1
|
Kim H. Simultaneous monitoring of the human brain, spinal cord, and cauda equina activity for movement control: An fNIRS approach. Neuroimage 2025; 312:121216. [PMID: 40252875 DOI: 10.1016/j.neuroimage.2025.121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025] Open
Abstract
Brain‒spinal cord‒cauda equina interactions are essential for controlling lower body movement. However, current monitoring approaches for spinal and caudal activity are limited to use without body movement and to processing via batches of data. Here, we present a novel optical method based on functional near-infrared spectroscopy that enables simultaneous tracking of human brain-spinal cord-cauda equina hemodynamics during body movement. We first developed a support frame for positioning optical emitters and receivers along the spinal canal to maximize spatial resolution and identify the optimal distance between them. We tested the methodology at this optimal emitter-detector distance by assessing the spatiotemporal activation of the motor clusters associated with human ankle extension-flexion movement in the brain, spinal cord, and cauda equina. These brain and spinal clusters are shown to be functionally connected and comparable to those identified by invasive methods during surgical operations. These findings suggest that hemodynamic responses reflect synchronous neural activity in the human brain-spinal cord-cauda equina system for hindlimb movement control.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Biomedical Technology, DGIST, Daegu 42988, Republic of Korea; Department of Interdisciplinary Sciences, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
2
|
Sutter EN, Guerrero-Gonzalez J, Casey CP, Dean DC, de Abreu e Gouvea A, Peyton C, McAdams RM, Gillick BT. White-Matter Connectivity and General Movements in Infants with Perinatal Brain Injury. Brain Sci 2025; 15:341. [PMID: 40309803 PMCID: PMC12025426 DOI: 10.3390/brainsci15040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cerebral palsy (CP), often caused by early brain injury such as perinatal stroke or hemorrhage, is the most common lifelong motor disability. Early identification of at-risk infants and timely access to rehabilitation interventions are essential for improving long-term outcomes. The General Movements Assessment (GMA), performed in the first months of life, has high sensitivity and specificity to predict CP; however, the neurological correlates of general movements remain unclear. This analysis aimed to investigate the relationship between white matter integrity and general movements in infants with perinatal brain injury using advanced neuroimaging techniques. METHODS Diffusion-weighted MRI data were analyzed in 17 infants, 12 with perinatal brain injury and 5 typically developing infants. Tractography was used to identify the corticospinal tract, a key motor pathway often affected by perinatal brain injury, and tract-based spatial statistics (TBSS) were used to examine broader white matter networks. Diffusion parameters from the diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models were compared between infants with and without typical general movements. RESULTS Corticospinal tract integrity did not differ between groups when averaged across hemispheres. However, infants with asymmetric general movements exhibited greater corticospinal tract asymmetries. A subset of infants with atypical general movement trajectories at <6 weeks and 3-5 months of age showed reduced corticospinal tract integrity compared to those with typical general movements. TBSS revealed significant differences in white matter integrity between infants with typical and atypical general movements in several white matter pathways, including the corpus callosum, the right posterior corona radiata, bilateral posterior thalamic radiations, the left fornix/stria terminalis, and bilateral tapetum. CONCLUSIONS These findings support and expand upon previous research suggesting that white matter integrity across multiple brain regions plays a role in the formation of general movements. Corticospinal integrity alone was not strongly associated with general movements; interhemispheric and cortical-subcortical connectivity appear critical. These findings underscore the need for further research in larger, diverse populations to refine early biomarkers of neurodevelopmental impairment and guide targeted interventions.
Collapse
Affiliation(s)
- Ellen N. Sutter
- Department of Family Medicine and Community Health, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA;
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave. #1005, Madison, WI 53705, USA
| | - Cameron P. Casey
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave. #1005, Madison, WI 53705, USA
| | | | - Colleen Peyton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Ave. Suite 1100, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, 225 E. Chicago Ave., Chicago, IL 60611, USA
| | - Ryan M. McAdams
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
3
|
Michel GF, Babik I, Nelson EL, Ferre CL, Campbell JM, Marcinowski EC. Development of handedness and other lateralized functions during infancy and early childhood. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:181-194. [PMID: 40074396 DOI: 10.1016/b978-0-443-15646-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Using a historical or "development from" approach to study the development of hand-use preferences in infants and children, we show how various sensorimotor experiential events shape the cascade from initial to subsequent hand-use preferences. That cascade represents, creates, and shapes the lateralized asymmetry of neural circuits in the cerebral hemispheres. The control of the preferred hand requires neural circuits in the contralateral hemisphere that are capable of processing the organization of finely timed, sequentially organized movements and detecting haptic information derived from high-frequency transitions in the stimulus. We propose that the lateralized differences in these neural circuits underlie processes contributing to the development of other forms of hemispheric specialization of function. We show how the development of hand-use preferences contributes to the development of language skills, tool use, spatial skills, and other cognitive abilities during infancy and early childhood. Such evidence supports the proposal of Michael Corballis that the phylogeny of human language emerged during the evolution of hominins from the co-option of those neural circuits employed in the expression of manual skills involved in tool use, tool manufacture, and communication. Finally, we summarize evidence from children with cerebral palsy, which shows that their difficulties with sensorimotor processing, visuomotor coordination, anticipatory motor planning, and other cognitive abilities may stem from disturbances in the development of their hand-use preferences and hence the functional specialization of their hemispheres.
Collapse
Affiliation(s)
- George F Michel
- Department of Psychology, University of North Carolina Greensboro, Greensboro, NC, United States.
| | - Iryna Babik
- Department of Psychological Science, Boise State University, Boise, ID, United States
| | - Eliza L Nelson
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Claudio L Ferre
- Department of Occupational Therapy, College of Health & Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Julie M Campbell
- Department of Psychology, Illinois State University, Normal, IL, United States
| | - Emily C Marcinowski
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Lustig J, Lammers A, Kaiser J, Patel P, Raghu A, Conner JM, Nguyen P, Azim E, Sahni V. Selective Targeting of a Defined Subpopulation of Corticospinal Neurons using a Novel Klhl14-Cre Mouse Line Enables Molecular and Anatomical Investigations through Development into Maturity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627648. [PMID: 39713479 PMCID: PMC11661177 DOI: 10.1101/2024.12.10.627648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The corticospinal tract (CST) facilitates skilled, precise movements, which necessitates that subcerebral projection neurons (SCPN) establish segmentally specific connectivity with brainstem and spinal circuits. Developmental molecular delineation enables prospective identification of corticospinal neurons (CSN) projecting to thoraco-lumbar spinal segments; however, it remains unclear whether other SCPN subpopulations in developing sensorimotor cortex can be prospectively identified in this manner. Such molecular tools could enable investigations of SCPN circuitry with precision and specificity. During development, Kelch-like 14 (Klhl14) is specifically expressed by a specific SCPN subpopulation, CSNBC-lat, that reside in lateral sensorimotor cortex with axonal projections exclusively to bulbar-cervical targets. In this study, we generated Klhl14-T2A-Cre knock-in mice to investigate SCPN that are Klhl14+ during development into maturity. Using conditional anterograde and retrograde labeling, we find that Klhl14-Cre is specifically expressed by CSNBC-lat only at specific developmental time points. We establish conditional viral labeling in Klhl14-T2A-Cre mice as a new approach to reliably investigate CSNBC-lat axon targeting and confirm that this identifies known molecular regulators of CSN axon targeting. Therefore, Klhl14-T2A-Cre mice can be used as a novel tool for identifying molecular regulators of CST axon guidance in a relatively high-throughput manner in vivo. Finally, we demonstrate that intersectional viral labeling enables precise targeting of only Klhl14-Cre+ CSNBC-lat in the adult central nervous system. Together, our results establish that developmental molecular delineation of SCPN subpopulations can be used to selectively and specifically investigate their development, as well as anatomical and functional organization into maturity.
Collapse
Affiliation(s)
- Jake Lustig
- Burke Neurological Institute, White Plains, New York 10605
| | | | - Julia Kaiser
- Burke Neurological Institute, White Plains, New York 10605
| | - Payal Patel
- Burke Neurological Institute, White Plains, New York 10605
| | - Aidan Raghu
- Burke Neurological Institute, White Plains, New York 10605
| | - James M. Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037
| | - Phong Nguyen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037
| | - Vibhu Sahni
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065
| |
Collapse
|
5
|
Merkulyeva N. Comparative review of the brain development in Acomys cahirinus. Neurosci Biobehav Rev 2024; 167:105939. [PMID: 39521311 DOI: 10.1016/j.neubiorev.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Acomys cahirinus (referred to as "acomys" in this article) is a precocial rodent, born well-developed and mobile, capable of feeding independently and escaping predators shortly after birth. Notable for its advanced regenerative abilities and menstrual cycle, acomys serves as a unique model for studying diverse aspects of physiology and neuroscience, including developmental and regenerative neuroscience. Despite its significance, only sporadic and unsystematic data on the structure and development of the acomys brain are available. Therefore, the aim of this study was to systematically organize the existing information on the structure and development of the acomys brain and to compare it with that of commonly studied altricial rodent species (rats, mice, hamsters, and gerbils). This review is organized into several sections, focusing on general aspects of brain development, such as myelination and brain growth. It also discusses the development of brain structures involved in sensory processing (olfactory, visual, and auditory), motor control, learning and memory, and social behavior.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Neuromorphology lab, Pavlov Institute of Physiology Russian Academy of Sciences, Makarov enb., 6, St. Petersburg 199034, Russia.
| |
Collapse
|
6
|
Carton de Tournai A, Herman E, Ebner-Karestinos D, Gathy E, Araneda R, Renders A, De Clerck C, Kilcioğlu S, Dricot L, Macq B, Vandermeeren Y, Bleyenheuft Y. Hand-Arm Bimanual Intensive Therapy Including Lower Extremities in Infants With Unilateral Cerebral Palsy: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2445133. [PMID: 39556397 PMCID: PMC11574690 DOI: 10.1001/jamanetworkopen.2024.45133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024] Open
Abstract
Importance Earlier detection of cerebral palsy (CP) and the high neuroplastic potential during the first years of life have motivated a search for early interventions to improve children's long-term motor abilities. Objective To determine the effectiveness of baby Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) to improve motor function in infants with unilateral CP (UCP). Design, Setting, and Participants This parallel group, 1:1, randomized clinical trial was conducted between December 1, 2020, and September 9, 2022, in infants recruited through centers specializing in CP treatment and parents' spontaneous applications. Therapy took place in Brussels, Belgium, from March 8, 2021, through June 17, 2022. Infants were matched in pairs by age and lesion type and randomized to either the treatment or control group. Infants were assessed at baseline (T0) and 1 (T1) and 3 months (T2) follow-up. Inclusion criteria were aged 6 to 18 months at T0 (corrected age if preterm birth), a diagnosis or being at risk of UCP, and the ability to comply with the testing and training procedures. Exclusion criteria were uncontrolled seizures, botulinum toxin injections, orthopedic surgery, or specific intensive therapy within 6 months before and until the end of the study. Intervention Infants in the treatment group received 50 hours of baby HABIT-ILE over 2 weeks, while those in the control group continued their usual motor activities. Main Outcomes and Measures The primary outcome was use of the more affected hand as measured using the Mini-Assisting Hand Assessment (Mini-AHA). Secondary outcomes included Canadian Occupational Performance Measure (COPM) performance and satisfaction scores, Gross Motor Function Measure-66 (GMFM-66) scores, and other motor and functional outcomes. Between-group comparisons were calculated using repeated-measures analysis of variance (2 groups × 3 assessment times). Effect sizes were reported as partial η squared (ηp2) (small, 0.01; medium, 0.06; large, 0.14). Results Of the 48 infants entering the study, 46 (mean [SD] age, 13.3 [4.1] months; 27 boys [58%]) were included in the final analyses, with 24 in the treatment group and 22 in the control group. Group × assessment time interactions showed significant improvements that favored the treatment group for the Mini-AHA (mean [SE] difference from T0 to T2, 7.4 [1.4] Mini-AHA units in the treatment group vs 1.9 [1.5] Mini-AHA units in the control group; P = .008; ƞp2 = 0.11) and for both parts of the COPM (mean [SE] difference from T0 to T2, 5.0 [0.4] in the treatment group vs 2.9 [0.4] in the control group; P < .001; ƞp2 = 0.35 for the performance score and 4.4 [0.4] in the treatment group vs 2.1 [0.4] in the control group; P < .001; ƞp2 = 0.33 for the satisfaction score). Although both groups improved in the GMFM-66 (mean [SE] difference from T0 to T2, 6.6% [0.7%] logits in the treatment group vs 5.5% [0.7%] logits in the control group; P < .001; ηp2 = 0.68), there was no significant interaction (P = .43; ηp2 = 0.02). Conclusions and Relevance This randomized clinical trial demonstrates the feasibility of delivering 50 hours of HABIT-ILE over a 2-week period in infants with UCP. These findings show that the intervention is effective in improving motor abilities, as revealed by an increase in the use of the more affected hand in bimanual tasks and in enhanced reported functional goal outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT04698395.
