1
|
Minichmayr IK, Knaack U, Gojo J, Senfter D, Haberler C, Azizi AA, Mayr L, Zeitlinger M, Peyrl A. Distribution of Bevacizumab into the Cerebrospinal Fluid of Children and Adolescents with Recurrent Brain Tumors. Paediatr Drugs 2024; 26:429-440. [PMID: 38587585 PMCID: PMC11192692 DOI: 10.1007/s40272-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND To date, evidence has been lacking regarding bevacizumab pharmacokinetics in the cerebrospinal fluid (CSF). OBJECTIVE This study assessed the penetration of bevacizumab, as part of a metronomic antiangiogenic treatment regimen, into the CSF of children, adolescents, and young adults with recurrent brain tumors. PATIENTS AND METHODS Serum and CSF concentrations, malignant cells, and vascular endothelial growth factor A (VEGF-A) were analyzed in 12 patients (5-27 years) following 10 mg/kg bevacizumab intravenous biweekly administration (EudraCT number 2009-013024-23). A population pharmacokinetic model including body weight, albumin, and tumor type as influential factors was extended to quantify the CSF penetration of bevacizumab. RESULTS Apart from in serum (minimum concentration/maximum concentration [Cmin/Cmax] 77.0-305/267-612 mg/L, median 144/417 mg/L), bevacizumab could be quantified in the CSF (0.01-2.26 mg/L, median 0.35 mg/L). The CSF/serum ratio was 0.16 and highly variable between patients. Malignant cells could be detected in CSF before initiation of treatment in five of 12 patients; after treatment, the CSF was cleared in all patients. VEGF-A was detected in three patients before treatment (mean ± SD: 20 ± 11 pg/mL), and was still measurable in one of these patients despite treatment (16 pg/mL). CONCLUSIONS This pharmacokinetic pilot study indicated penetration of bevacizumab into the CSF in a population of children, adolescents, and young adults with recurrent brain tumors.
Collapse
Affiliation(s)
- Iris K Minichmayr
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ursula Knaack
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Mikolajewicz N, Yee PP, Bhanja D, Trifoi M, Miller AM, Metellus P, Bagley SJ, Balaj L, de Macedo Filho LJM, Zacharia BE, Aregawi D, Glantz M, Weller M, Ahluwalia MS, Kislinger T, Mansouri A. Systematic Review of Cerebrospinal Fluid Biomarker Discovery in Neuro-Oncology: A Roadmap to Standardization and Clinical Application. J Clin Oncol 2024; 42:1961-1974. [PMID: 38608213 DOI: 10.1200/jco.23.01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patricia P Yee
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA
| | - Debarati Bhanja
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Mara Trifoi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Alexandra M Miller
- Departments of Neurology and Pediatrics, Memorial Sloan Kettering Cancer Center, Manhattan, NY
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Stephen J Bagley
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Brad E Zacharia
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Dawit Aregawi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Glantz
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
3
|
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, Khatami SH. Electrochemical biosensors for early diagnosis of glioblastoma. Clin Chim Acta 2024; 557:117878. [PMID: 38493942 DOI: 10.1016/j.cca.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.
Collapse
Affiliation(s)
- Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Esteki
- Department of Medical Laboratory Sciences, School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Jabalameli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Valerius AR, Webb MJ, Hammad N, Sener U, Malani R. Cerebrospinal Fluid Liquid Biopsies in the Evaluation of Adult Gliomas. Curr Oncol Rep 2024; 26:377-390. [PMID: 38488990 DOI: 10.1007/s11912-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW This review aims to discuss recent research regarding the biomolecules explored in liquid biopsies and their potential clinical uses for adult-type diffuse gliomas. RECENT FINDINGS Evaluation of tumor biomolecules via cerebrospinal fluid (CSF) is an emerging technology in neuro-oncology. Studies to date have already identified various circulating tumor DNA, extracellular vesicle, micro-messenger RNA and protein biomarkers of interest. These biomarkers show potential to assist in multiple avenues of central nervous system (CNS) tumor evaluation, including tumor differentiation and diagnosis, treatment selection, response assessment, detection of tumor progression, and prognosis. In addition, CSF liquid biopsies have the potential to better characterize tumor heterogeneity compared to conventional tissue collection and CNS imaging. Current imaging modalities are not sufficient to establish a definitive glioma diagnosis and repeated tissue sampling via conventional biopsy is risky, therefore, there is a great need to improve non-invasive and minimally invasive sampling methods. CSF liquid biopsies represent a promising, minimally invasive adjunct to current approaches which can provide diagnostic and prognostic information as well as aid in response assessment.
Collapse
Affiliation(s)
| | - Mason J Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Nouran Hammad
- Jordan University of Science and Technology School of Medicine, Irbid, Jordan
| | - Ugur Sener
- Department of Neurology, Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rachna Malani
- University of UT - Huntsman Cancer Institute (Department of Neurosurgery), Salt Lake City, UT, USA
| |
Collapse
|
5
|
Varma H, Zhang KX, Shah VS. Pediatric autoimmune retinopathy and optic neuropathy: a case report and a review of the literature. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1275335. [PMID: 38983022 PMCID: PMC11182202 DOI: 10.3389/fopht.2023.1275335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Purpose The purpose of the study was to present a rare case of pediatric bilateral optic neuropathy and retinopathy, which was consistent with a diagnosis of autoimmune retinopathy. We also reviewed the most current literature and phenotypes associated with reported pediatric cases of autoimmune retinopathy. Design The design of the study was a case report, with a retrospective case series literature review. Subjects This study incorporated data from six subjects, with one presenting as an original case report and five being identified from the English-language literature published to date. Materials and methods The materials and methods involved a descriptive analysis of fundus findings, electrophysiologic testing, serum autoantibody testing, optical coherence tomography (OCT), brain MRI scanning, and fluorescein angiography, which were performed where available. Main outcome measures The study evaluated the clinical presentation and treatment outcomes of all subjects and followed their visual function over time. Results All six subjects had retinal abnormalities that were documented on imaging, while five out of the six subjects had optic nerve abnormalities. Electrophysiologic testing was performed on three subjects, all of whom recorded abnormal results. An underlying neoplastic disorder was described for four subjects. Serum autoantibody testing results were available for four subjects. The serum testing included using antibodies against a 22-kDa antigen, a 35-kDa optic nerve-derived antigen, a 62-kDa antigen, enolase, recoverin, tubulin, and pyruvate kinase M2. Our subject presented 12 years after resection of a ganglioglioma with asymmetric bilateral vision loss, disc edema in one eye, advanced disc pallor in the fellow eye, and bilateral subtle retinal infiltrates, despite having a normal fluorescein angiogram. OCT demonstrated asymmetric ganglion cell layer thinning, which is consistent with the vision loss. Our subject also had abnormal brain MRI findings of widespread pachymeningeal enhancement, but he had a normal cerebrospinal fluid composition. He was initially treated with high-dose pulse steroids, followed by intravenous immunoglobulin therapy. He experienced partial visual recovery in both eyes. Conclusions Pediatric autoimmune retinopathy and optic neuropathy are rare diseases that can present with unique signs and symptoms. In pediatric patients who present with symptoms of subacute progressive vision loss with negative inflammatory workups, a history of prior neoplasm, and/or clinical findings of progressive retinopathy or optic neuropathy, an autoimmune process should be considered in the differential.
