID: 19025950 DOI: 10.1002/jmri.21436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To develop a magnetization transfer (MT) module in conjunction with a single-shot MRI readout technique and to investigate the MT phenomenon in non-small-cell lung cancer (NSCLC) as an adjunct for radiation therapy planning. MATERIALS AND METHODS A total of 10 patients with inoperable NSCLC were investigated using a 1.5T MR scanner. MT ratio (MTR) maps of several slices throughout the tumor were assessed. Each MTR-map was acquired within a short breathhold. Fluorodeoxyglucose positron emission tomography (FDG-PET) investigations were performed in addition to the MRI protocol. A total of 60 structures appearing conspicuous in FDG-PET were compared with structures appearing conspicuous in corresponding MTR maps. Quantification of similarity between both modalities was performed using similarity index calculation. RESULTS MTR-maps showed different contrast than FDG-PET images. However, structures that appeared conspicuous in FDG-PET images, either by a marked signal enhancement or signal decrease, were found to be similarly present in MTR maps. A mean similarity index of 0.65 was calculated. MTR values of suspected atelectasis were on average lower than MTR values of tumor tissue. CONCLUSION The proposed MT-MRI technique provides a high MT efficiency, while being robust and fast enough for breathhold acquisition. The results obtained encourage for further exploration of MT-MRI as an adjunct for radiotherapy planning in NSCLC.
Collapse
|
40
|
Gender-related differences in MS: a study of conventional and nonconventional MRI measures. Mult Scler 2009; 15:345-54. [DOI: 10.1177/1352458508099479] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Studies showed gender-associated differences in multiple sclerosis (MS) disease evolution and in the evolution of conventional magnetic resonance imaging (MRI) findings. Objective The aim of this study was to investigate gender differences according to a number of conventional and nonconventional MRI measures in patients with MS. Methods We examined 763 consecutive patients with MS [499 (19.2% men) relapsing-remitting (RR), 230 (24.8% men) secondary-progressive, and 34 (44.1% men) primary-progressive], 32 (21.9% men) patients with clinically isolated syndrome (CIS), and 101 (30.7% men) normal controls (NC). Patients were assessed using conventional and nonconventional MRI measures. Gender-related MRI differences were investigated using general linear model analysis, corrected for MS disease type. Results In the total MS group, male patients showed lower normalized peripheral gray matter (GM) ( P < 0.001) and normalized GM ( P = 0.011) volumes than female patients. Female patients presented lower normalized white matter (WM) volumes ( P = 0.011). These gender effects were not observed in NC. Male patients also showed more advanced central atrophy ( P = 0.022). In RRMS male patients, there was also a higher lateral ventricle volume ( P = 0.001). The GM-WM normalized ratio was lower for male patients with MS compared with male NC (0.97 vs. 1.09, P < 0.001) but not in patients with CIS compared with NC. Conclusions There were no significant gender-related differences regarding nonconventional MRI measures. GM and central atrophy are more advanced in male patients, whereas WM atrophy is more advanced in female patients. These gender-related MRI differences may be explained by the effect of sex hormones on brain damage and repair mechanisms.
Collapse
|
41
|
Horsfield MA. MR Image Postprocessing for Multiple Sclerosis Research. Neuroimaging Clin N Am 2008; 18:637-49, x. [DOI: 10.1016/j.nic.2008.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Rovira À, León A. MR in the diagnosis and monitoring of multiple sclerosis: An overview. Eur J Radiol 2008; 67:409-14. [DOI: 10.1016/j.ejrad.2008.02.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 02/27/2008] [Indexed: 01/21/2023]
|
43
|
Mesaros S, Rocca MA, Sormani MP, Charil A, Comi G, Filippi M. Clinical and conventional MRI predictors of disability and brain atrophy accumulation in RRMS. A large scale, short-term follow-up study. J Neurol 2008; 255:1378-83. [PMID: 18584233 DOI: 10.1007/s00415-008-0924-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/23/2008] [Accepted: 03/05/2008] [Indexed: 11/26/2022]
Abstract
To assess the value of clinical and MRI variables in predicting short-term brain atrophy accumulation and clinical evolution in a large cohort of patients with RRMS, we studied a cohort of 548 patients, previously enrolled as a placebo arm of a 14-month, double-blind trial of oral glatiramer acetate (GA). A logistic regression model with EDSS progression as the dependent variable was built to assess baseline clinical and MRI variables associated with clinical worsening during follow-up. In 466 patients with complete central brain atrophy assessment, another linear regression model with percentage central brain volume change (PCBVC) as the dependent variable was built to assess baseline clinical and MRI variables associated with atrophy development.A total of 80 patients (15%) had EDSS progression over the follow-up period. Factors independently predicting the probability to have a clinical progression were lower EDSS (OR = 0.78, 95% CI = 0.62-0.97 p = 0.02) and higher T2 LL (OR = 1.022, 95% CI = 1.006-1.038, p = 0.007) at baseline. In the 466 patients with atrophy assessment, PCBVC declined, on average, by -2.0% (SD = 2.8) (p < 0.001) over the follow-up. The multivariate PCBVC analysis revealed that the PCBVC decrease was independently correlated with higher EDSS (p = 0.03) and T2 LL (p = 0.005) at baseline. The squared correlation coefficients of the composite scores made up of EDSS and T2 LL considered together were able to explain only 3 % of the variance in disability progression and only 4 % of the variance of PCBVC.In RRMS patients, clinical and conventional MRI findings at baseline only modestly predict shortterm accumulation of brain atrophy and disability. These data confirm the need to develop clinical and MRI measures more sensitive towards the more disabling aspects of the disease.