Collapse
Affiliation(s)
| | - Enimie Herman
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Daniela Ebner-Karestinos
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Estelle Gathy
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Neurology Department, Stroke Unit/Motor Learning Lab, Centre Hospitalier Universitaire UCLouvain Namur, Site Godinne, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Rodrigo Araneda
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Anne Renders
- Physical Medicine and Rehabilitation, Clinique Universitaire Saint-Luc, Brussels, Belgium
| | - Célia De Clerck
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Seyma Kilcioğlu
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Benoît Macq
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Neurology Department, Stroke Unit/Motor Learning Lab, Centre Hospitalier Universitaire UCLouvain Namur, Site Godinne, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Francisco R, Jesus F, Santos P, Trbovšek P, Moreira AS, Nunes CL, Alvim M, Sardinha LB, Lukaski H, Mendonca GV, Silva AM. Does acute dehydration affect the neuromuscular function in healthy adults?-a systematic review. Appl Physiol Nutr Metab 2024; 49:1441-1460. [PMID: 39047298 DOI: 10.1139/apnm-2024-0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The effects of acute dehydration on neuromuscular function have been studied. However, whether the mechanisms underpinning such function are central or peripheral is still being determined, and the results are inconsistent. This systematic review aims to elucidate the influence of acute dehydration on neuromuscular function, including a novel aspect of investigating the central and peripheral neuromuscular mechanisms. Three databases were used for the article search: PubMed, Web of Science, and Scopus. Studies were included if they had objective measurements of dehydration, muscle performance, and electromyography data or transcranial magnetic stimulation or peripheral nerve stimulation measurements with healthy individuals aged 18-65 years. Twenty-three articles met the eligibility criteria. The studies exhibited considerable heterogeneity in the methods used to induce and quantify dehydration. Despite being inconsistent, the literature shows some evidence that acute dehydration does not affect maximal strength during isometric or moderate-speed isokinetic contractions. Conversely, acute dehydration significantly reduces maximal strength during slow-speed isokinetic contractions and fatigue resistance in response to endurance tasks. The studies report that dehydration does not affect the motor cortical output or spinal circuity. The effects occur at the peripheral level within the muscle.
Collapse
Affiliation(s)
- Rúben Francisco
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Pia Trbovšek
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandre S Moreira
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina L Nunes
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| | - Marta Alvim
- National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
| | - Gonçalo V Mendonca
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Analiza M Silva
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Boran HE, Akgor MC, Kurtkaya Kocak O, Alaydin HC, Kilinc H, Turkmen N, Cengiz B. Imagining Speeds up the Effect of Motor Imagery on Central Motor Conduction Time. Cureus 2024; 16:e71798. [PMID: 39429991 PMCID: PMC11491126 DOI: 10.7759/cureus.71798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Although motor imagery (MI) has been reported to increase motor cortical excitability, its effect on central motor conduction time (CMCT), a widely used neurophysiological diagnostic method, has not been investigated. In this study, we sought to determine the effect of MI on CMCT. METHODS In this cross-sectional study, 21 healthy volunteers (11 females, 10 males) aged 24 to 67 years (mean age: 38.8 years) were recruited between April 2022 and June 2023. CMCT was calculated during MI from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. Measurements were also performed with conventional measurement methods, such as resting and voluntary contraction, to compare the effect of MI on CMCT. RESULTS The ANOVA test revealed that the CMCT session (rest, MI, and voluntary contraction) was a significant factor (p < 0.05). In both muscles, CMCT was shorter in the imagery state than in the resting state but longer than in the voluntary contraction state (p < 0.05). Similarly, motor-evoked potential (MEP) latencies obtained during imagery were shorter for both muscles than the resting state but longer for the voluntary contraction state. CONCLUSION The study's findings suggest that MI is a mental activity that modulates CMCT measurement. MI shows a voluntary contraction-like effect on CMCT and MEP latency, although the effect is more uncertain.
Collapse
Affiliation(s)
- H Evren Boran
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Brain Stimulation and Motor Control, Neuroscience and Neurotechnology Center of Excellence (NOROM), Ankara, TUR
| | - Merve Ceren Akgor
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Ozlem Kurtkaya Kocak
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Halil Can Alaydin
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Hasan Kilinc
- Department of Brain Stimulation and Motor Control, Neuroscience and Neurotechnology Center of Excellence (NOROM), Ankara, TUR
| | - Nur Turkmen
- Department of Neurology, Ankara Bilkent City Hospital, Ankara, TUR
| | - Bulent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Brain Stimulation and Motor Control, Neuroscience and Neurotechnology Center of Excellence (NOROM), Ankara, TUR
| |
Collapse
|
9
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
10
|
de Groot ER, Wang X, Wojtal K, Janson E, Alderliesten T, Tataranno ML, Benders MJNL, Dudink J. Association between sleep stages and brain microstructure in preterm infants: Insights from DTI analysis. Sleep Med 2024; 121:336-342. [PMID: 39053129 DOI: 10.1016/j.sleep.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
STUDY OBJECTIVES The aim of this study was to investigate the relationship between sleep stages and neural microstructure - measured using diffusion tensor imaging - of the posterior limb of the internal capsule and corticospinal tract in preterm infants. METHODS A retrospective cohort of 50 preterm infants born between 24 + 4 and 29 + 3 weeks gestational age was included in the study. Sleep stages were continuously measured for 5-7 consecutive days between 29 + 0 and 31 + 6 weeks postmenstrual age using an in-house-developed, and recently published, automated sleep staging algorithm based on routinely measured heart rate and respiratory rate. Additionally, a diffusion tensor imaging scan was conducted at term equivalent age as part of standard care. Region of interest analysis of the posterior limb of the internal capsule was performed, and tractography was used to analyze the corticospinal tract. The association between sleep and white matter microstructure of the posterior limb of the internal capsule and corticospinal tract was examined using a multiple linear regression model, adjusted for potential confounders. RESULTS The results of the analyses revealed an interaction effect between sleep stage and days of invasive ventilation on the fractional anisotropy of the left and right posterior limb of the internal capsule (β = 0.04, FDR-adjusted p = 0.001 and β = 0.04, FDR-adjusted p = 0.02, respectively). Furthermore, an interaction effect between sleep stage and days of invasive ventilation was observed for the radial diffusivity of the mean of the left and right PLIC (β = -4.1e-05, FDR-adjusted p = 0.04). CONCLUSIONS Previous research has shown that, in very preterm infants, invasive ventilation has a negative effect on white matter tract maturation throughout the brain. A positive association between active sleep and white matter microstructure of the posterior limb of the internal capsule, may indicate a protective role of sleep in this vulnerable population.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Xiaowan Wang
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Klaudia Wojtal
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Els Janson
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Leroux E, Masson L, Tréhout M, Dollfus S. Effects of Adapted Physical Activity on White Matter Integrity in Patients with Schizophrenia. Brain Sci 2024; 14:710. [PMID: 39061450 PMCID: PMC11274719 DOI: 10.3390/brainsci14070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is associated with changes in white matter (WM) integrity and with reduced life expectancy, in part because of the cardiometabolic side effects of antipsychotics. Physical activity (PA) has emerged as a candidate lifestyle intervention that is safe and effective. The study aimed to assess how an adapted PA program delivered remotely by web (e-APA) improved WM integrity in patients with schizophrenia (SZPs) and healthy controls (HCs) and to evaluate associations among WM integrity, cardiorespiratory fitness, and symptom severity. This longitudinal study was conducted over 16 weeks with 31 participants (18 SZPs and 13 HCs). Diffusion tensor imaging and tract-based spatial statistics were employed to assess WM integrity. Cardiorespiratory fitness was measured by maximal oxygen uptake (VO2max), and assessments for clinical symptoms included the Positive and Negative Syndrome Scale, Self-evaluation of Negative Symptoms and the Brief Negative Syndrome Scale (BNSS). Only the SZPs had significantly increased WM integrity after the e-APA program, with increased fractional anisotropy and decreased radial diffusivity in fasciculi involved in motor functions and language process. Furthermore, decreased negative symptoms assessed with BNSS were associated with greater WM integrity following the program. These findings suggest that e-APA may improve WM integrity abnormalities and support e-APA as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Elise Leroux
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
| | - Laura Masson
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
| | - Maxime Tréhout
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
- CHU de Caen Normandie, Centre Esquirol, Service de Psychiatrie Adulte, 14000 Caen, France
| | - Sonia Dollfus
- “Physiopathology and Imaging of Neurological Disorders” PhIND, UMR-S U1237, INSERM, GIP Cyceron, 14000 Caen, France; (L.M.); (M.T.); (S.D.)