Collapse
Affiliation(s)
- Hersh Varma
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Ophthalmology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kevin X Zhang
- Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Veeral S Shah
- Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
6
|
Premachandran S, Haldavnekar R, Ganesh S, Das S, Venkatakrishnan K, Tan B. Self-Functionalized Superlattice Nanosensor Enables Glioblastoma Diagnosis Using Liquid Biopsy. ACS NANO 2023; 17:19832-19852. [PMID: 37824714 DOI: 10.1021/acsnano.3c04118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Glioblastoma (GBM), the most aggressive and lethal brain cancer, is detected only in the advanced stage, resulting in a median survival rate of 15 months. Therefore, there is an urgent need to establish GBM diagnosis tools to identify the tumor accurately. The clinical relevance of the current liquid biopsy techniques for GBM diagnosis remains mostly undetermined, owing to the challenges posed by the blood-brain barrier (BBB) that restricts biomarkers entering the circulation, resulting in the unavailability of clinically validated circulating GBM markers. GBM-specific liquid biopsy for diagnosis and prognosis of GBM has not yet been developed. Here, we introduce extracellular vesicles of GBM cancer stem cells (GBM CSC-EVs) as a previously unattempted, stand-alone GBM diagnosis modality. As GBM CSCs are fundamental building blocks of tumor initiation and recurrence, it is desirable to investigate these reliable signals of malignancy in circulation for accurate GBM diagnosis. So far, there are no clinically validated circulating biomarkers available for GBM. Therefore, a marker-free approach was essential since conventional liquid biopsy relying on isolation methodology was not viable. Additionally, a mechanism capable of trace-level detection was crucial to detecting the rare GBM CSC-EVs from the complex environment in circulation. To break these barriers, we applied an ultrasensitive superlattice sensor, self-functionalized for surface-enhanced Raman scattering (SERS), to obtain holistic molecular profiling of GBM CSC-EVs with a marker-free approach. The superlattice sensor exhibited substantial SERS enhancement and ultralow limit of detection (LOD of attomolar 10-18 M concentration) essential for trace-level detection of invisible GBM CSC-EVs directly from patient serum (without isolation). We detected as low as 5 EVs in 5 μL of solution, achieving the lowest LOD compared to existing SERS-based studies. We have experimentally demonstrated the crucial role of the signals of GBM CSC-EVs in the precise detection of glioblastoma. This was evident from the unique molecular profiles of GBM CSC-EVs demonstrating significant variation compared to noncancer EVs and EVs of GBM cancer cells, thus adding more clarity to the current understanding of GBM CSC-EVs. Preliminary validation of our approach was undertaken with a small amount of peripheral blood (5 μL) derived from GBM patients with 100% sensitivity and 97% specificity. Identification of the signals of GBM CSC-EV in clinical sera specimens demonstrated that our technology could be used for accurate GBM detection. Our technology has the potential to improve GBM liquid biopsy, including real-time surveillance of GBM evolution in patients upon clinical validation. This demonstration of liquid biopsy with GBM CSC-EV provides an opportunity to introduce a paradigm potentially impacting the current landscape of GBM diagnosis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
7
|
Abstract
An ideal biomarker must meet several parameters to enable its successful adoption; however, the nature of glioma makes it challenging to discover valuable biomarkers. While biomarkers require simplicity for clinical implementation, anatomical features and the complexity of the brain make it challenging to perform histological examination. Therefore, compared to biomarkers from general histological examination, liquid biomarkers for brain disease offer many more advantages in these minimally invasive methods. Ideal biomarkers should have high sensitivity and specificity, especially in malignant tumors. The heterogeneous nature of glioma makes it challenging to determine useful common biomarkers, and no liquid biomarker has yet been adopted clinically. The low incidence of brain tumors also hinders research progress. To overcome these problems, clinical applications of new types of specimens, such as extracellular vesicles and comprehensive omics analysis, have been developed, and some candidate liquid biomarkers have been identified. As against previous reviews, we focused on and reviewed the sensitivity and specificity of each liquid biomarker for its clinical application. Perusing an ideal glioma biomarker would help uncover the common underlying mechanism of glioma and develop new therapeutic targets. Further multicenter studies based on these findings will help establish new treatment strategies in the future.
Collapse
|
8
|
Khristov V, Lin A, Freedman Z, Staub J, Shenoy G, Mrowczynski O, Rizk E, Zacharia B, Connor J. Tumor-Derived Biomarkers in Liquid Biopsy of Glioblastoma. World Neurosurg 2023; 170:182-194. [PMID: 36347463 DOI: 10.1016/j.wneu.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
There is a pressing clinical need for minimally invasive liquid biopsies to supplement imaging in the treatment of glioblastoma. Diagnostic imaging is often difficult to interpret and the medical community is divided on distinguishing among complete response, partial response, stable disease, and progressive disease. A minimally invasive liquid biopsy would supplement imaging and clinical findings and has the capacity to be helpful in several ways: 1) diagnosis, 2) selection of patients for specific treatments, 3) tracking of treatment response, and 4) prognostic value. The liquid biome is the combination of biological fluids including blood, urine, and cerebrospinal fluid that contain small amounts of tumor cells, DNA/RNA coding material, peptides, and metabolites. Within the liquid biome, 2 broad categories of biomarkers can exist: tumor-derived, which can be directly traced to the tumor, and tumor-associated, which can be traced back to the response of the body to disease. Although tumor-associated biomarkers are promising liquid biopsy candidates, recent advances in biomarker enrichment and detection have allowed concentration on a new class of biomarker: tumor-derived biomarkers. This review focuses on making the distinction between the 2 biomarker categories and highlights promising new direction.
Collapse
Affiliation(s)
- Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA.
| | - Andrea Lin
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Zachary Freedman
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Jacob Staub
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Oliver Mrowczynski
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Brad Zacharia
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Liu P, Li Y, Zhang Y, Choi J, Zhang J, Shang G, Li B, Lin YJ, Saleh L, Zhang L, Yi L, Yu S, Lim M, Yang X. Calcium-Related Gene Signatures May Predict Prognosis and Level of Immunosuppression in Gliomas. Front Oncol 2022; 12:708272. [PMID: 35646664 PMCID: PMC9136236 DOI: 10.3389/fonc.2022.708272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Gliomas are the most common primary brain cancer. While it has been known that calcium-related genes correlate with gliomagenesis, the relationship between calcium-related genes and glioma prognosis remains unclear. We assessed TCGA datasets of mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to specifically screen for genes that regulate or are affected by calcium levels. We then correlated the identified calcium-related genes with unsupervised/supervised learning to classify glioma patients into 2 risk groups. We also correlated our identified genes with immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with different OS. At the same time, 10 calcium hub genes (CHGs) signature model were constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of samples were calculated. The risk score was confirmed as an independent predictor of prognosis. Immune enrichment analysis revealed an immunosuppressive tumor microenvironment with upregulation of checkpoint markers in the high-risk group. Finally, a nomogram was generated with risk scores and other clinical prognostic independent indicators to quantify prognosis. Our findings suggest that calcium-related gene expression patterns could be applicable to predict prognosis and predict levels of immunosuppression.