Collapse
Affiliation(s)
- Sarlota Mesaros
- Neuroimaging Research Unit, Scientific Institute and University H San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Tjoa CW, Benedict RHB, Dwyer MG, Carone DA, Zivadinov R. Regional specificity of magnetization transfer imaging in multiple sclerosis. J Neuroimaging 2008; 18:130-6. [PMID: 18315593 DOI: 10.1111/j.1552-6569.2007.00198.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The goal of this study was to develop and validate a method for generation of regional magnetization transfer ratio (MTR). We also studied the topography of MTR changes in multiple sclerosis (MS) and in normal controls (NC), and preliminarily examined the clinical usefulness of this method. METHODS We examined 45 patients with MS (relapsing remitting [RR] = 28 and secondary progressive[SP] = 17] and 19 NC. Mean disease duration was 14.3 years and median Expanded Disability Status Scale was 3.0. Regions of the brain were determined using semiautomated brain region extraction (SABRE). Twenty-six regional masks were automatically applied to MTR maps that were further split into gray matter (GM) and white matter (WM)compartments. RESULTS Mean MTR from 12 SABRE regions differed significantly between MS patients and NC. For WM, all regional mean MTRs differed significantly between RR, SP, and NC participants(P < .001). In regression analysis, only 3 regions remained significantly different when corrected for total T2-LV. The regression model predicting disability selected GM mean MTR of the right medial inferior frontal region (P = .031). CONCLUSIONS The study results showed that this regional MTR approach is reproducible, reliable and clinically relevant. MTI changes occur selectively in specific sub-regions.
Collapse
Affiliation(s)
- Christopher W Tjoa
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
45
|
Diffusion-weighted imaging and magnetization transfer imaging of tardive and edentulous orodyskinesia. Mov Disord 2008; 23:1281-5. [DOI: 10.1002/mds.22081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L. Clinical review: Prognostic value of magnetic resonance imaging in acute brain injury and coma. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:230. [PMID: 17980050 PMCID: PMC2556735 DOI: 10.1186/cc6107] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progress in management of critically ill neurological patients has led to improved survival rates. However, severe residual neurological impairment, such as persistent coma, occurs in some survivors. This raises concerns about whether it is ethically appropriate to apply aggressive care routinely, which is also associated with burdensome long-term management costs. Adapting the management approach based on long-term neurological prognosis represents a major challenge to intensive care. Magnetic resonance imaging (MRI) can show brain lesions that are not visible by computed tomography, including early cytotoxic oedema after ischaemic stroke, diffuse axonal injury after traumatic brain injury and cortical laminar necrosis after cardiac arrest. Thus, MRI increases the accuracy of neurological diagnosis in critically ill patients. In addition, there is some evidence that MRI may have potential in terms of predicting outcome. Following a brief description of the sequences used, this review focuses on the prognostic value of MRI in patients with traumatic brain injury, anoxic/hypoxic encephalopathy and stroke. Finally, the roles played by the main anatomical structures involved in arousal and awareness are discussed and avenues for future research suggested.