- CHU de Caen Normandie, Centre Esquirol, Service de Psychiatrie Adulte, 14000 Caen, France
- Normandie Univ, Université de Caen Normandie, UFR de Santé, 14000 Caen, France
- Fédération Hospitalo-Universitaire “Améliorer le Pronostic des Troubles Addictifs et Mentaux par une Médecine Personnalisée (A2M2P)“, 14000 Caen, France
| |
Collapse
|
12
|
De Beukelaer N, Vandekerckhove I, Molenberghs G, Naulaers G, Thewissen L, Costamagna D, Van Campenhout A, Desloovere K, Ortibus E. Longitudinal trajectory of medial gastrocnemius muscle growth in the first years of life. Dev Med Child Neurol 2024; 66:531-540. [PMID: 37786988 DOI: 10.1111/dmcn.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Abstract
AIM To define the longitudinal trajectory of gastrocnemius muscle growth in 6- to 36-month-old children with and without spastic cerebral palsy (SCP) and to compare trajectories by levels of gross motor function (Gross Motor Function Classification System, GMFCS) and presumed brain-lesion timing. METHOD Twenty typically developing children and 24 children with SCP (GMFCS levels I-II/III-IV = 15/9), were included (28/16 females/males; mean age at first scan 15.4 months [standard deviation 4.93, range 6.24-23.8]). Three-dimensional freehand ultrasound was used to repeatedly assess muscle volume, length, and cross-sectional area (CSA), resulting in 138 assessments (mean interval 7.9 months). Brain lesion timing was evaluated with magnetic resonance imaging classification. Linear mixed-effects models defined growth rates, adjusted for GMFCS levels and presumed brain-lesion timing. RESULTS At age 12 months, children with SCP showed smaller morphological muscle size than typically developing children (5.8 mL vs 9.8 mL, p < 0.001), while subsequently no differences in muscle growth were found between children with and without SCP (muscle volume: 0.65 mL/month vs 0.74 mL/month). However, muscle volume and CSA growth rates were lower in children classified in GMFCS levels III and IV than typically developing children and those classified in GMFCS levels I and II, with differences ranging from -56% to -70% (p < 0.001). INTERPRETATION Muscle growth is already hampered during infancy in SCP. Muscle size growth further reduces with decreasing functional levels, independently from the brain lesion. Early monitoring of muscle growth combined with early intervention is needed.
Collapse
Affiliation(s)
- Nathalie De Beukelaer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Kinesiology Laboratory, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | | | - Geert Molenberghs
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), KU Leuven, Leuven, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Gunnar Naulaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth Thewissen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Srinivasan S, Kumavor P, Morgan K. A Training Program Using Modified Joystick-Operated Ride-on Toys to Complement Conventional Upper Extremity Rehabilitation in Children with Cerebral Palsy: Results from a Pilot Study. Bioengineering (Basel) 2024; 11:304. [PMID: 38671726 PMCID: PMC11048159 DOI: 10.3390/bioengineering11040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The pilot study assessed the utility of a training program using modified, commercially available dual-joystick-operated ride-on toys to promote unimanual and bimanual upper extremity (UE) function in children with cerebral palsy (CP). The ride-on-toy training was integrated within a 3-week, intensive, task-oriented training camp for children with CP. Eleven children with hemiplegia between 4 and 10 years received the ride-on-toy training program 20-30 min/day, 5 days/week for 3 weeks. Unimanual motor function was assessed using the Quality of Upper Extremity Skills Test (QUEST) before and after the camp. During ride-on-toy training sessions, children wore activity monitors on both wrists to assess the duration and intensity of bimanual UE activity. Video data from early and late sessions were coded for bimanual UE use, independent navigation, and movement bouts. Children improved their total and subscale QUEST scores from pretest to post-test while increasing moderate activity in their affected UE from early to late sessions, demonstrating more equal use of both UEs across sessions. There were no significant changes in the rates of movement bouts from early to late sessions. We can conclude that joystick-operated ride-on toys function as child-friendly, intrinsically rewarding tools that can complement conventional therapy and promote bimanual motor functions in children with CP.
Collapse
Affiliation(s)
- Sudha Srinivasan
- Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Collaboration on Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT 06268, USA
- The Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06268, USA
| | - Patrick Kumavor
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06268, USA; (P.K.); (K.M.)
| | - Kristin Morgan
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06268, USA; (P.K.); (K.M.)
| |
Collapse
|
14
|
Sutter EN, Casey CP, Gillick BT. Single-pulse transcranial magnetic stimulation for assessment of motor development in infants with early brain injury. Expert Rev Med Devices 2024; 21:179-186. [PMID: 38166497 PMCID: PMC10947901 DOI: 10.1080/17434440.2023.2299310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
INTRODUCTION Single-pulse transcranial magnetic stimulation (TMS) has many applications for pediatric clinical populations, including infants with perinatal brain injury. As a noninvasive neuromodulation tool, single-pulse TMS has been used safely in infants and children to assess corticospinal integrity and circuitry patterns. TMS may have important applications in early detection of atypical motor development or cerebral palsy. AREAS COVERED The authors identified and summarized relevant studies incorporating TMS in infants, including findings related to corticospinal development and circuitry, motor cortex localization and mapping, and safety. This special report also describes methodologies and safety considerations related to TMS assessment in infants, and discusses potential applications related to diagnosis of cerebral palsy and early intervention. EXPERT OPINION Single-pulse TMS has demonstrated safety and feasibility in infants with perinatal brain injury and may provide insight into neuromotor development and potential cerebral palsy diagnosis. Additional research in larger sample sizes will more fully evaluate the utility of TMS biomarkers in early diagnosis and intervention. Methodological challenges to performing TMS in infants and technical/equipment limitations require additional consideration and innovation toward clinical implementation. Future research may explore use of noninvasive neuromodulation techniques as an intervention in younger children with perinatal brain injury to improve motor outcomes.
Collapse
Affiliation(s)
- Ellen N. Sutter
- Waisman Center, University of Wisconsin-Madison
- Department of Rehabilitation Medicine, University of Minnesota-Twin Cities
| | | | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison
- Department of Pediatrics, University of Wisconsin-Madison
| |
Collapse
|
15
|
Carton de Tournai A, Herman E, Gathy E, Ebner-Karestinos D, Araneda R, Dricot L, Macq B, Vandermeeren Y, Bleyenheuft Y. Baby HABIT-ILE intervention: study protocol of a randomised controlled trial in infants aged 6-18 months with unilateral cerebral palsy. BMJ Open 2024; 14:e078383. [PMID: 38367973 PMCID: PMC10875549 DOI: 10.1136/bmjopen-2023-078383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION Research using animal models suggests that intensive motor skill training in infants under 2 years old with cerebral palsy (CP) may significantly reduce, or even prevent, maladaptive neuroplastic changes following brain injury. However, the effects of such interventions to tentatively prevent secondary neurological damages have never been assessed in infants with CP. This study aims to determine the effect of the baby Hand and Arm Bimanual Intensive Therapy Including Lower Extremities (baby HABIT-ILE) in infants with unilateral CP, compared with a control intervention. METHODS AND ANALYSIS This randomised controlled trial will include 48 infants with unilateral CP aged (corrected if preterm) 6-18 months at the first assessment. They will be paired by age and by aetiology of the CP, and randomised into two groups (immediate and delayed). Assessments will be performed at baseline and at 1 month, 3 months and 6 months after baseline. The immediate group will receive 50 hours of baby HABIT-ILE intervention over 2 weeks, between first and second assessment, while the delayed group will continue their usual activities. This last group will receive baby HABIT-ILE intervention after the 3-month assessment. Primary outcome will be the Mini-Assisting Hand Assessment. Secondary outcomes will include behavioural assessments for gross and fine motricity, visual-cognitive-language abilities as well as MRI and kinematics measures. Moreover, parents will determine and score child-relevant goals and fill out questionnaires of participation, daily activities and mobility. ETHICS AND DISSEMINATION Full ethical approval has been obtained by the Comité d'éthique Hospitalo-Facultaire/Université catholique de Louvain, Brussels (2013/01MAR/069 B403201316810g). The recommendations of the ethical board and the Belgian law of 7 May 2004 concerning human experiments will be followed. Parents will sign a written informed consent ahead of participation. Findings will be published in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER NCT04698395. Registered on the International Clinical Trials Registry Platform (ICTRP) on 2 December 2020 and NIH Clinical Trials Registry on 6 January 2021. URL of trial registry record: https://clinicaltrials.gov/ct2/show/NCT04698395?term=bleyenheuft&draw=1&rank=7.
Collapse
Affiliation(s)
| | - Enimie Herman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Estelle Gathy
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Neurology Department, Stroke Unit/Motor Learning Lab, CHU UCL Namur, Yvoir, Belgium
| | - Daniela Ebner-Karestinos
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Benoît Macq
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Neurology Department, Stroke Unit/Motor Learning Lab, CHU UCL Namur, Yvoir, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Xiong Q, Wan J, Liu Y, Wu X, Jiang S, Xiao N, Hou W. Reduced corticospinal drive to antagonist muscles of upper and lower limbs during hands-and-knees crawling in infants with cerebral palsy: Evidence from intermuscular EMG-EMG coherence. Behav Brain Res 2024; 457:114718. [PMID: 37858871 DOI: 10.1016/j.bbr.2023.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND There is growing interest in understanding the central control of hands-and-knees crawling, especially as a significant motor developmental milestone for early assessment of motor dysfunction in infants with cerebral palsy (CP) who have not yet acquired walking ability. In particular, CP is known to be associated with walking dysfunctions caused by early damage and incomplete maturation of the corticospinal tract. However, the extent of damage to the corticospinal connections during crawling in infants with CP has not been fully clarified. Therefore, this study aimed to investigate the disparities in intermuscular EMG-EMG coherence, which serve as indicators of corticospinal drives to antagonist muscles in the upper and lower limbs during crawling, between infants with and without CP. METHODS This study involved 15 infants diagnosed with CP and 20 typically developing (TD) infants. Surface EMG recordings were obtained from two pairs of antagonist muscles in the upper limbs (triceps brachii (TB) and biceps brachii (BB)) and lower limbs (quadriceps femoris (QF) and hamstrings (HS)), while the infants performed hands-and-knees crawling at their self-selected velocity. Intermuscular EMG-EMG coherence was computed in two frequency bands, the beta band (15-30 Hz) and gamma band (30-60 Hz), which indicate corticospinal drive. Additionally, spatiotemporal parameters, including crawling velocity, cadence, duration, and the percentage of stance phase time, were calculated for comparison. Spearman rank correlations were conducted to assess the relationship between EMG-EMG coherence and crawling spatiotemporal parameters. RESULTS Infants with CP exhibited significantly reduced crawling velocity, decreased cadence, longer cycle duration, and a higher percentage of stance phase time compared to TD infants. Furthermore, CP infants demonstrated decreased coherence in the beta and gamma frequency bands (indicators of corticospinal drive) in both upper and lower limb muscles. Regarding limb-related differences in the beta and gamma coherence, significant disparities were found between upper and lower limb muscles in TD infants (p < 0.05), but not in infants with CP (p > 0.05). Additionally, significant correlations between coherence metrics and crawling spatiotemporal parameters were identified in the TD group (p < 0.05), while such correlations were not evident in the CP group. CONCLUSIONS Our findings suggest that the corticospinal drive may functionally influence the central control of antagonist muscles in the limbs during typical infant crawling. This functional role could be impaired by neurological conditions such as cerebral palsy. The neurophysiological markers of corticospinal drive, specifically intermuscular EMG-EMG coherence during crawling in infants with cerebral palsy, could potentially serve as a tool to assess developmental response to therapy.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China; Department of Bioengineering, Chongqing University, Chongqing, China.