Collapse
Affiliation(s)
- Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - John Choi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bailiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Laura Saleh
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Xuejun Yang, ; Michael Lim,
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- *Correspondence: Xuejun Yang, ; Michael Lim,
| |
Collapse
|
11
|
Xu R, Cheng Y, Li X, Zhang Z, Zhu M, Qi X, Chen L, Han L. Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Anal Chim Acta 2022; 1209:339893. [DOI: 10.1016/j.aca.2022.339893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
|
12
|
Kemmerer CL, Schittenhelm J, Dubois E, Neumann L, Häsler LM, Lambert M, Renovanz M, Kaeser SA, Tabatabai G, Ziemann U, Naumann U, Kowarik MC. Cerebrospinal fluid cytokine levels are associated with macrophage infiltration into tumor tissues of glioma patients. BMC Cancer 2021; 21:1108. [PMID: 34654395 PMCID: PMC8520299 DOI: 10.1186/s12885-021-08825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse gliomas are the most common malignant tumors of the central nervous system with poor treatment efficacy. Infiltration of immune cells into tumors during immunosurveillance is observed in multiple tumor entities and often associated with a favorable outcome. The aim of this study was to evaluate the infiltration of immune cells in gliomas and their association with cerebrospinal fluid (CSF) cytokine concentrations. Methods We applied immunohistochemistry in tumor tissue sections of 18 high-grade glioma (HGG) patients (4 anaplastic astrocytoma, IDH-wildtype WHO-III; 14 glioblastomas (GBM), IDH-wildtype WHO-IV) in order to assess and quantify leucocytes (CD45) and macrophages (CD68, CD163) within the tumor core, infiltration zone and perivascular spaces. In addition, we quantified the concentrations of 30 cytokines in the same patients’ CSF and in 14 non-inflammatory controls. Results We observed a significantly higher percentage of CD68+ macrophages (21–27%) in all examined tumor areas when compared to CD45+ leucocytes (ca. 3–7%); CD163+ cell infiltration was between 5 and 15%. Compared to the tumor core, significantly more macrophages and leucocytes were detectable within the perivascular area. The brain parenchyma showing a lower tumor cell density seems to be less infiltrated by macrophages. Interleukin (IL)-7 was significantly downregulated in CSF of GBM patients compared to controls. Additionally, CD68+ macrophage infiltrates showed significant correlations with the expression of eotaxin, interferon-γ, IL-1β, IL-2, IL-10, IL-13, IL-16 and vascular endothelial growth factor. Conclusions Our findings suggest that the infiltration of lymphocytes is generally low in HGG, and does not correlate with cytokine concentrations in the CSF. In contrast, macrophage infiltrates in HGG are associated with CSF cytokine changes that possibly shape the tumor microenvironment. Although results point towards an escape from immunosurveillance or even exploitation of immune cells by HGG, further studies are necessary to decipher the exact role of the immune system in these tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08825-1.
Collapse
Affiliation(s)
- Constanze L Kemmerer
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, University Hospital Tübingen, Calwerstr. 3, Tübingen, Germany.,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Evelyn Dubois
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Laura Neumann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Lisa M Häsler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Mirjam Renovanz
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Stephan A Kaeser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Ulf Ziemann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,Department of Neurology & Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Markus C Kowarik
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany. .,Department of Neurology & Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich, Germany.
| |
Collapse
|
13
|
Mariani CL, Niman ZE, Boozer LB, Ruterbories LK, Early PJ, Muñana KR, Olby NJ. Vascular endothelial growth factor concentrations in the cerebrospinal fluid of dogs with neoplastic or inflammatory central nervous system disorders. J Vet Intern Med 2021; 35:1873-1883. [PMID: 34105831 PMCID: PMC8295675 DOI: 10.1111/jvim.16181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a key molecular driver of angiogenesis and vascular permeability and is expressed by a wide variety of neoplasms. Although blood VEGF concentrations have been quantified in intracranial tumors of dogs, cerebrospinal fluid (CSF) VEGF concentration might be a more sensitive biomarker of disease. Objective Concentrations of VEGF in CSF are higher in dogs with central nervous system (CNS) neoplasia compared to those with meningoencephalomyelitis and other neurologic disorders. Animals One hundred and twenty‐six client‐owned dogs presented to a veterinary teaching hospital. Methods Case‐control study. Cerebrospinal fluid was archived from dogs diagnosed with CNS neoplasia and meningoencephalomyelitis. Control dogs had other neurological disorders or diseases outside of the CNS. A commercially available kit was used to determine VEGF concentrations. Results Detectable CSF VEGF concentrations were present in 49/63 (77.8%) neoplastic samples, 22/24 (91.7%) inflammatory samples, and 8/39 (20.5%) control samples. The VEGF concentrations were significantly different between groups (P < .0001), and multiple comparison testing showed that both neoplastic and inflammatory groups had significantly higher concentrations than did controls (P < .05), but did not differ from each other. Gliomas and choroid plexus tumors had significantly higher VEGF concentrations than did the control group (P < .05). Conclusions and Clinical Importance Cerebrospinal fluid VEGF concentrations may serve as a marker of neoplastic and inflammatory CNS disorders relative to other conditions.
Collapse
Affiliation(s)
- Christopher L Mariani
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary E Niman
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Lindsay B Boozer
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA
| | - Laura K Ruterbories
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen R Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Rezaei ZS, Shahangian SS, Hasannia S, Sajedi RH. Development of a phage display-mediated immunoassay for the detection of vascular endothelial growth factor. Anal Bioanal Chem 2020; 412:7639-7648. [PMID: 32876721 DOI: 10.1007/s00216-020-02901-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Because of the critical role of vascular endothelial growth factor (VEGF) in angiogenesis and its significantly increased serum levels in early stages of cancer, VEGF is considered an important prognostic biomarker in different cancers. Herein, the amplification power of PCR combined with phage displaying anti-VEGF VHH, a sensitive real-time immunoassay, was precisely designed based on phage display-mediated immuno-PCR (PD-IPCR) for the detection of VEGF. This system benefits from strong and specific binding of antigen and antibody in a sandwich immunosorbent assay platform using avastin (anti-VEGF monoclonal antibody) as the capture antibody. The anti-VEGF phage particles were used as both anti-VEGF agent and DNA template in the PD-IPCR. Anti-VEGF phage ELISA showed a linear range of 3-250 ng/ml and a limit of detection (LOD) of 1.1 ng/ml. Using the PD-IPCR method, the linear range of VEGF detection was found to be 0.06-700 ng/ml, with a detection limit of 3 pg/ml. The recovery rate in serum ranged from 83% to 99%, with a relative standard deviation of 1.2-4.9%. These values indicate that the method has good sensitivity for use in clinical analysis. The proposed method was successfully applied to the clinical determination of VEGF in human serum samples, and the results showed excellent correlation with conventional ELISA (R2 = 0.995). The novel immunoassay provides a specific and sensitive immunoassay protocol for VEGF detection at very low levels. Graphical abstract.
Collapse
Affiliation(s)
- Zahra S Rezaei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, 4199613776, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran.
| |
Collapse
|
15
|
Mattox AK, Yan H, Bettegowda C. The potential of cerebrospinal fluid-based liquid biopsy approaches in CNS tumors. Neuro Oncol 2020; 21:1509-1518. [PMID: 31595305 PMCID: PMC6917400 DOI: 10.1093/neuonc/noz156] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cerebrospinal fluid (CSF) may be the best hope for minimally invasive diagnosis and treatment monitoring of central nervous system (CNS) malignancies. Discovery/validation of cell-free nucleic acid and protein biomarkers has the potential to revolutionize CNS cancer care, paving the way for presurgical evaluation, earlier detection of recurrence, and the selection of targeted therapies. While detection of mutations, changes in RNA and miRNA expression, epigenetic alterations, and elevations of protein levels have been detected in the CSF of patients with CNS tumors, most of these biomarkers remain unvalidated. In this review, we focus on the molecular changes that have been identified in a variety of CNS tumors and profile the approaches used to detect these alterations in clinical samples. We further emphasize the importance of systemic collection of CSF and the establishment of standardized collection protocols that will lead to better cross-study biomarker validation and hopefully FDA-approved clinical markers.