Collapse
Affiliation(s)
- Nicolas Weiss
- Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Teaching Hospital, Assistance Publique-Hopitaux de Paris and Pierre et Marie Curie University, Bd de l'hôpital, 75013, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Bonini RHM, Zeotti D, Saraiva LAL, Trad CS, Filho JMS, Carrara HHA, de Andrade JM, Santos AC, Muglia VF. Magnetization transfer ratio as a predictor of malignancy in breast lesions: Preliminary results. Magn Reson Med 2008; 59:1030-4. [DOI: 10.1002/mrm.21555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 2007; 26:41-51. [PMID: 17659567 PMCID: PMC2063415 DOI: 10.1002/jmri.20984] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the relationship of myelin content, axonal density, and gliosis with the fraction of macromolecular protons (fB) and T2 relaxation of the macromolecular pool (T2B) acquired using quantitative magnetization transfer (qMT) MRI in postmortem brains of subjects with multiple sclerosis (MS). MATERIALS AND METHODS fB and T2B were acquired in unfixed postmortem brain slices of 20 subjects with MS. The myelin content, axonal count, and severity of gliosis were all quantified histologically. t-Tests and multiple regression were used for analysis. RESULTS MR indices obtained in unfixed postmortem MS brains were consistent with in vivo values reported in the literature. A significant correlation was detected between Tr(myelin) (inversely proportional to myelin content) and 1) fB (r = -0.80, P < 0.001) and 2) axonal count (r = -0.79, P < 0.001). fB differed between 1) normal-appearing white matter (NAWM) and remyelinated WM lesions (rWMLs) (mean: fB 6.9 [SD 2] vs. 4.0 [1.8], P = 0.01), and 2) rWMLs and demyelinated WMLs (mean: 4.2 [2.2] vs. 2.5 [1.3], P = 0.016). No association was detected between T2B and any of the histological measures. CONCLUSION fB in MS WM is dependent on myelin content and may be a tool to monitor patients with this condition.
Collapse
Affiliation(s)
- Klaus Schmierer
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
49
|
Neema M, Stankiewicz J, Arora A, Guss ZD, Bakshi R. MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 2007; 4:602-17. [PMID: 17920541 PMCID: PMC7479680 DOI: 10.1016/j.nurt.2007.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic resonance imaging (MRI) has played a central role in the diagnosis and management of multiple sclerosis (MS). In addition, MRI metrics have become key supportive outcome measures to explore drug efficacy in clinical trials. Conventional MRI measures have contributed to the understanding of MS pathophysiology at the macroscopic level yet have failed to provide a complete picture of underlying MS pathology. They also show relatively weak relationships to clinical status such as predictive strength for clinical progression. Advanced quantitative MRI measures such as magnetization transfer, spectroscopy, diffusion imaging, and relaxometry techniques are somewhat more specific and sensitive for underlying pathology. These measures are particularly useful in revealing diffuse damage in cerebral white and gray matter and therefore may help resolve the dissociation between clinical and conventional MRI findings. In this article, we provide an overview of the array of tools available with brain and spinal cord MRI technology as it is applied to MS. We review the most recent data regarding the role of conventional and advanced MRI techniques in the assessment of MS. We focus on the most relevant pathologic and clinical correlation studies relevant to these measures.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - James Stankiewicz
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Ashish Arora
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Zachary D. Guss
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Rohit Bakshi
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
- Department of Radiology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
50
|
Sharma J, Zivadinov R, Jaisani Z, Fabiano AJ, Singh B, Horsfield MA, Bakshi R. A magnetization transfer MRI study of deep gray matter involvement in multiple sclerosis. J Neuroimaging 2006; 16:302-10. [PMID: 17032378 DOI: 10.1111/j.1552-6569.2006.00054.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/PURPOSE Gray matter involvement in multiple sclerosis (MS) is of growing interest with respect to disease pathogenesis. Magnetization transfer imaging (MTI), an advanced MRI technique, is sensitive to disease in normal appearing white matter (NAWM) in patients with MS. DESIGN/METHODS We tested if MTI detected subcortical (deep) gray matter abnormalities in patients with MS (n= 60) vs. age-matched normal controls (NL, n= 20). Magnetization transfer ratio (MTR) maps were produced from axial proton density, conventional spin-echo, 5 mm gapless slices covering the whole brain. Region-of-interest-derived MTR histograms for the caudate, putamen, globus pallidus, thalamus, and NAWM were obtained. Whole brain MTR was also measured. RESULTS Mean whole brain MTR and the peak position of the NAWM MTR histogram were lower in patients with MS than NL (P < .001) and mean whole brain MTR was lower in secondary progressive (SP, n= 10) than relapsing-remitting (RR, n= 50, P < .001) patients. However, none of the subcortical gray matter nuclei showed MTR differences in MS vs. NL, RR vs. SP, or SP vs. NL. CONCLUSIONS The MTI technique used in this cohort was relatively insensitive to disease in the deep gray matter nuclei despite showing sensitivity for whole brain disease in MS. It remains to be determined if other MRI techniques are more sensitive than MTI for detecting pathology in these areas.
Collapse
Affiliation(s)
- Jitendra Sharma
- Center for Neurological Imaging, Partners MS Center, Department of Neurology, Brigham/Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|