| | - Jinliang Wan
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Araneda R, Ebner-Karestinos D, Paradis J, Klöcker A, Saussez G, Demas J, Bailly R, Bouvier S, Carton de Tournai A, Herman E, Souki A, Le Gal G, Nowak E, Sizonenko SV, Newman CJ, Dinomais M, Riquelme I, Guzzetta A, Brochard S, Bleyenheuft Y. Changes Induced by Early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities in Young Children With Unilateral Cerebral Palsy: A Randomized Clinical Trial. JAMA Pediatr 2024; 178:19-28. [PMID: 37930692 PMCID: PMC10628844 DOI: 10.1001/jamapediatrics.2023.4809] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023]
Abstract
Importance Intensive interventions are provided to young children with unilateral cerebral palsy (UCP), classically focused on the upper extremity despite the frequent impairment of gross motor function. Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) effectively improves manual dexterity and gross motor function in school-aged children. Objective To verify if HABIT-ILE would improve manual abilities in young children with UCP more than usual motor activity. Design, Setting, and Participants This prospective randomized clinical trial (November 2018 to December 2021), including 2 parallel groups and a 1:1 allocation, recruitment took place at European university hospitals, cerebral palsy specialized centers, and spontaneous applications at 3 sites: Brussels, Belgium; Brest, France; and Pisa, Italy. Matched (age at inclusion, lesion type, cause of cerebral palsy, and affected side) pairs randomization was performed. Young children were assessed at baseline (T0), 2 weeks after baseline (T1), and 3 months after baseline (T2). Health care professionals and assessors of main outcomes were blinded to group allocation. At least 23 young children (in each group) aged 12 to 59 months with spastic/dyskinetic UCP and able to follow instructions were needed. Exclusion criteria included uncontrolled seizures, scheduled botulinum toxin injections, orthopedic surgery scheduled during the 6 months before or during the study period, severe visual/cognitive impairments, or contraindications to magnetic resonance imaging. Interventions Two weeks of usual motor activity including usual rehabilitation (control group) vs 2 weeks (50 hours) of HABIT-ILE (HABIT-ILE group). Main Outcomes and Measures Primary outcome: Assisting Hand Assessment (AHA); secondary outcomes: Gross Motor Function Measure-66 (GMFM-66), Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT), and Canadian Occupational Performance Measure (COPM). Results Of 50 recruited young children (26 girls [52%], median age; 35.3 months for HABIT-ILE group; median age, 32.8 months for control group), 49 were included in the final analyses. Change in AHA score from T0 to T2 was significantly greater in the HABIT-ILE group (adjusted mean score difference [MD], 5.19; 95% CI, 2.84-7.55; P < .001). Changes in GMFM-66 (MD, 4.72; 95% CI, 2.66-6.78), PEDI-CAT daily activities (MD, 1.40; 95% CI, 0.29-2.51), COPM performance (MD, 3.62; 95% CI, 2.91-4.32), and satisfaction (MD, 3.53; 95% CI, 2.70-4.36) scores were greater in the HABIT ILE group. Conclusions and Relevance In this clinical trial, early HABIT-ILE was shown to be an effective treatment to improve motor performance in young children with UCP. Moreover, the improvements had an impact on daily life activities of these children. Trial registration ClinicalTrials.gov Identifier: NCT04020354.
Collapse
Affiliation(s)
- Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Daniela Ebner-Karestinos
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Exercise and Rehabilitation Science Institute, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Julie Paradis
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anne Klöcker
- Haute Ecole Léonard de Vinci, Parnasse-ISEI, Brussels, Belgium
| | - Geoffroy Saussez
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Forme et Fonctionnement Humain Unit, Department of Motor Sciences, CeREF - Haute Ecole Louvain en Hainaut, Belgium
| | - Josselin Demas
- Université d’Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) – EA7315 F-49000 France
- Instituts de formation du Centre Hospitalier de Laval, Laval, France
| | - Rodolphe Bailly
- INSERM UMR 1101, LaTIM, Brest, France
- Pediatric Rehabilitation Department, Fondation Ildys, Brest, France
| | - Sandra Bouvier
- Pediatric Rehabilitation Department, Fondation Ildys, Brest, France
- Western Brittany University, Brest, France
| | | | - Enimie Herman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Grégoire Le Gal
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - Emmanuel Nowak
- University Hospital of Brest, Brest, France
- INSERM CIC 1412, Brest, France
| | - Stephane V. Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Christopher J. Newman
- Paediatric Neurology and Neurorehabilitation Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mickael Dinomais
- Université d’Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) – EA7315 F-49000 France
- CHU Angers, Département de Médecine Physique et de Réadaptions, CHU Angers-Capucins, F- 49933, France
| | - Inmaculada Riquelme
- Department of Nursing and Physiotherapy and Research Institute on Health Sciences (UINICS-Idisba), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvain Brochard
- INSERM UMR 1101, LaTIM, Brest, France
- Pediatric Rehabilitation Department, Fondation Ildys, Brest, France
- Western Brittany University, Brest, France
- University Hospital of Brest, Brest, France
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Popyvanova A, Pomelova E, Bredikhin D, Koriakina M, Shestakova A, Blagovechtchenski E. Transspinal Direct Current Electrical Stimulation Selectively Affects the Excitability of the Corticospinal System, Depending on the Intensity but Not Motor Skills. Life (Basel) 2023; 13:2353. [PMID: 38137954 PMCID: PMC10744344 DOI: 10.3390/life13122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Transspinal direct current stimulation (tsDCS) is a non-invasive technique used to modulate spinal cord activity. However, the effects and mechanisms of this stimulation are currently not comprehensively known. This study aimed to estimate the effect of different intensities of tsDCS applied at the level of cervical enlargement of the spinal cord (C7-Th1 segments) on the excitability of the corticospinal system (CSS) and the correction of motor skills in healthy subjects. The effect of tsDCS was estimated by the motor-evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) in the primary motor cortex (M1). The study involved 54 healthy adults aged 22 ± 4 years. The application of 11 min anodal tsDCS at the level of the cervical spine C7-Th1 with a current intensity of 2.5 mA did not change the MEP amplitude of the upper limb muscles, in contrast to the data that we previously obtained with a current intensity of 1.5 mA. We also found no difference in the effect of 2.5 mA stimulation on motor skill correction in healthy subjects in the nine-hole peg test (9-HPT) and the serial reaction time task (SRT) as with 1.5 mA stimulation. Our data show that an increase in the intensity of stimulation does not lead to an increase in the effects but rather reduces the effects of stimulation. These results provide information about the optimally appropriate stimulation current intensities to induce CSS excitability and the ability of tsDCS to influence motor skills in healthy adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeny Blagovechtchenski
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, 101000 Moscow, Russia; (A.P.); (E.P.); (D.B.); (M.K.); (A.S.)
| |
Collapse
|
19
|
Milton AJ, Kwok JC, McClellan J, Randall SG, Lathia JD, Warren PM, Silver DJ, Silver J. Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ. J Neurotrauma 2023; 40:2500-2521. [PMID: 37606910 PMCID: PMC10698859 DOI: 10.1089/neu.2023.0117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
Collapse
Affiliation(s)
- Adrianna J. Milton
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica C.F. Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jacob McClellan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabre G. Randall
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Philippa M. Warren
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J. Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, Lemon RN, Ganguly K, Darling WG. Terminal organization of the corticospinal projection from the arm/hand region of the rostral primary motor cortex (M1r or old M1) to the cervical enlargement (C5-T1) in rhesus monkey. J Comp Neurol 2023; 531:1996-2018. [PMID: 37938897 PMCID: PMC10842044 DOI: 10.1002/cne.25557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
High-resolution anterograde tracers and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the rostral portion of the primary motor cortex (M1r) to spinal levels C5-T1. Most of this projection (90%) terminated contralaterally within laminae V-IX, with the densest distribution in lamina VII. Moderate bouton numbers occurred in laminae VI, VIII, and IX with few in lamina V. Within lamina VII, labeling occurred over the distal-related dorsolateral subsectors and proximal-related ventromedial subsectors. Within motoneuron lamina IX, most terminations occurred in the proximal-related dorsomedial quadrant, followed by the distal-related dorsolateral quadrant. Segmentally, the contralateral lamina VII CSP gradually declined from C5-T1 but was consistently distributed at C5-C7 in lamina IX. The ipsilateral CSP ended in axial-related lamina VIII and adjacent ventromedial region of lamina VII. These findings demonstrate the M1r CSP influences distal and proximal/axial-related spinal targets. Thus, the M1r CSP represents a transitional CSP, positioned between the caudal M1 (M1c) CSP, which is 98% contralateral and optimally organized to mediate distal upper extremity movements (Morecraft et al., 2013), and dorsolateral premotor (LPMCd) CSP being 79% contralateral and optimally organized to mediate proximal/axial movements (Morecraft et al., 2019). This distal to proximal CSP gradient corresponds to the clinical deficits accompanying caudal to rostral motor cortex injury. The lamina IX CSP is considered in the light of anatomical and neurophysiological evidence which suggests M1c gives rise to the major proportion of the cortico-motoneuronal (CM) projection, while there is a limited M1r CM projection.
Collapse
Affiliation(s)
- Robert J. Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Jizhi Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Kimberly S. Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Roger N. Lemon
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Karunesh Ganguly
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, California, USA
- Neurology Service, SFVAHSC, San Francisco, California, USA
| | - Warren G. Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Golan N, Ehrlich D, Bonanno J, O'Brien RF, Murillo M, Kauer SD, Ravindra N, Van Dijk D, Cafferty WB. Anatomical Diversity of the Adult Corticospinal Tract Revealed by Single-Cell Transcriptional Profiling. J Neurosci 2023; 43:7929-7945. [PMID: 37748862 PMCID: PMC10669816 DOI: 10.1523/jneurosci.0811-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
The corticospinal tract (CST) forms a central part of the voluntary motor apparatus in all mammals. Thus, injury, disease, and subsequent degeneration within this pathway result in chronic irreversible functional deficits. Current strategies to repair the damaged CST are suboptimal in part because of underexplored molecular heterogeneity within the adult tract. Here, we combine spinal retrograde CST tracing with single-cell RNA sequencing (scRNAseq) in adult male and female mice to index corticospinal neuron (CSN) subtypes that differentially innervate the forelimb and hindlimb. We exploit publicly available datasets to confer anatomic specialization among CSNs and show that CSNs segregate not only along the forelimb and hindlimb axis but also by supraspinal axon collateralization. These anatomically defined transcriptional data allow us to use machine learning tools to build classifiers that discriminate between CSNs and cortical layer 2/3 and nonspinally terminating layer 5 neurons in M1 and separately identify limb-specific CSNs. Using these tools, CSN subtypes can be differentially identified to study postnatal patterning of the CST in vivo, leveraged to screen for novel limb-specific axon growth survival and growth activators in vitro, and ultimately exploited to repair the damaged CST after injury and disease.SIGNIFICANCE STATEMENT Therapeutic interventions designed to repair the damaged CST after spinal cord injury have remained functionally suboptimal in part because of an incomplete understanding of the molecular heterogeneity among subclasses of CSNs. Here, we combine spinal retrograde labeling with scRNAseq and annotate a CSN index by the termination pattern of their primary axon in the cervical or lumbar spinal cord and supraspinal collateral terminal fields. Using machine learning we have confirmed the veracity of our CSN gene lists to train classifiers to identify CSNs among all classes of neurons in primary motor cortex to study the development, patterning, homeostasis, and response to injury and disease, and ultimately target streamlined repair strategies to this critical motor pathway.