Collapse
Affiliation(s)
- Austin K Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Raza IJ, Tingate CA, Gkolia P, Romero L, Tee JW, Hunn MK. Blood Biomarkers of Glioma in Response Assessment Including Pseudoprogression and Other Treatment Effects: A Systematic Review. Front Oncol 2020; 10:1191. [PMID: 32923382 PMCID: PMC7456864 DOI: 10.3389/fonc.2020.01191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Imaging-based monitoring of disease burden in glioma patients is frequently confounded by treatment effects. Circulating biomarkers could theoretically augment imaging-based response monitoring. This systematic review aimed to present and evaluate evidence for differential expression and diagnostic accuracy of circulating biomarkers with respect to outcomes of tumor response, progression, stable disease, and treatment effects (pseudoprogression, radionecrosis, pseudoresponse, and pseudolesions) in patients undergoing treatment for World Health Organization grades II-IV diffuse astrocytic and oligodendroglial tumors. MEDLINE, EMBASE, Web Of Science, and SCOPUS databases were searched until August 18, 2019, for observational or diagnostic studies on multiple circulating biomarker types: extracellular vesicles, circulating nucleic acids, circulating tumor cells, circulating proteins, and metabolites, angiogenesis related cells, immune cells, and other cell lines. Methodological quality of included studies was assessed using an adapted Quality Assessment of Diagnostic Accuracy Studies-2 tool, and level of evidence (IA-IVD) for individual biomarkers was evaluated using an adapted framework from the National Comprehensive Cancer Network guidelines on evaluating tumor marker utility. Of 13,202 unique records, 58 studies met the inclusion criteria. One hundred thirty-three distinct biomarkers were identified in a total of 1,853 patients across various treatment modalities. Fifteen markers for response, progression, or stable disease and five markers for pseudoprogression or radionecrosis reached level IB. No biomarkers reached level IA. Only five studies contained data for diagnostic accuracy measures. Overall methodological quality of included studies was low. While extensive data on biomarker dysregulation in varying response categories were reported, no biomarkers ready for clinical application were identified. Further assay refinement and evaluation in larger cohorts with diagnostic accuracy study designs are required. PROSPERO Registration: CRD42018110658.
Collapse
Affiliation(s)
- Istafa J Raza
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia
| | - Campbell A Tingate
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia
| | - Panagiota Gkolia
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia
| | - Lorena Romero
- The Ian Potter Library, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jin W Tee
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Martin K Hunn
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Linhares P, Carvalho B, Vaz R, Costa BM. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int J Mol Sci 2020; 21:E5809. [PMID: 32823572 PMCID: PMC7461098 DOI: 10.3390/ijms21165809] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant primary brain tumor in adults, characterized by a highly aggressive, inflammatory and angiogenic phenotype. It is a remarkably heterogeneous tumor at several levels, including histopathologically, radiographically and genetically. The 2016 update of the WHO Classification of Tumours of the Central Nervous System highlighted molecular parameters as paramount features for the diagnosis, namely IDH1/2 mutations that distinguish primary and secondary GBM. An ideal biomarker is a molecule that can be detected/quantified through simple non- or minimally invasive methods with the potential to assess cancer risk; promote early diagnosis; increase grading accuracy; and monitor disease evolution and treatment response, as well as fundamentally being restricted to one aspect. Blood-based biomarkers are particularly attractive due to their easy access and have been widely used for various cancer types. A number of serum biomarkers with multiple utilities for glioma have been reported that could classify glioma grades more precisely and provide prognostic value among these patients. At present, screening for gliomas has no clinical relevance. This is because of the low incidence, the lack of sensitive biomarkers in plasma, and the observation that gliomas may develop apparently de novo within few weeks or months. To the best of our knowledge, there is no routine use of a serum biomarker for clinical follow-up. The purpose of this paper is to review the serum biomarkers described in the literature related to glioblastoma and their possible relationship with clinical features.
Collapse
Affiliation(s)
- Paulo Linhares
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bruno Carvalho
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Vaz
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
18
|
Gandhoke C, Shah A, Singh D, Subberwal M, Gupta R, Gupta V, Saran R. Whether Serum Glial Fibrillary Acidic Protein (GFAP) Can Be Used as a Diagnostic Biomarker in Patients With Glioblastoma? MAMC JOURNAL OF MEDICAL SCIENCES 2020. [DOI: 10.4103/mamcjms.mamcjms_65_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Cerebrospinal fluid VEGF levels and angiogenic capacity as potential prognostic markers in patients with gliomas: a pilot study. J Neurooncol 2019; 145:233-239. [PMID: 31624989 DOI: 10.1007/s11060-019-03314-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Gliomas are tumors of the central nervous system. Despite new classifications, they are still divided in low and high-grade gliomas, being the latter of greater malignancy. The degree of malignancy is directly related with the angiogenic activity in tumoral tissues. We measured VEGF concentrations and angiogenic capacity in cerebrospinal fluid (CSF) from patients with high and low-grade gliomas. The purpose of this study was to find a biomarker that contributes in the differential diagnosis and prognosis of gliomas. METHODS CSF was obtained from 19 individuals: 8 with low-grade gliomas, 6 with high-grade gliomas and 5 controls. VEGF concentration in CSF was measured by ELISA and the angiogenic capacity was measured by chick chorioallantoic membrane (CAM) test. RESULTS The VEGF concentration was higher in patients with high-grade gliomas, compared to patients with low-grade gliomas and controls (2860 pg/mL ± 975 vs. 182.6 ± 37.1 and 47.4 ± 0.4, respectively). On the other hand, CSF from patients with high-grade gliomas generated a higher microvascular density (MVD) than patients with low-grade gliomas and controls (13.23 ± 0.6 vessels/9000μm2 vs. 9.3 ± 0.3 and 7.92 ± 0.2, respectively). Interestingly, there was not statistical differences in both VEGF levels and angiogenic capacity in patients with low-grade gliomas and controls. CONCLUSION Together VEGF levels and angiogenic capacity in CSF can be used as a biological marker of gliomas malignancy.
Collapse
|
20
|
Feng S, Mao S, Dou J, Li W, Li H, Lin JM. An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification. Chem Sci 2019; 10:8571-8576. [PMID: 31803431 PMCID: PMC6839512 DOI: 10.1039/c9sc02974e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
We report an open-space microfluidic chip with fluid walls, integrating functions of cell culture and online detection of secreted proteins controlled by the interfacial tension value.
Despite traditional poly-dimethyl siloxane (PDMS) microfluidic devices having great potential in various biological studies, they are limited by sophisticated fabrication processes and low utilization. An easily controlled microfluidic platform with high efficiency and low cost is desperately required. In this work, we present an open-space microfluidic chip with fluid walls, integrating cell culture and online semi-quantitative detection of vascular endothelial growth factor (VEGF) via rolling circle amplification (RCA) reaction. In comparison with conventional co-culture detecting platforms, this method features the prominent advantages of saving reagents and time, a simplified chip fabrication process, and avoiding additional assistance for online detection with the help of an interfacial tension valve. On such a multi-functional microfluidic chip, cells (human umbilical vein endothelial cells and malignant glioma cells) could maintain regular growth and cell viability. VEGF could be detected with excellent specificity and good linearity in the range of 10–250 pg mL–1. Meanwhile, VEGF secreted by malignant glioma cells was also detected online and obviously increased when cells were stimulated by deferoxamine (DFO) to mimic a hypoxic microenvironment. The designed biochip with fluid walls provides a new perspective for micro-total analysis and could be promisingly applied in future clinical diagnosis and drug analysis.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Sifeng Mao
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Jinxin Dou
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Weiwei Li
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Haifang Li
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Jin-Ming Lin
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
21
|
Hafeez U, Cher LM. Biomarkers and smart intracranial devices for the diagnosis, treatment, and monitoring of high-grade gliomas: a review of the literature and future prospects. Neurooncol Adv 2019; 1:vdz013. [PMID: 32642651 PMCID: PMC7212884 DOI: 10.1093/noajnl/vdz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain neoplasm with median overall survival (OS) around 15 months. There is a dearth of effective monitoring strategies for patients with high-grade gliomas. Relying on magnetic resonance images of brain has its challenges, and repeated brain biopsies add significant morbidity. Hence, it is imperative to establish a less invasive way to diagnose, monitor, and guide management of patients with high-grade gliomas. Currently, multiple biomarkers are in various phases of development and include tissue, serum, cerebrospinal fluid (CSF), and imaging biomarkers. Here we review and summarize the potential biomarkers found in blood and CSF, including extracellular macromolecules, extracellular vesicles, circulating tumor cells, immune cells, endothelial cells, and endothelial progenitor cells. The ability to detect tumor-specific biomarkers in blood and CSF will potentially not only reduce the need for repeated brain biopsies but also provide valuable information about the heterogeneity of tumor, response to current treatment, and identify disease resistance. This review also details the status and potential scope of brain tumor-related cranial devices and implants including Ommaya reservoir, microelectromechanical systems-based depot device, Alzet mini-osmotic pump, Metronomic Biofeedback Pump (MBP), ipsum G1 implant, ultra-thin needle implant, and putative devices. An ideal smart cranial implant will overcome the blood-brain barrier, deliver various drugs, provide access to brain tissue, and potentially measure and monitor levels of various biomarkers.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Latrobe University School of Cancer Medicine, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
| | - Lawrence M Cher
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
- Corresponding Author: Lawrence M. Cher, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia ()
| |
Collapse
|
22
|
Abstract
The detection of glioblastoma (GBM) in biofluids offers potential advantages over existing paradigms for the diagnosis and therapeutic monitoring of glial tumors. Biofluid-based detection of GBM focuses on detecting tumor-specific biomarkers in the blood and CSF. Current clinical research concentrates on studying 3 distinct tumor-related elements: extracellular macromolecules, extracellular vesicles, and circulating tumor cells. Investigations into these 3 biological classifications span the range of locales for tumor-specific biomarker discovery, and combined, have the potential to significantly impact GBM diagnosis, monitoring for treatment response, and surveillance for recurrence. This review highlights the recent advancements in the development of biomarkers and their efficacy for the detection of GBM.
Collapse
|
23
|
Verheul C, Kleijn A, Lamfers MLM. Cerebrospinal fluid biomarkers of malignancies located in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:139-169. [PMID: 29110768 DOI: 10.1016/b978-0-12-804279-3.00010-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CNS malignancies include primary tumors that originate within the CNS as well as secondary tumors that develop as a result of metastatic cancer. The delicate nature of the nervous systems makes tumors located in the CNS notoriously difficult to reach, which poses several problems during diagnosis and treatment. CSF can be acquired relatively easy through lumbar puncture and offers an important compartment for analysis of cells and molecules that carry information about the malignant process. Such techniques have opened up a new field of research focused on the identification of specific biomarkers for several types of CNS malignancies, which may help in diagnosis and monitoring of tumor progression or treatment response. Biomarkers are sought in DNA, (micro)RNA, proteins, exosomes and circulating tumor cells in the CSF. Techniques are rapidly progressing to assess these markers with increasing sensitivity and specificity, and correlations with clinical parameters are being investigated. It is expected that these efforts will, in the near future, yield clinically relevant markers that aid in diagnosis, monitoring and (tailored) treatment of patients bearing CNS tumors. This chapter provides a summary of the current state of affairs of the field of biomarkers of different types of CNS tumors.
Collapse
Affiliation(s)
- Cassandra Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Tumor-Associated CSF MicroRNAs for the Prediction and Evaluation of CNS Malignancies. Int J Mol Sci 2015; 16:29103-19. [PMID: 26690130 PMCID: PMC4691097 DOI: 10.3390/ijms161226150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/15/2023] Open
Abstract
Cerebrospinal fluid (CSF) is a readily reachable body fluid that is reflective of the underlying pathological state of the central nervous system (CNS). Hence it has been targeted for biomarker discovery for a variety of neurological disorders. CSF is also the major route for seeding metastases of CNS malignancies and its analysis could be informative for diagnosis and risk stratification of brain cancers. Recently, modern high-throughput, microRNAs (miRNAs) measuring technology has enabled sensitive detection of distinct miRNAs that are bio-chemicallystable in the CSF and can distinguish between different types of CNS cancers. Owing to the fact that a CSF specimen can be obtained with relative ease, analysis of CSF miRNAs could be a promising contribution to clinical practice. In this review, we examine the current scientific knowledge on tumor associated CSF miRNAs that could guide diagnosis of different brain cancer types, or could be helpful in predicting disease progression and therapy response. Finally, we highlight their potential applications clinically as biomarkers and discuss limitations.
Collapse
|
25
|
Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 2015; 129:849-65. [PMID: 25720744 PMCID: PMC4436687 DOI: 10.1007/s00401-015-1399-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.
Collapse
|
26
|
Kros JM, Mustafa DM, Dekker LJM, Sillevis Smitt PAE, Luider TM, Zheng PP. Circulating glioma biomarkers. Neuro Oncol 2014; 17:343-60. [PMID: 25253418 DOI: 10.1093/neuonc/nou207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/13/2014] [Indexed: 02/06/2023] Open
Abstract
Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Lennard J M Dekker
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Peter A E Sillevis Smitt
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Theo M Luider
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| |
Collapse
|
27
|
Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma. Cancer 2014; 120:3972-80. [DOI: 10.1002/cncr.28949] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 11/07/2022]
|
28
|
Jayaram S, Gupta MK, Polisetty RV, Cho WCS, Sirdeshmukh R. Towards developing biomarkers for glioblastoma multiforme: a proteomics view. Expert Rev Proteomics 2014; 11:621-39. [PMID: 25115191 DOI: 10.1586/14789450.2014.939634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal forms of the primary brain tumors. With predominance of tumor heterogeneity and emergence of new subtypes, new approaches are needed to develop tissue-based markers for tumor typing or circulatory markers to serve as blood-based assays. Multi-omics data integration for GBM tissues would offer new insights on the molecular view of GBM pathogenesis useful to identify biomarker panels. On the other hand, mapping differentially expressed tissue proteins for their secretory potential through bioinformatics analysis or analysis of the tumor cell secretome or tumor exosomes would enhance our understanding of the tumor microenvironment and prospects for targeting circulatory biomarkers. In this review, the authors first present potential biomarker candidates for GBM that have been reported and then focus on plausible pipelines for multi-omic data integration to identify additional, high-confidence molecular panels for clinical applications in GBM.