Collapse
Affiliation(s)
- Noa Golan
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Daniel Ehrlich
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Psychiatry, Yale University School, New Haven, Connecticut 06511
| | - James Bonanno
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Rory F O'Brien
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Matias Murillo
- Interdepartmental Neuroscience Program, Yale University School, New Haven, Connecticut 06511
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Sierra D Kauer
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
| | - Neal Ravindra
- Department of Internal Medicine, Yale University School, New Haven, Connecticut 06511
- Department of Computer Science, Yale University School, New Haven, Connecticut 06511
| | - David Van Dijk
- Department of Internal Medicine, Yale University School, New Haven, Connecticut 06511
- Department of Computer Science, Yale University School, New Haven, Connecticut 06511
| | - William B Cafferty
- Department of Neurology, Yale University School, New Haven, Connecticut 06511
- Department of Neuroscience, Yale University School, New Haven, Connecticut 06511
| |
Collapse
|
22
|
Gutterman J, Gordon AM. Neural Correlates of Impaired Grasp Function in Children with Unilateral Spastic Cerebral Palsy. Brain Sci 2023; 13:1102. [PMID: 37509032 PMCID: PMC10377617 DOI: 10.3390/brainsci13071102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Unilateral spastic cerebral palsy (USCP) is caused by damage to the developing brain and affects motor function, mainly lateralized to one side of the body. Children with USCP have difficulties grasping objects, which can affect their ability to perform daily activities. Although cerebral palsy is typically classified according to motor function, sensory abnormalities are often present as well and may contribute to motor impairments, including grasping. In this review, we show that the integrity and connectivity pattern of the corticospinal tract (CST) is related to execution and anticipatory control of grasping. However, as this may not explain all the variance of impairments in grasping function, we also describe the potential roles of sensory and sensorimotor integration deficits that contribute to grasp impairments. We highlight studies measuring fingertip forces during object manipulation tasks, as this approach allows for the dissection of the close association of sensory and motor function and can detect the discriminant use of sensory information during a complex, functional task (i.e., grasping). In addition, we discuss the importance of examining the interactions of the sensory and motor systems together, rather than in isolation. Finally, we suggest future directions for research to understand the underlying mechanisms of grasp impairments.
Collapse
Affiliation(s)
- Jennifer Gutterman
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| |
Collapse
|
23
|
Hruby A, Joshi D, Dewald JPA, Ingo C. Characterization of Atypical Corticospinal Tract Microstructure and Hand Impairments in Early-Onset Hemiplegic Cerebral Palsy: Preliminary Findings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083210 PMCID: PMC10842831 DOI: 10.1109/embc40787.2023.10340084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Unilateral brain injuries occurring before at or shortly after full-term can result in hemiplegic cerebral palsy (HCP). HCP affects one side of the body and can be characterized in the hand with measures of weakness and a loss of independent hand control resulting in mirror movements. Hand impairment severity is extremely heterogeneous across individuals with HCP and the neural basis for this variability is unclear. We used diffusion MRI and tractography to investigate the relationship between structural morphology of the supraspinal corticospinal tract (CST) and the severity of two typical hand impairments experienced by individuals with HCP, grasp weakness and mirror movements. Results from nine children with HCP and eight children with typical development show that there is a significant hemispheric association between CST microstructure and hand impairment severity that may be explained by atypical development and fiber distribution of motor pathways. Further analysis in the non-lesioned (dominant) hemisphere shows significant differences for CST termination in the cortex between participants with HCP and those with typical development. These findings suggest that structural disparities at the cellular level in the seemingly unaffected hemisphere after early unilateral brain injury may be the cause of heterogeneous hand impairments seen in this population.Clinical Relevance- Quantitative measurement of the variability in hand function in individuals with HCP is necessary to represent the distinct impairments experienced by each person. Further understanding of the structural neural morphology underlying distal upper extremity motor deficits after early unilateral brain injury will help lead to the development of more specific targeted interventions that increase functional outcomes.
Collapse
|
24
|
Dolinskaya IY, Solopova IA, Zhvansky DS, Rubeca D, Sylos-Labini F, Lacquaniti F, Ivanenko Y. Muscle Activity during Passive and Active Movements in Preterm and Full-Term Infants. BIOLOGY 2023; 12:biology12050724. [PMID: 37237537 DOI: 10.3390/biology12050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Manifestation of muscle reactions at an early developmental stage may reflect the processes underlying the generation of appropriate muscle tone, which is also an integral part of all movements. In preterm infants, some aspects of muscular development may occur differently than in infants born at term. Here we evaluated early manifestations of muscle tone by measuring muscle responses to passive stretching (StR) and shortening (ShR) in both upper and lower limbs in preterm infants (at the corrected age from 0 weeks to 12 months), and compared them to those reported in our previous study on full-term infants. In a subgroup of participants, we also assessed spontaneous muscle activity during episodes of relatively large limb movements. The results showed very frequent StR and ShR, and also responses in muscles not being primarily stretched/shortened, in both preterm and full-term infants. A reduction of sensorimotor responses to muscle lengthening and shortening with age suggests a reduction in excitability and/or the acquisition of functionally appropriate muscle tone during the first year of life. The alterations of responses during passive and active movements in preterm infants were primarily seen in the early months, perhaps reflecting temporal changes in the excitability of the sensorimotor networks.
Collapse
Affiliation(s)
- Irina Y Dolinskaya
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Irina A Solopova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Dmitry S Zhvansky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Damiana Rubeca
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
25
|
Yang L, Martin JH. Effects of motor cortex neuromodulation on the specificity of corticospinal tract spinal axon outgrowth and targeting in rats. Brain Stimul 2023; 16:759-771. [PMID: 37094762 PMCID: PMC10501380 DOI: 10.1016/j.brs.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Neural activity helps construct neural circuits during development and this function is leveraged by neuromodulation protocols to promote connectivity and repair in maturity. Neuromodulation targeting the motor cortex (MCX) strengthens connections for evoking muscle contraction (MEPs). Mechanisms include promoting local MCX and corticospinal tract (CST) synaptic efficacy and also axon terminal structural changes. OBJECTIVE In this study, we address the question of potential causality between neuronal activation and the neuronal structural response. METHODS We used patterned optogenetic activation (ChR2-EYFP), daily for 10-days, to deliver intermittent theta burst stimulation (iTBS) to activate MCX neurons within the forelimb representation in healthy rats, while differentiating them from neurons in the same population that were not activated. We used chemogenetic DREADD activation to produce a daily period of non-patterned neuronal activation. RESULTS We found a significant increase in CST axon length, axon branching, contacts targeted to a class of premotor interneuron (Chx10), as well as projections into the motor pools in the ventral horn in optically activated but not neighboring non-activated neurons. A period of 2-h of continuous activation daily for 10 days using DREADD chemogenetic activation with systemic clozapine N-oxide (CNO) administration also increased CST axon length and branching, but not the ventral horn and Chx10 targeting effects. Both patterned optical and chemogenetic activation reduced MCX MEP thresholds. CONCLUSION Our findings show that targeting of CST axon sprouting is dependent on patterned activation, but that CST spinal axon outgrowth and branching are not. Our optogenetic findings, by distinguishing optically activated and non-activated CST axons, suggests that the switch for activity-dependent axonal outgrowth is neuron-intrinsic.
Collapse
Affiliation(s)
- Lillian Yang
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
26
|
Delatorre RG, Sutter EN, Nemanich ST, Krach LE, Meekins G, Feyma T, Gillick BT. Anodal Contralesional tDCS Enhances CST Excitability Bilaterally in an Adolescent with Hemiparetic Cerebral Palsy: A Brief Report. Dev Neurorehabil 2023; 26:216-221. [PMID: 36967533 PMCID: PMC10228174 DOI: 10.1080/17518423.2023.2193626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023]
Abstract
Hemiparetic cerebral palsy (HCP), weakness on one side of the body typically caused by perinatal stroke, is characterized by lifelong motor impairments related to alterations in the corticospinal tract (CST). CST reorganization could be a useful biomarker to guide applications of neuromodulatory interventions, such as transcranial direct current stimulation (tDCS), to improve the effectiveness of rehabilitation therapies. We evaluated an adolescent with HCP and CST reorganization who demonstrated persistent heightened CST excitability in both upper limbs following anodal contralesional tDCS. The results support further investigation of targeted tDCS as an adjuvant therapy to traditional neurorehabilitation for upper limb function.
Collapse
Affiliation(s)
| | - Ellen N. Sutter
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Samuel T. Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Occupational Therapy, Marquette University, Milwaukee, WI, USA
| | - Linda E. Krach
- Department of Neurology, Gillette Children’s Specialty Healthcare, Saint Paul, MN, USA
| | - Gregg Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Timothy Feyma
- Department of Neurology, Gillette Children’s Specialty Healthcare, Saint Paul, MN, USA
| | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Azarvand Damirichi M, Karimi Moridani M, Mohammadi SE. Relationship between white matter alterations and contamination subgroup in obsessive compulsive disorder: A
diffusion tensor imaging
study. Hum Brain Mapp 2023; 44:3302-3310. [PMID: 36971658 PMCID: PMC10171548 DOI: 10.1002/hbm.26282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Approximately 2%-3% of the world population suffers from obsessive-compulsive disorder (OCD). Several brain regions have been involved in the pathophysiology of OCD, but brain volumes in OCD may vary depending on specific OCD symptom dimensions. The study aims to explore how white matter structure changes in particular OCD symptom dimensions. Prior studies attempt to find the correlation between Y-BOCS scores and OCD patients. However, in this study, we separated the contamination subgroup in OCD and compared directly to healthy control to find regions that exactly related to contamination symptoms. To evaluate structural alterations, diffusion tensor imaging was acquired from 30 OCD patients and 34 demographically matched healthy controls. Data were processed using tract-based spatial statistics (TBSS) analysis. First, by comparing all OCD to healthy controls, significant fractional anisotropy (FA) decreased in the right anterior thalamic radiation, right corticospinal tract, and forceps minor observed. Then by comparing the contamination subgroup to healthy control, FA decreases in the forceps minor region. Consequently, forceps minor plays a central role in the pathophysiology of contamination behaviors. Finally, other subgroups were compared to healthy control and discovered that FA in the right corticospinal tract and right anterior thalamic radiation is reduced.