Collapse
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | | | | | | | | |
Collapse
|
29
|
Kolodziej MA, Proemmel P, Quint K, Strik HM. Cerebrospinal fluid ferritin—Unspecific and unsuitable for disease monitoring. Neurol Neurochir Pol 2014; 48:116-21. [DOI: 10.1016/j.pjnns.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022]
|
30
|
Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci 2013; 51:503-13. [PMID: 23900722 DOI: 10.1007/s12031-013-0076-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/15/2013] [Indexed: 01/20/2023]
Abstract
Emerging evidence have suggested that calorie restriction (CR) is a reliable method to decrease cancer development since it produces changes in tumor microenvironment that interfere with cell proliferation, tissue invasion, and formation of metastases. Studies on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in cancer cells indicate that their influence on cell growth is either cell type specific or dependent on culture conditions. Evidence showing the effect of PACAP and VIP in glioma cells grown under conditions mimicking CR are currently unavailable. Therefore, we explored the effects of both PACAP and VIP in C6 glioma cells either grown in a normal growth medium or exposed to serum starvation, to resemble an acute condition of CR. Cell viability, expression of proteins related to cell proliferation (cyclin D1), apoptosis (Bcl2, p53, and cleaved caspase-3), and cell malignancy (GFAP and nestin) were assessed by MTT assay, immunoblot, and immunolocalization, respectively. Results demonstrated that CR significantly decreased cell proliferation, reduced levels of cyclin D1 and Bcl2, and increased the expression of p53 and cleaved caspase-3. Surprisingly, all of these CR-driven effects were further exacerbated by PACAP or VIP treatment. We also found that PACAP or VIP prevented GFAP decrease caused by CR and further reduced the expression of nestin, a prognostic marker of malignancy. In conclusion, these data demonstrate that PACAP and VIP possess antiproliferative properties against glioma cells that depend on the specific culture settings, further supporting the idea that CR might offer new avenues to improve peptide-oriented glioma cancer treatment.
Collapse
|
31
|
Ilhan-Mutlu A, Wagner L, Preusser M. Circulating biomarkers of CNS tumors: an update. Biomark Med 2013; 7:267-85. [DOI: 10.2217/bmm.13.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CNS tumors comprise approximately 120 histological subtypes. Advances of surgical resection, radiation and systemic therapy have increased the survival rates of distinct types of CNS tumor patients. There is growing interest in identification of diagnostic, prognostic or predictive blood biomarkers in CNS tumor patients, and emerging studies indicate that certain brain tumors are indeed associated with distinct profiles of circulating factors such as proteins (e.g., glial fibrillary acidic protein), DNA fragments (e.g., containing mutated IDH) or miRNAs (e.g., miRNA-21). However, blood biomarker research in neurooncology is, for the most part, at an exploratory level, and adequately powered and well-designed studies are needed to translate the available interesting but preliminary findings into actual clinical use. In this review, the current knowledge on circulating biomarkers of CNS tumors is briefly summarized.
Collapse
Affiliation(s)
- Aysegül Ilhan-Mutlu
- Department of Medicine I/Oncology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
| | - Ludwig Wagner
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Department of Nephrology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
| | - Matthias Preusser
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Department of Medicine I/Oncology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Tang YT, Jiang F, Guo L, Si MY, Jiao XY. Expression and significance of vascular endothelial growth factor A and C in leukemia central nervous system metastasis. Leuk Res 2013; 37:359-66. [PMID: 23137522 DOI: 10.1016/j.leukres.2012.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/03/2012] [Accepted: 10/12/2012] [Indexed: 02/05/2023]
Abstract
Metastasis to the central nervous system (CNS) is an obstacle for leukemia treatment, the mechanisms of which remain to be elucidated. VEGF-A and VEGF-C are suspected to participate in this process. Paired of cerebrospinal fluid (CSF) and serum samples were collected from leukemia and control cases. Levels of VEGF-A and VEGF-C in both CSF (VEGF-ACSF, VEGF-CCSF) and serum (VEGF-ASerum, VEGF-CSerum) were detected by ELISA. Our data show that higher levels of VEGF-ACSF are closely related to CNS leukemia (CNSL), and VEGF-ACSF may be a better predictor than the other risk factors elucidating the pathogenesis and development of CNSL.
Collapse
Affiliation(s)
- Yue-Ting Tang
- Department of Hematology Laboratory, First Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | | | | | | | | |
Collapse
|
33
|
Li SC, Vu LT, Ho HW, Yin HZ, Keschrumrus V, Lu Q, Wang J, Zhang H, Ma Z, Stover A, Weiss JH, Schwartz PH, Loudon WG. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Cancer Cell Int 2012; 12:41. [PMID: 22995409 PMCID: PMC3546918 DOI: 10.1186/1475-2867-12-41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022] Open
Abstract
Background The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely the driving force for the rapid recurrence of the tumor in the patient.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
35
|
Li KA, Zhang RM, Zhang F, Zhao JL, Li YJ, Wang XF, Zheng LF, Hu YS, Zhang GX. Studies of pathology and VEGF expression in rabbit cerebrospinal fluid metastasis: application of dynamic contrast-enhanced MRI. Magn Reson Imaging 2011; 29:1101-9. [DOI: 10.1016/j.mri.2011.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 05/18/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
|
36
|
Salehi Z, Rajaei F. Expression of hepatocyte growth factor in the serum and cerebrospinal fluid of patients with Parkinson's disease. J Clin Neurosci 2010; 17:1553-6. [PMID: 20829049 DOI: 10.1016/j.jocn.2010.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/22/2010] [Accepted: 04/25/2010] [Indexed: 01/15/2023]
Abstract
Hepatocyte growth factor (HGF), also known as scatter factor, promotes the survival and migration of immature neurons. The HGF receptor c-Met is expressed in neurons. HGF plays an important role as a neurotrophic factor in the brain. HGF is produced by a wide variety of cells and is found in many physiological fluids, including serum and cerebrospinal fluid (CSF). Since CSF is in contact with the extracellular space of the brain, biochemical brain modifications are, to some extent, reflected in the CSF, and peptide and growth factors in the CSF can be used as biomarkers of disease. In this study, CSF and serum HGF concentrations were measured in patients with Parkinson's disease. The study population comprised 33 patients with Parkinson's disease and 38 normal controls. Western blot analysis using an anti-HGF antibody confirmed the presence of HGF in serum and CSF. No significant changes in serum HGF were observed in this study. However, CSF HGF expression was higher in patients with Parkinson's disease than in controls (p < 0.001). This finding indicates that HGF may be involved in the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | |
Collapse
|
37
|
Lu WJ, Lan F, He Q, Lee A, Tang CZ, Dong L, Lan B, Ma X, Wu JC, Shen L. Inducible expression of stem cell associated intermediate filament nestin reveals an important role in glioblastoma carcinogenesis. Int J Cancer 2010; 128:343-51. [PMID: 20669222 DOI: 10.1002/ijc.25586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/20/2010] [Indexed: 12/17/2022]
Abstract
The intermediate filament nestin is transiently expressed in neural stem/progenitor cells during the development of central nervous system. Recently, increasing evidence has shown that upregulation of nestin is related to malignancy of several cancers, especially glioblastoma. However, the function of nestin in carcinogenesis remains unclear. In this study, we investigated the role of nestin in glioblastoma carcinogenesis by comparing subclones of rat C6 glioblastoma cells that were either high or low for nestin expression. We found that while nestin expression did not influence the in vitro proliferation of glioblastoma cells, subclones characterized by high levels of nestin formed tumors in vivo at significantly faster rates than subclones with low expression. Importantly, C6 subclones that expressed nestin at low levels in vitro were also found to give rise to tumors highly positive for the protein, suggesting that induction of nestin plays an important role in glioblastoma carcinogenesis. Derivation of nestin positive tumors from nestin negative human U87 glioblastoma cells in immunodeficient mice further confirmed that a switch to positive expression of nestin is fundamental to the course of glioblastoma development. Blocking the expression of nestin in glioblastoma tumors via intratumor injection of shRNA significantly slowed tumor growth and volume. These results demonstrated that nestin plays a crucial role in development of glioblastoma and may potentially be targeted for treatment of the disease.
Collapse
Affiliation(s)
- Wen Jing Lu
- Department of Cell Biology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Manley P, Li X, Turner C, Chi S, Zimmerman MA, Chordas C, Gordon A, Baker A, Ullrich NJ, Goumnerova L, Marcus K, Hoffman K, Kieran MW. A prospective, blinded analysis of A-PROTEIN (recoverin or CAR protein) levels in pediatric patients with central nervous system tumors. Pediatr Blood Cancer 2009; 53:343-7. [PMID: 19422022 DOI: 10.1002/pbc.22017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Abnormal expression of A-PROTEIN has been identified in a number of tumors including carcinoma of the lung, breast, colon, prostate, and cervix. Brain tumors have been reported to express high plasma levels of A-PROTEIN, suggesting that it may be of significant diagnostic and prognostic value. PROCEDURE This prospective study evaluated the sensitivity and specificity of A-PROTEIN levels in pediatric brain tumor patients. Patients included those with newly diagnosed disease pre- and post-surgery, during treatment, during routine follow-up, and at recurrence or progression. A total of 154 A-PROTEIN levels from 54 patients were evaluated. RESULTS For patients without evidence of disease, 42% had normal A-PROTEIN levels, 35% were elevated, and 23% were equivocal. For patients with stable disease, 53% demonstrated normal A-PROTEIN levels, 19% were elevated, and 28% were equivocal. For patients with progressive disease, 53% had normal A-PROTEIN levels, 35% were elevated, and 12% were equivocal. The sensitivity was 35% and the specificity was 50%. A correlation of increased A-PROTEIN levels in patients with increased disease in glial tumors was also identified. CONCLUSIONS A-PROTEIN levels were not predictive of disease status in children with most brain tumors. However, in patients with glial tumors there was a correlation with increased disease and elevated A-PROTEIN levels. This could represent variability of A-PROTEIN during growth, development, or tumor cell origin and needs further evaluation.
Collapse
Affiliation(s)
- Peter Manley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Almeida SMD, Cunha DSD, Yamada E, Doi EM, Ono M. Quantification of cerebrospinal fluid ferritin as a biomarker for CNS malignant infiltration. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 66:720-4. [PMID: 18949270 DOI: 10.1590/s0004-282x2008000500022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 07/19/2008] [Indexed: 11/22/2022]
Abstract
Several markers have been studied for their ability to make the CNS infiltration diagnosis earlier and more precise; previous studies showed that CSF ferritin concentrations were higher in patients with malignant invasion of CNS. The objective was to determine the importance of CSF ferritin as a biomarker for the diagnosis of CNS neoplastic infiltration. This study is based on 93 CSF samples, divided into five groups: malignant cells present (n13); malignant cells not present (n26); inflammatory neurological diseases (n16); neurocysticercosis (n20); acute bacterial meningitis (n18). CSF ferritin values were determined by micro particle enzyme immunoassay. CSF ferritin level (mean+/-SD) in the group with neoplastic cells in the CSF was 42.8+/-49.7 ng/mL, higher than in the other groups (p<0.0001). We conclude that CSF ferritin with the cut off 20 ng/mL could be an adjuvant biomarker to the diagnosis of CNS malignant infiltration.
Collapse
Affiliation(s)
- Sérgio Monteiro de Almeida
- Clinical Pathology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | | | | |
Collapse
|
40
|
Deisenhammer F, Egg R, Giovannoni G, Hemmer B, Petzold A, Sellebjerg F, Teunissen C, Tumani H. EFNS guidelines on disease-specific CSF investigations. Eur J Neurol 2009; 16:760-70. [DOI: 10.1111/j.1468-1331.2009.02595.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Jagannathan J, Li J, Szerlip N, Vortmeyer AO, Lonser RR, Oldfield EH, Zhuang Z. Application and implementation of selective tissue microdissection and proteomic profiling in neurological disease. Neurosurgery 2009; 64:4-14; discussion 14. [PMID: 19145153 DOI: 10.1227/01.neu.0000335776.93176.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Proteins are the primary components of cells and are vital constituents of any living organism. The proteins that make up an organism (proteome) are constantly changing and are intricately linked to neurological disease processes. The study of proteins, or proteomics, is a relatively new but rapidly expanding field with increasing relevance to neurosurgery. METHODS We present a review of the state-of-the-art proteomic technology and its applications in central nervous system diseases. RESULTS The technique of "selective microdissection" allows an investigator to selectively isolate and study a pathological tissue of interest. By evaluating protein expression in a variety of central nervous system disorders, it is clear that proteins are differentially expressed across disease states, and protein expression changes markedly during disease progression. CONCLUSION Understanding the patterns of protein expression in the nervous system has critical implications for the diagnosis and treatment of neurological disease. As gatekeepers in the diagnosis, evaluation, and treatment of central nervous system diseases, it is important for neurosurgeons to develop an appreciation for proteomic techniques and their utility.
Collapse
Affiliation(s)
- Jay Jagannathan
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892-1414, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2008; 7:1537-60. [PMID: 18020923 DOI: 10.1586/14737140.7.11.1537] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant gliomas confer a dismal prognosis. As the molecular events that underlie tumor angiogenesis are elucidated, angiogenesis inhibition is emerging as a promising therapy for recurrent and newly diagnosed tumors. Data from animal studies suggest that angiogenesis inhibition may promote an invasive phenotype in tumor cells. This may represent an important mechanism of resistance to antiangiogenic therapies. Recent studies have begun to clarify the mechanisms by which glioma cells detach from the tumor mass, remodel the extracellular matrix and infiltrate normal brain. An array of potential therapeutic targets exists. Combination therapy with antiangiogenic and novel anti-invasion agents is a promising approach that may produce a synergistic antitumor effect and a survival benefit for patients with these devastating tumors.