Collapse
|
28
|
Itoh Y, Sahni V, Shnider SJ, McKee H, Macklis JD. Inter-axonal molecular crosstalk via Lumican proteoglycan sculpts murine cervical corticospinal innervation by distinct subpopulations. Cell Rep 2023; 42:112182. [PMID: 36934325 PMCID: PMC10167627 DOI: 10.1016/j.celrep.2023.112182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
How CNS circuits sculpt their axonal arbors into spatially and functionally organized domains is not well understood. Segmental specificity of corticospinal connectivity is an exemplar for such regional specificity of many axon projections. Corticospinal neurons (CSN) innervate spinal and brainstem targets with segmental precision, controlling voluntary movement. Multiple molecularly distinct CSN subpopulations innervate the cervical cord for evolutionarily enhanced precision of forelimb movement. Evolutionarily newer CSNBC-lat exclusively innervate bulbar-cervical targets, while CSNmedial are heterogeneous; distinct subpopulations extend axons to either bulbar-cervical or thoraco-lumbar segments. We identify that Lumican controls balance of cervical innervation between CSNBC-lat and CSNmedial axons during development, which is maintained into maturity. Lumican, an extracellular proteoglycan expressed by CSNBC-lat, non-cell-autonomously suppresses cervical collateralization by multiple CSNmedial subpopulations. This inter-axonal molecular crosstalk between CSN subpopulations controls murine corticospinal circuitry refinement and forelimb dexterity. Such crosstalk is generalizable beyond the corticospinal system for evolutionary incorporation of new neuron populations into preexisting circuitry.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Vibhu Sahni
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Holly McKee
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Blumberg MS, Adolph KE. Protracted development of motor cortex constrains rich interpretations of infant cognition. Trends Cogn Sci 2023; 27:233-245. [PMID: 36681607 PMCID: PMC9957955 DOI: 10.1016/j.tics.2022.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Cognition in preverbal human infants must be inferred from overt motor behaviors such as gaze shifts, head turns, or reaching for objects. However, infant mammals - including human infants - show protracted postnatal development of cortical motor outflow. Cortical control of eye, face, head, and limb movements is absent at birth and slowly emerges over the first postnatal year and beyond. Accordingly, the neonatal cortex in humans cannot generate the motor behaviors routinely used to support inferences about infants' cognitive abilities, and thus claims of developmental continuity between infant and adult cognition are suspect. Recognition of the protracted development of motor cortex should temper rich interpretations of infant cognition and motivate more serious consideration of the role of subcortical mechanisms in early cognitive development.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Karen E Adolph
- Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
30
|
Miyagishima S, Mani H, Sato Y, Inoue T, Asaka T, Kozuka N. Developmental changes in straight gait in childhood. PLoS One 2023; 18:e0281037. [PMID: 36758023 PMCID: PMC9910736 DOI: 10.1371/journal.pone.0281037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Understanding typical gait development is critical in developing suitable physical therapy methods for gait disorders. This study investigated the developmental changes and controlling mechanisms of straight gait. METHODS We conducted an experimental procedure among 90 participants, including 76 typically developing children and 14 healthy adults. The children were divided according to age into 3-4, 5-6, 7-8, and 9-10-year age groups. We created two indices to quantify straight gait using the extrapolated center of mass (XCOM; goal index, XCOMG and actual progress index, XCOMP), which were calculated and compared between the groups. Stepwise multiple regression was used to examine the effects of each gait variable on XCOMG and XCOMP. To eliminate the effects of multicollinearity, correlation coefficients were calculated for all gait variables. RESULTS Both XCOMG and XCOMP decreased gradually with age and were significantly larger in the 3-4 and 5-6 year groups than in the adult group. Multiple regression analysis showed that step velocity, step width, and the coefficiente of variation (CV) of the step width had independent coefficients of variation for the XCOMG, and the symmetry index of step time, step width, and the CV of the step width had independent CV for the XCOMP. These variables were selected as significant variables. The results showed that meandering gait was more pronounced at younger ages. Furthermore, straight gait observed in adulthood was achieved by the age of 7. CONCLUSION Pace (step velocity) and stability (step width and CV of step width) may contribute to XCOMG, which assesses the ability to proceed in the direction of the target. Stability and symmetry may contribute to XCOMP, which assesses the ability to walk straight in one's own direction of progress. Physical therapists could apply these indices in children to assess their ability to walk straight.
Collapse
Affiliation(s)
- Saori Miyagishima
- Division of Rehabilitation, Sapporo Medical University Hospital, Hokkaido, Japan
| | - Hiroki Mani
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- * E-mail:
| | - Yui Sato
- Division of Rehabilitation, Sapporo Medical University Hospital, Hokkaido, Japan
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tadayoshi Asaka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| |
Collapse
|
31
|
Mohammadshirazi A, Apicella R, Zylberberg BA, Mazzone GL, Taccola G. Suprapontine Structures Modulate Brainstem and Spinal Networks. Cell Mol Neurobiol 2023:10.1007/s10571-023-01321-z. [PMID: 36732488 DOI: 10.1007/s10571-023-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Several spinal motor output and essential rhythmic behaviors are controlled by supraspinal structures, although their contribution to neuronal networks for respiration and locomotion at birth still requires better characterization. As preparations of isolated brainstem and spinal networks only focus on local circuitry, we introduced the in vitro central nervous system (CNS) from neonatal rodents to simultaneously record a stable respiratory rhythm from both cervical and lumbar ventral roots (VRs).Electrical pulses supplied to multiple sites of brainstem evoked distinct VR responses with staggered onset in the rostro-caudal direction. Stimulation of ventrolateral medulla (VLM) resulted in higher events from homolateral VRs. Stimulating a lumbar dorsal root (DR) elicited responses even from cervical VRs, albeit small and delayed, confirming functional ascending pathways. Oximetric assessments detected optimal oxygen levels on brainstem and cortical surfaces, and histological analysis of internal brain structures indicated preserved neuron viability without astrogliosis. Serial ablations showed precollicular decerebration reducing respiratory burst duration and frequency and diminishing the area of lumbar DR and VR potentials elicited by DR stimulation, while pontobulbar transection increased the frequency and duration of respiratory bursts. Keeping legs attached allows for expressing a respiratory rhythm during hindlimb stimulation. Trains of pulses evoked episodes of fictive locomotion (FL) when delivered to VLM or to a DR, the latter with a slightly better FL than in isolated cords.In summary, suprapontine centers regulate spontaneous respiratory rhythms, as well as electrically evoked reflexes and spinal network activity. The current approach contributes to clarifying modulatory brain influences on the brainstem and spinal microcircuits during development. Novel preparation of the entire isolated CNS from newborn rats unveils suprapontine modulation on brainstem and spinal networks. Preparation views (A) with and without legs attached (B). Successful fictive respiration occurs with fast dissection from P0-P2 rats (C). Decerebration speeds up respiratory rhythm (D) and reduces spinal reflexes derived from both ventral and dorsal lumbar roots (E).
Collapse
Affiliation(s)
- Atiyeh Mohammadshirazi
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Benjamín A Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
32
|
Chen M, Chen Z, Xiao X, Zhou L, Fu R, Jiang X, Pang M, Xia J. Corticospinal circuit neuroplasticity may involve silent synapses: Implications for functional recovery facilitated by neuromodulation after spinal cord injury. IBRO Neurosci Rep 2022; 14:185-194. [PMID: 36824667 PMCID: PMC9941655 DOI: 10.1016/j.ibneur.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.
Collapse
Key Words
- AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
- BDNF, brain-derived neurotrophic factor
- BMIs, brain-machine interfaces
- CPG, central pattern generator
- CST, corticospinal tract
- Corticospinal motor circuitry
- DBS, deep brain stimulation
- ESS, epidural spinal stimulation
- MEPs, motor-evoked potentials
- NHPs, non-human primates
- NMDARs, N-methyl-d-aspartate receptors
- Neuromodulation
- Neuroplasticity
- PSNs, propriospinal neurons
- Rehabilitation
- SCI, spinal cord injury
- STDP, spike timing-dependent plasticity
- Silent synapses
- Spinal cord injury
- TBS, theta burst stimulation
- TMS, transcranial magnetic stimulation
- TrkB, tropomyosin-related kinase B
- cTBS, continuous TBS
- iTBS, intermittent TBS
- mTOR, mammalian target of rapamycin
- rTMS, repetitive TMS
- tDCS, transcranial direct current stimulation
- tcSCS, transcutaneous spinal cord stimulation
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Orthopedics and Traumatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Xian Jiang
- Institute of Neurological and Psychiatric Disorder, Shenzhen Bay laboratory, Shenzhen, Guangdong 518000, China
| | - Mao Pang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong 510630, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong 510970, China,Corresponding author.
| |
Collapse
|
33
|
Biswas A, Krishnan P, Vidarsson L, Shroff M. Cerebral White Matter Tract Anatomy. Neuroimaging Clin N Am 2022; 32:507-528. [PMID: 35843659 DOI: 10.1016/j.nic.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advances in MR imaging techniques have allowed for detailed in vivo depiction of white matter tracts. The study of white matter structure and connectivity is of paramount importance in leukodystrophies, demyelinating disorders, neoplasms, and various cognitive, neuropsychiatric, and developmental disorders. The advent of advanced "function-preserving" surgical techniques also makes it imperative to understand white matter anatomy and connectivity, to provide accurate road maps for tumor and epilepsy surgery. In this review, we will describe cerebral white matter anatomy with the help of conventional MRI and diffusion tensor imaging.
Collapse
Affiliation(s)
- Asthik Biswas
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario M5G1X8, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G1X8, Canada; Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, London WC1N3JH, United Kingdom.
| | - Pradeep Krishnan
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario M5G1X8, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G1X8, Canada
| | - Logi Vidarsson
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario M5G1X8, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G1X8, Canada
| | - Manohar Shroff
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario M5G1X8, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G1X8, Canada
| |
Collapse
|
34
|
Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022; 16:836885. [PMID: 35813507 PMCID: PMC9259845 DOI: 10.3389/fncel.2022.836885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This “plasticity” is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Leyener U, Kraushaar C, Dathe AK, Felderhoff-Müser U, Marschik PB, Zhang D, Hüning BM. [Physiotherapy in German Neonatal Intensive Care Units - Indication and Clinical Application of the General Movements Assessments]. Z Geburtshilfe Neonatol 2022; 226:256-264. [PMID: 35595512 DOI: 10.1055/a-1791-5778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Standardized recommendations for inpatient and outpatient physiotherapy for preterm infants are lacking in Germany. The aim of this study was to investigate the prescription practice in German neonatal intensive care units. Are standardized assessments used to determine indications? How important is the General Movements Assessment in postnatal diagnostics? METHODS We conducted an online survey in German neonatal intensive care units asking 21 questions on indication and prescription practices for inpatient and outpatient physiotherapy in preterm infants' care as well as on General Movements Assessment and its clinical application via Lime Survey. RESULTS 81% of the participating sites "always" or "often" recommend indication-based inpatient physiotherapy for preterm infants and 53% "always"/"often" recommend outpatient therapy. Indications are mainly based on these symptoms (N=344) or diagnoses (N=273) (multiple answers): hypotonia (94%), abnormal and imbalanced muscle tone (92%), neurological abnormalities (97%) and brain damage (94%). Standardized testing is used by 41% of the participants. The General Movements Assessment is known to 87% of the neonatal intensive care units, 11% use it several times a week, 17% several times a month for indication of physiotherapy. CONCLUSION Physiotherapy is frequently prescribed for preterm infants. The majority of indications are based on symptoms or clinical pictures rather than on standardized tests. The General Movements Assessment is a widely known method but not systematically applied at the moment.
Collapse
Affiliation(s)
- Uta Leyener
- Klinik für Kinderheilkunde I, Neonatologie, Pädiatrische Intensivmedizin, Pädiatrische Neurologie, Universitätsmedizin Essen, Essen, Deutschland
| | - Carolin Kraushaar
- Klinik für Kinderheilkunde, Institut für Physiotherapie, Universitätsmedizin Essen, Essen, Deutschland
| | - Anne-Kathrin Dathe
- Klinik für Kinderheilkunde I, Neonatologie, Pädiatrische Intensivmedizin, Pädiatrische Neurologie, Universitätsmedizin Essen, Essen, Deutschland
| | | | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Schweden.,Systemische Ethologie und Entwicklungswissenschaft Klinik für Kinder und Jugendpsychiatrie und Psychotherapie, Universitätsmedizin Göttingen, Göttingen, Deutschland.,iDN - Interdisziplinäre Entwicklungsforschung, Klinische Abteilung für Phoniatrie, Medizinische Universität Graz, Graz, Österreich
| | - Dajie Zhang
- Systemische Ethologie und Entwicklungswissenschaft Klinik für Kinder und Jugendpsychiatrie und Psychotherapie, Universitätsmedizin Göttingen, Göttingen, Deutschland.,iDN - Interdisziplinäre Entwicklungsforschung, Klinische Abteilung für Phoniatrie, Medizinische Universität Graz, Graz, Österreich
| | - Britta Maria Hüning
- Klinik für Kinderheilkunde I, Neonatologie, Pädiatrische Intensivmedizin, Pädiatrische Neurologie, Universitätsmedizin Essen, Essen, Deutschland
| |
Collapse
|
36
|
Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022; 13:831819. [PMID: 35558719 PMCID: PMC9090458 DOI: 10.3389/fpsyg.2022.831819] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity refers to the brain's ability to undergo structural and functional adaptations in response to experience, and this process is associated with learning, memory and improvements in cognitive function. The brain's propensity for neuroplasticity is influenced by lifestyle factors including exercise, diet and sleep. This review gathers evidence from molecular, systems and behavioral neuroscience to explain how these three key lifestyle factors influence neuroplasticity alone and in combination with one another. This review collected results from human studies as well as animal models. This information will have implications for research, educational, fitness and neurorehabilitation settings.