Collapse
Affiliation(s)
- Andrew Chi
- Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Division of Neuro-Oncology, Department of Neurology, Brigham & Women's Hospital, SW430D, 44 Binney Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
43
|
Brommeland T, Rosengren L, Fridlund S, Hennig R, Isaksen V. Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol Scand 2007; 116:380-4. [PMID: 17986096 DOI: 10.1111/j.1600-0404.2007.00889.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate serum levels of glial fibrillary acidic protein (GFAP) and S-100B in patients with newly diagnosed high-grade gliomas. MATERIALS AND METHODS GFAP and S-100B were measured by enzyme-linked immunosorbent assay techniques in preoperative serum from 31 patients with high-grade gliomas. A database with clinical, radiological and histological variables was created for statistical analyses. RESULTS Mean serum levels of 239 ng/l (range 30-1210 ng/l) for GFAP and 58.3 ng/l (range 22-128 ng/l) for S-100B were found. Of the 31 patients, 16 had elevated levels of GFAP while only two showed increased S-100B concentrations. Tumour size was the only variable significantly associated with serum levels of GFAP (P < 0.0001) with a linear correlation coefficient of 0.67. CONCLUSIONS Serum levels of GFAP demonstrated a linear correlation to tumour volume in patients with high-grade gliomas. GFAP seems to be a more reliable biomarker in patients with high-grade gliomas than the commercially available S-100B.
Collapse
Affiliation(s)
- T Brommeland
- Neurosurgical Department, University Hospital of North Norway, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
44
|
Almeida SMD, Nanakanishi E, Conto AJD, Souza LP, Antonelli Filho D, Roda CD. Cerebrospinal fluid cytological and biochemical characteristics in the presence of CNS neoplasia. ARQUIVOS DE NEURO-PSIQUIATRIA 2007; 65:802-9. [DOI: 10.1590/s0004-282x2007000500014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/29/2007] [Indexed: 11/21/2022]
Abstract
Central nervous system (CNS) infiltration must be ruled out in patients with known neoplastic diseases and neurological symptoms. It was done a retrospective analysis of 1,948 CSF samples from patients with suspected malignant infiltration in the CNS, in order to evaluate the positivity rate of malignant cells in cerebrospinal fluid (CSF) samples and correlate with cytochemical characteristics. Sixty-two percent of subjects had acute lymphocytic leukemia. Malignant cells were found in 24% of all CSF samples. Subjects with positive malignant cells had predominance of increased levels of CSF total protein (TP), glucose and total cytology (p<0.05). Mean total cell count in this group was 232 (SD 933) cells/mm³, compared to 9 (SD 93) cells/mm³ in the group without neoplasic cells (p=0.029). CSF TP specificity was 87% and negative predictive value (NPV) 96%. CSF total cell count specificity 86% and NPV 97%. Although sensitivity and positive predictive value were low. The presence of inflammatory cells and elevated TP found in patients with malignant cells in the CSF can aid in diagnosing CNS neoplasms.
Collapse
|
45
|
Abstract
Gliomas in the form of astrocytomas, anaplastic astrocytomas and glioblastomas are the most common brain tumors in humans. Early detection of these cancers is crucial for successful treatment. Proteomics promises the discovery of biomarkers and tumor markers for early detection and diagnosis. In the current study, a differential gel electrophoresis technology coupled with matrix-assisted laser desorption/ionization-time of flight and liquid chromatography-tandem mass spectroscopy was used to investigate tumor-specific changes in the proteome of human brain cancer. Fifty human brain tissues comprising varying diagnostic groups (non-tumor, grade I, grade II, grade III and grade IV) were run in duplicate together with an internal pool sample on each gel. The proteins of interest were automatically picked, in-gel digested and mass spectrometry fingerprinted. Two hundred and eleven protein spots were identified successfully and were collapsed into 91 unique proteins. Approximately 20 of those 91 unique proteins had, to our knowledge, not been reported previously as differentially expressed in human brain cancer. Alb protein, peroxiredoxin 4 and SH3 domain-binding glutamic acid-rich-like protein 3 were upregulated in glioblastoma multiform versus non-tumor tissues. However, aldolase C fructose-biphosphate, creatine kinase, B chain dihydrolipoyl dehydrogenase, enolase 2, fumarate hydratase, HSP60, lactoylglutathione lyase, lucine aminopeptidase, Mu-crystallin homolog, NADH-UO 24, neurofilament triplet L protein, septin 2, stathmin and vacuolar ATP synthase subunit E were downregulated in glioblastoma multiform compared with non-tumor tissues. These differentially expressed proteins provided novel information on the differences existing between normal brain and gliomas, and thus might prove to be useful molecular indicators of diagnostic or prognostic value.
Collapse
Affiliation(s)
- Ashraf A Khalil
- Department of Protein Technology, Mubarak City for Scientific Research, Alexandria 21934, Egypt.
| | | |
Collapse
|
46
|
A. El-Haba S, Samy Khali A, . SSAH, . NALD, . MAR, . TRI. Significance of Angiogenesis Determination in Pediatric Solid Tumors. JOURNAL OF MEDICAL SCIENCES 2006. [DOI: 10.3923/jms.2006.183.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
47
|
Gagner J, Law M, Fischer I, Newcomb EW, Zagzag D. Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol 2005; 15:342-63. [PMID: 16389946 PMCID: PMC8095871 DOI: 10.1111/j.1750-3639.2005.tb00119.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Much of the interest in angiogenesis and hypoxia has led to investigating diagnostic imaging methodologies and developing efficacious agents against angiogenesis in gliomas. In many ways, because of the cytostatic effects of these agents on tumor growth and tumor-associated endothelial cells, the effects of therapy are not immediately evident. Hence finding clinically applicable imaging tools and pathologic surrogate markers is an important step in translating glioma biology to therapeutics. There are a variety of strategies in the approach to experimental therapeutics that target the hypoxia-inducible factor pathway, the endogenous antiangiogenic and proangiogenic factors and their receptors, adhesion molecules, matrix proteases and cytokines, and the existing vasculature. We discuss the rationale for antiangiogenesis as a treatment strategy, the preclinical and clinical assessment of antiangiogenic interventions and finally focus on the various treatment strategies, including combining antiangiogenic drugs with radiation and chemotherapy.
Collapse
Affiliation(s)
- Jean‐Pierre Gagner
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Meng Law
- Department of Radiology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - Ingeborg Fischer
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Elizabeth W. Newcomb
- Department of Pathology, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - David Zagzag
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| |
Collapse
|
48
|
Zheng PP, Hop WC, Sillevis Smitt PAE, van den Bent MJ, Avezaat CJJ, Luider TM, Kros JM. Low-molecular weight caldesmon as a potential serum marker for glioma. Clin Cancer Res 2005; 11:4388-92. [PMID: 15958622 DOI: 10.1158/1078-0432.ccr-04-2512] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Testing the feasibility of using the serum low-molecular weight caldesmon (l-CaD) level as a serum marker for the presence of glioma. EXPERIMENTAL DESIGN Within a total of 230 serum samples, the l-CaD level was measured in healthy volunteers (30), patients with gliomas (57), nonglial intracranial tumors (107), and nontumor neurologic diseases (36) by ELISA. The specificity of the assay was monitored by combination of immunoprecipitation and immunoblotting. RESULTS The serum level of l-CaD is significantly higher in the group of glioma patients as compared with any of the other groups (P < 0.001). The cutoff value of 45 yields optimal sensitivity and specificity of the assay (91% and 84%, respectively; area under the curve score = 0.91). The specificity of ELISA was confirmed by the immunoprecipitation/immunoblotting control experiments. There were no significant differences in serum l-CaD levels between patients with low- or high-grade gliomas. CONCLUSIONS The serum l-CaD level as determined by ELISA is a good discriminator between glioma patients versus patients with other intracranial tumors, other neurologic diseases, and healthy people. Prospective studies are required to test the contribution of the assay in making the diagnosis of glioma, or its feasibility for monitoring the tumor during treatment.
Collapse
Affiliation(s)
- Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|