Collapse
Affiliation(s)
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karishma Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Craig BT, Kinney-Lang E, Hilderley AJ, Carlson HL, Kirton A. Structural connectivity of the sensorimotor network within the non-lesioned hemisphere of children with perinatal stroke. Sci Rep 2022; 12:3866. [PMID: 35264665 PMCID: PMC8907195 DOI: 10.1038/s41598-022-07863-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Perinatal stroke occurs early in life and often leads to a permanent, disabling weakness to one side of the body. To test the hypothesis that non-lesioned hemisphere sensorimotor network structural connectivity in children with perinatal stroke is different from controls, we used diffusion imaging and graph theory to explore structural topology between these populations. Children underwent diffusion and anatomical 3T MRI. Whole-brain tractography was constrained using a brain atlas creating an adjacency matrix containing connectivity values. Graph theory metrics including betweenness centrality, clustering coefficient, and both neighbourhood and hierarchical complexity of sensorimotor nodes were compared to controls. Relationships between these connectivity metrics and validated sensorimotor assessments were explored. Eighty-five participants included 27 with venous stroke (mean age = 11.5 ± 3.7 years), 26 with arterial stroke (mean age = 12.7 ± 4.0 years), and 32 controls (mean age = 13.3 ± 3.6 years). Non-lesioned primary motor (M1), somatosensory (S1) and supplementary motor (SMA) areas demonstrated lower betweenness centrality and higher clustering coefficient in stroke groups. Clustering coefficient of M1, S1, and SMA were inversely associated with clinical motor function. Hemispheric betweenness centrality and clustering coefficient were higher in stroke groups compared to controls. Hierarchical and average neighbourhood complexity across the hemisphere were lower in stroke groups. Developmental plasticity alters the connectivity of key nodes within the sensorimotor network of the non-lesioned hemisphere following perinatal stroke and contributes to clinical disability.
Collapse
Affiliation(s)
- Brandon T Craig
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eli Kinney-Lang
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alicia J Hilderley
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Williams PT, Truong DQ, Seifert AC, Xu J, Bikson M, Martin JH. Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat. Brain Stimul 2022; 15:624-634. [DOI: 10.1016/j.brs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
|
39
|
From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent neuroimaging studies allowed us to explore abnormal brain structures and interhemispheric connectivity in children with cerebral palsy (CP). Behavioral researchers have long reported that children with CP exhibit suboptimal performance in different cognitive domains (e.g., receptive and expressive language skills, reading, mental imagery, spatial processing, subitizing, math, and executive functions). However, there has been very limited cross-domain research involving these two areas of scientific inquiry. To stimulate such research, this perspective paper proposes some possible neurological mechanisms involved in the cognitive delays and impairments in children with CP. Additionally, the paper examines the ways motor and sensorimotor experience during the development of these neural substrates could enable more optimal development for children with CP. Understanding these developmental mechanisms could guide more effective interventions to promote the development of both sensorimotor and cognitive skills in children with CP.
Collapse
|
40
|
Sargent B, Havens KL, Kubo M, Wisnowski JL, Wu TW, Fetters L. Motivating Selective Motor Control of Infants at High Risk of Cerebral Palsy Using an In-Home Kicking-Activated Mobile Task: A Pilot Study. Phys Ther 2022; 102:pzab265. [PMID: 34935956 PMCID: PMC8869361 DOI: 10.1093/ptj/pzab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Decreased selective motor control limits gait function of children with spastic cerebral palsy (CP). Infants at high risk of CP demonstrate decreased selective motor control by 1 month of age. To motivate more selective hip-knee control, infants at high risk of CP participated in an in-home kicking-activated mobile task. The purpose of this study was to determine whether infants at high risk of CP and infants with typical development (TD) demonstrated increased selective hip-knee control during 2-minute intervals of the mobile task when they demonstrated learning of the association between their leg movement and mobile activation vs during 2-minute intervals when they did not demonstrate learning. METHODS Participants in this cohort study included 10 infants at high risk of CP based on neuroimaging and 11 infants with TD at 3.5 to 4.5 months of age. Each infant participated in the in-home kicking-activated mobile task for 8 to 10 min/d, 5 d/wk, for 6 weeks. Over 80,000 kicks were extracted and classified for each infant as occurring during 2-minute intervals of the task when the infant demonstrated learning vs not learning based on mobile activation time above baseline. RESULTS Infants demonstrated kicks with more selective hip-knee control during 2-minute intervals of the mobile task when they demonstrated learning compared with when they did not demonstrate learning for 4 of 6 weeks in the cohort at high risk of CP and for 2 of 6 weeks in the cohort with TD. CONCLUSION Participation in the in-home kicking-activated mobile task may motivate more selective hip-knee control of infants at high risk of CP. IMPACT This study is a first step toward developing an intervention to promote selective hip-knee control of infants at high risk of CP, with the ultimate goal of optimizing future walking function. LAY SUMMARY This study showed that playing with an in-home infant kicking-activated mobile may motivate infants at high risk of CP to produce more age-appropriate leg movements.
Collapse
Affiliation(s)
- Barbara Sargent
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Kathryn L Havens
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Masayoshi Kubo
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Jessica L Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Fetal and Neonatal Institute, Children’s Hospital Los Angeles Division of Neonatology, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Children’s Hospital Los Angeles Division of Neonatology, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Linda Fetters
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
41
|
Goldstein Ferber S, Weller A, Ben-Shachar M, Klinger G, Geva R. Development of the Ontogenetic Self-Regulation Clock. Int J Mol Sci 2022; 23:993. [PMID: 35055184 PMCID: PMC8778416 DOI: 10.3390/ijms23020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
To date, there is no overarching proposition for the ontogenetic-neurobiological basis of self-regulation. This paper suggests that the balanced self-regulatory reaction of the fetus, newborn and infant is based on a complex mechanism starting from early brainstem development and continuing to progressive control of the cortex over the brainstem. It is suggested that this balance occurs through the synchronous reactivity between the sympathetic and parasympathetic systems, both which originate from the brainstem. The paper presents an evidence-based approach in which molecular excitation-inhibition balance, interchanges between excitatory and inhibitory roles of neurotransmitters as well as cardiovascular and white matter development across gestational ages, are shown to create sympathetic-parasympathetic synchrony, including the postnatal development of electroencephalogram waves and vagal tone. These occur in developmental milestones detectable in the same time windows (sensitive periods of development) within a convergent systematic progress. This ontogenetic stepwise process is termed "the self-regulation clock" and suggest that this clock is located in the largest connection between the brainstem and the cortex, the corticospinal tract. This novel evidence-based new theory paves the way towards more accurate hypotheses and complex studies of self-regulation and its biological basis, as well as pointing to time windows for interventions in preterm infants. The paper also describes the developing indirect signaling between the suprachiasmatic nucleus and the corticospinal tract. Finally, the paper proposes novel hypotheses for molecular, structural and functional investigation of the "clock" circuitry, including its associations with other biological clocks. This complex circuitry is suggested to be responsible for the developing self-regulatory functions and their neurobehavioral correlates.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel; (A.W.); (R.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel; (A.W.); (R.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Michal Ben-Shachar
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Gil Klinger
- Department of Neonatology, Schneider Children’s Medical Center, Sackler Medical School, Tel Aviv University, Petach Tikvah 4920235, Israel;
| | - Ronny Geva
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel; (A.W.); (R.G.)
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
42
|
Tao D, Zhong T, Pang W, Li X. Saccharomyces boulardii improves the behaviour and emotions of spastic cerebral palsy rats through the gut-brain axis pathway. BMC Neurosci 2021; 22:76. [PMID: 34876019 PMCID: PMC8653608 DOI: 10.1186/s12868-021-00679-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a kind of disability that influences motion, and children with CP also exhibit depression-like behaviour. Inflammation has been recognized as a contributor to CP and depression, and some studies suggest that the gut-brain axis may be a contributing factor. Our team observed that Saccharomyces boulardii (S. boulardii) could reduce the inflammatory level of rats with hyperbilirubinemia and improve abnormal behaviour. Both CP and depression are related to inflammation, and probiotics can improve depression by reducing inflammation. Therefore, we hypothesize that S. boulardii may improve the behaviour and emotions of spastic CP rats through the gut-brain axis pathway. METHODS Our new rat model was produced by resecting the cortex and subcortical white matter. Seventeen-day-old CP rats were exposed to S. boulardii or vehicle control by gastric gavage for 9 days, and different behavioural domains and general conditions were tested. Inflammation was assessed by measuring the inflammatory markers IL-6 and TNF-α. Hypothalamic-pituitary-adrenal (HPA) axis activity was assessed by measuring adrenocorticotropic hormone and corticosterone in the serum. Changes in the gut microbiome were detected by 16S rRNA. RESULTS The hemiplegic spastic CP rats we made with typical spastic paralysis exhibited depression-like behaviour. S. boulardii treatment of hemiplegic spastic CP rats improves behaviour and general conditions and significantly reduces the level of inflammation, decreases HPA axis activity, and increases gut microbiota diversity. CONCLUSIONS The model developed in this study mimics a hemiplegic spastic cerebral palsy. Damage to the cortex and subcortical white matter of 17-day-old Sprague-Dawley (SD) rats led to spastic CP-like behaviour, and the rats exhibited symptoms of depression-like behaviour. Our results indicate that S. boulardii might have potential in treating hemiplegic spastic CP rat models or as an add-on therapy via the gut-brain axis pathway.
Collapse
Affiliation(s)
- Deshuang Tao
- College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| | - Tangwu Zhong
- College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Pang
- College of Rehab Medicine, Jiamusi University, Jiamusi, China
- Rehab Center for Child Cerebral Palsy, Jiamusi, Heilongjiang, China
- Institute of Pediatric Neurological Disorders, Jiamusi University, Jiamusi, China
| | - Xiaojie Li
- College of Rehab Medicine, Jiamusi University, Jiamusi, China.
- Rehab Center for Child Cerebral Palsy, Jiamusi, Heilongjiang, China.
- Institute of Pediatric Neurological Disorders, Jiamusi University, Jiamusi, China.
| |
Collapse
|
43
|
Del Cerro P, Rodríguez-De-Lope Á, Collazos-Castro JE. The Cortical Motor System in the Domestic Pig: Origin and Termination of the Corticospinal Tract and Cortico-Brainstem Projections. Front Neuroanat 2021; 15:748050. [PMID: 34790101 PMCID: PMC8591036 DOI: 10.3389/fnana.2021.748050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The anatomy of the cortical motor system and its relationship to motor repertoire in artiodactyls is for the most part unknown. We studied the origin and termination of the corticospinal tract (CST) and cortico-brainstem projections in domestic pigs. Pyramidal neurons were retrogradely labeled by injecting aminostilbamidine in the spinal segment C1. After identifying the dual origin of the porcine CST in the primary motor cortex (M1) and premotor cortex (PM), the axons descending from those regions to the spinal cord and brainstem were anterogradely labeled by unilateral injections of dextran alexa-594 in M1 and dextran alexa-488 in PM. Numerous corticospinal projections from M1 and PM were detected up to T6 spinal segment and showed a similar pattern of decussation and distribution in the white matter funiculi and the gray matter laminae. They terminated mostly on dendrites of the lateral intermediate laminae and the internal basilar nucleus, and some innervated the ventromedial laminae, but were essentially absent in lateral laminae IX. Corticofugal axons terminated predominantly ipsilaterally in the midbrain and bilaterally in the medulla oblongata. Most corticorubral projections arose from M1, whereas the mesencephalic reticular formation, superior colliculus, lateral reticular nucleus, gigantocellular reticular nucleus, and raphe received abundant axonal contacts from both M1 and PM. Our data suggest that the porcine cortical motor system has some common features with that of primates and humans and may control posture and movement through parallel motor descending pathways. However, less cortical regions project to the spinal cord in pigs, and the CST neither seems to reach the lumbar enlargement nor to have a significant direct innervation of cervical, foreleg motoneurons.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Ph.D. Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | | | | |
Collapse
|
44
|
Kerr AL. Contralesional plasticity following constraint-induced movement therapy benefits outcome: contributions of the intact hemisphere to functional recovery. Rev Neurosci 2021; 33:269-283. [PMID: 34761646 DOI: 10.1515/revneuro-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 11/15/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. A common, chronic deficit after stroke is upper limb impairment, which can be exacerbated by compensatory use of the nonparetic limb. Resulting in learned nonuse of the paretic limb, compensatory reliance on the nonparetic limb can be discouraged with constraint-induced movement therapy (CIMT). CIMT is a rehabilitative strategy that may promote functional recovery of the paretic limb in both acute and chronic stroke patients through intensive practice of the paretic limb combined with binding, or otherwise preventing activation of, the nonparetic limb during daily living exercises. The neural mechanisms that support CIMT have been described in the lesioned hemisphere, but there is a less thorough understanding of the contralesional changes that support improved functional outcome following CIMT. Using both human and non-human animal studies, the current review explores the role of the contralesional hemisphere in functional recovery of stroke as it relates to CIMT. Current findings point to a need for a better understanding of the functional significance of contralesional changes, which may be determined by lesion size, location, and severity as well stroke chronicity.
Collapse
Affiliation(s)
- Abigail L Kerr
- Departments of Psychology and Neuroscience, Illinois Wesleyan University, 1312 Park Street, Bloomington, IL 61701, USA
| |
Collapse
|
45
|
Boido M, Vercelli A. Genes and miRNAs as Hurdles and Promoters of Corticospinal Tract Regeneration in Spinal Cord Injury. Front Cell Dev Biol 2021; 9:748911. [PMID: 34722529 PMCID: PMC8554128 DOI: 10.3389/fcell.2021.748911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating lesion to the spinal cord, which determines the interruption of ascending/descending axonal tracts, the loss of supraspinal control of sensory-motor functions below the injured site, and severe autonomic dysfunctions, dramatically impacting the quality of life of the patients. After the acute inflammatory phase, the progressive formation of the astrocytic glial scar characterizes the acute-chronic phase: such scar represents one of the main obstacles to the axonal regeneration that, as known, is very limited in the central nervous system (CNS). Unfortunately, a cure for SCI is still lacking: the current clinical approaches are mainly based on early vertebral column stabilization, anti-inflammatory drug administration, and rehabilitation programs. However, new experimental therapeutic strategies are under investigation, one of which is to stimulate axonal regrowth and bypass the glial scar. One major issue in axonal regrowth consists of the different genetic programs, which characterize axonal development and maturation. Here, we will review the main hurdles that in adulthood limit axonal regeneration after SCI, describing the key genes, transcription factors, and miRNAs involved in these processes (seen their reciprocal influencing action), with particular attention to corticospinal motor neurons located in the sensory-motor cortex and subjected to axotomy in case of SCI. We will highlight the functional complexity of the neural regeneration programs. We will also discuss if specific axon growth programs, that undergo a physiological downregulation during CNS development, could be reactivated after a spinal cord trauma to sustain regrowth, representing a new potential therapeutic approach.
Collapse
Affiliation(s)
- Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
46
|
Xiong QL, Wu XY, Liu Y, Zhang CX, Hou WS. Measurement and Analysis of Human Infant Crawling for Rehabilitation: A Narrative Review. Front Neurol 2021; 12:731374. [PMID: 34707557 PMCID: PMC8544808 DOI: 10.3389/fneur.2021.731374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
When a child shows signs of potential motor developmental disorders, early diagnosis of central nervous system (CNS) impairment is beneficial. Known as the first CNS-controlled mobility for most of infants, mobility during crawling usually has been used in clinical assessments to identify motor development disorders. The current clinical scales of motor development during crawling stage are relatively subjective. Objective and quantitative measures of infant crawling afford the possibilities to identify those infants who might benefit from early intervention, as well as the evaluation of intervention progress. Thus, increasing researchers have explored objective measurements of infant crawling in typical and atypical developing infants. However, there is a lack of comprehensive review on infant-crawling measurement and analysis toward bridging the gap between research crawling analysis and potential clinical applications. In this narrative review, we provide a practical overview of the most relevant measurements in human infant crawling, including acquisition techniques, data processing methods, features extraction, and the potential value in objective assessment of motor function in infancy; meanwhile, the possibilities to develop crawling training as early intervention to promote the locomotor function for infants with locomotor delays are also discussed.
Collapse
Affiliation(s)
- Qi L Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China.,Department of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao Y Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Cong X Zhang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Wen S Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
47
|
Mani H, Miyagishima S, Kozuka N, Inoue T, Hasegawa N, Asaka T. Development of the Relationships Among Dynamic Balance Control, Inter-limb Coordination, and Torso Coordination During Gait in Children Aged 3-10 Years. Front Hum Neurosci 2021; 15:740509. [PMID: 34776908 PMCID: PMC8582286 DOI: 10.3389/fnhum.2021.740509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge about the developmental process of dynamic balance control comprised of upper arms and upper legs coordination and trunk and pelvis twist coordination is important to advance effective balance assessment for abnormal development. However, the mechanisms of these coordination and stability control during gait in childhood are unknown.This study examined the development of dynamic postural stability, upper arm and upper leg coordination, and trunk and pelvic twist coordination during gait, and investigated the potential mechanisms integrating the central nervous system with inter-limb coordination and trunk and pelvic twist coordination to control extrapolated center of the body mass (XCOM). This study included 77 healthy children aged 3-10 years and 15 young adults. The child cohort was divided into four groups by age: 3-4, 5-6, 7-8, and 9-10 years. Participants walked barefoot at a self-selected walking speed along an 8 m walkway. A three-dimensional motion capture system was used for calculating the XCOM, the spatial margin of stability (MoS), and phase coupling movements of the upper arms, upper legs, trunk, and pelvic segments. MoS in the mediolateral axis was significantly higher in the young adults than in all children groups. Contralateral coordination (ipsilateral upper arm and contralateral upper leg combination) gradually changed to an in-phase pattern with increasing age until age 9 years. Significant correlations of XCOMML with contralateral coordination and with trunk and pelvic twist coordination (trunk/pelvis coordination) were found. Significant correlations between contralateral coordination and trunk/pelvis coordination were observed only in the 5-6 years and at 7-8 years groups.Dynamic postural stability during gait was not fully mature at age 10. XCOM control is associated with the development of contralateral coordination and trunk and pelvic twist coordination. The closer to in-phase pattern of contralateral upper limb coordination improved the XCOM fluctuations. Conversely, the out-of-phase pattern (about 90 degrees) of the trunk/pelvis coordination increased theXCOM fluctuation. Additionally, a different control strategy was used among children 3-8 years of age and individuals over 9 years of age, which suggests that 3-4-year-old children showed a disorderly coordination strategy between limb swing and torso movement, and in children 5-8 years of age, limb swing depended on trunk/pelvis coordination.
Collapse
Affiliation(s)
- Hiroki Mani
- Faculty of Welfare and Health Science, Physical Therapy Courses, Oita University, Oita, Japan
| | - Saori Miyagishima
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo Medical University, Sapporo, Japan
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Hasegawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tadayoshi Asaka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Sahni V, Shnider SJ, Jabaudon D, Song JHT, Itoh Y, Greig LC, Macklis JD. Corticospinal neuron subpopulation-specific developmental genes prospectively indicate mature segmentally specific axon projection targeting. Cell Rep 2021; 37:109843. [PMID: 34686320 PMCID: PMC8653526 DOI: 10.1016/j.celrep.2021.109843] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/11/2022] Open
Abstract
For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Denis Jabaudon
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Janet H T Song
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Luciano C Greig
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Sahni V, Itoh Y, Shnider SJ, Macklis JD. Crim1 and Kelch-like 14 exert complementary dual-directional developmental control over segmentally specific corticospinal axon projection targeting. Cell Rep 2021; 37:109842. [PMID: 34686337 PMCID: PMC8697027 DOI: 10.1016/j.celrep.2021.109842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
Zhu JW, Jia WQ, Zhou H, Li YF, Zou MM, Wang ZT, Wu BS, Xu RX. Deficiency of TRIM32 Impairs Motor Function and Purkinje Cells in Mid-Aged Mice. Front Aging Neurosci 2021; 13:697494. [PMID: 34421574 PMCID: PMC8377415 DOI: 10.3389/fnagi.2021.697494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Proper functioning of the cerebellum is crucial to motor balance and coordination in adult mammals. Purkinje cells (PCs), the sole output neurons of the cerebellar cortex, play essential roles in cerebellar motor function. Tripartite motif-containing protein 32 (TRIM32) is an E3 ubiquitin ligase that is involved in balance activities of neurogenesis in the subventricular zone of the mammalian brain and in the development of many nervous system diseases, such as Alzheimer's disease, autism spectrum disorder, attention deficit hyperactivity disorder. However, the role of TRIM32 in cerebellar motor function has never been examined. In this study we found that motor balance and coordination of mid-aged TRIM32 deficient mice were poorer than those of wild-type littermates. Immunohistochemical staining was performed to assess cerebella morphology and TRIM32 expression in PCs. Golgi staining showed that the extent of dendritic arborization and dendritic spine density of PCs were decreased in the absence of TRIM32. The loss of TRIM32 was also associated with a decrease in the number of synapses between parallel fibers and PCs, and in synapses between climbing fibers and PCs. In addition, deficiency of TRIM32 decreased Type I inositol 1,4,5-trisphosphate 5-phosphatase (INPP5A) levels in cerebellum. Overall, this study is the first to elucidate a role of TRIM32 in cerebellar motor function and a possible mechanism, thereby highlighting the importance of TRIM32 in the cerebellum.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Qiang Jia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhou
- Department of Pediatrics, Chengdu Children Special Hospital, Chengdu, China
| | - Yi-Fei Li
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ming-Ming Zou
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Tao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Shan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|