1
|
Latash ML. Useful and Useless Misnomers in Motor Control. Motor Control 2025; 29:69-98. [PMID: 39706171 DOI: 10.1123/mc.2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 12/23/2024]
Abstract
This article addresses the issue of using terms and concepts in motor control that are ill-defined, undefined, and/or imported from nonbiological fields. In many of such cases, the discourse turns nonscientific and unproductive. Some of such terms are potentially useful but need to be properly and exactly defined. Other terms seem to be misleading and nonfixable. There is also an intermediate group with terms that may or may not be useful if defined properly. The paper presents three examples per group: "reflex," "synergy," and "posture" versus "motor program," "efference copy," and "internal model" versus "muscle tone," "stiffness and impedance," and "redundancy." These terms are analyzed assuming that motor control is a branch of natural science, which must be analyzed using laws of nature, not a subfield of the control theory. In the discussion, we also accept the framework of the theory of movement control with spatial referent coordinates as the only example built on laws of nature with clearly formulated physical and physiological nature of the control parameters.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Kim YK, Gwerder M, Taylor WR, Baur H, Singh NB. Adaptive gait responses to varying weight-bearing conditions: Inferences from gait dynamics and H-reflex magnitude. Exp Physiol 2024; 109:754-765. [PMID: 38488681 PMCID: PMC11061628 DOI: 10.1113/ep091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024]
Abstract
This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H-reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing and placement of the foot during walking. We hypothesized that weight manipulation would alter H-reflex magnitude, footfall and lower body kinematics. Twenty healthy participants were recruited and subjected to various weight-loading conditions. The H-reflex, evoked by stimulating the tibial nerve, was assessed from the dominant leg during walking. Gait was evaluated under five conditions: body weight, 20% and 40% additional body weight, and 20% and 40% reduced body weight (via a harness). Participants walked barefoot on a treadmill under each condition, and the timing of electrical stimulation was set during the stance phase shortly after the heel strike. Results show that different weight-loading conditions significantly impact the timing and placement of the foot and gait stability. Weight reduction led to a 25% decrease in double limb support time and an 11% narrowing of step width, while weight addition resulted in an increase of 9% in step width compared to body weight condition. Furthermore, swing time variability was higher for both the extreme weight conditions, while the H-reflex reduced to about 45% between the extreme conditions. Finally, the H-reflex showed significant main effects on variability of both stance and swing phases, indicating that muscle-motor excitability might serve as feedback for enhanced regulation of gait dynamics under challenging conditions.
Collapse
Affiliation(s)
- Yong Kuk Kim
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Michelle Gwerder
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - William R. Taylor
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Heiner Baur
- School of Health Professions, PhysiotherapyUniversity of Applied SciencesBernSwitzerland
| | - Navrag B. Singh
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Singapore‐ETH Centre, Future Health Technologies ProgramSingaporeSingapore
| |
Collapse
|
3
|
Tan AQ, Tuthill C, Corsten AN, Barth S, Trumbower RD. A single sequence of intermittent hypoxia does not alter stretch reflex excitability in able-bodied individuals. Exp Physiol 2024; 109:576-587. [PMID: 38356241 PMCID: PMC10988685 DOI: 10.1113/ep091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Christopher Tuthill
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Anthony N. Corsten
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Stella Barth
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Randy D. Trumbower
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| |
Collapse
|
4
|
De SD, Ricotta JM, Benamati A, Latash ML. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry. J Neurophysiol 2024; 131:152-165. [PMID: 38116603 DOI: 10.1152/jn.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
We explored force-stabilizing synergies during accurate four-finger constant force production tasks in spaces of finger modes (commands to fingers computed to account for the finger interdependence) and of motor unit (MU) firing frequencies. The main specific hypothesis was that the multifinger synergies would disappear during unintentional force drifts without visual feedback on the force magnitude, whereas MU-based synergies would be robust to such drifts. Healthy participants performed four-finger accurate cyclical force production trials followed by trials of constant force production. Individual MUs were identified in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Principal component analysis was applied to motor unit frequencies to identify robust MU groups (MU-modes) with parallel scaling of the firing frequencies in FDS, in EDC, and the combined MUs of FDS + EDC. The framework of the uncontrolled manifold hypothesis was used to quantify force-stabilizing synergies when visual feedback on the force magnitude was available and 15 s after turning the visual feedback off. Removing visual feedback led to a force drift toward lower magnitudes, accompanied by the disappearance of multifinger synergies. In contrast, MU-mode synergies were minimally affected by removing visual feedback off and continued to be robust for the FDS and for the EDC, while being absent for the (FDS + EDC) analysis. We interpret the findings within the theory of hierarchical control of action with spatial referent coordinates. The qualitatively different behavior of the multifinger and MU-mode-based synergies likely reflects the difference in the involved neural circuitry, supraspinal for the former and spinal for the latter.NEW & NOTEWORTHY Two types of synergies, in the space of commands to individual fingers and in the space of motor unit groups, show qualitatively different behaviors during accurate multifinger force-production tasks. After removing visual feedback, finger force synergies disappear, whereas motor unit-based synergies persist. These results point at different neural circuitry involved in these two basic classes of synergies: supraspinal for multieffector synergies, and spinal for motor unit-based synergies.
Collapse
Affiliation(s)
- Sayan Deep De
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
5
|
Norman SL, Wolpaw JR, Reinkensmeyer DJ. Targeting neuroplasticity to improve motor recovery after stroke: an artificial neural network model. Brain Commun 2022; 4:fcac264. [PMID: 36458210 PMCID: PMC9700163 DOI: 10.1093/braincomms/fcac264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/18/2022] [Accepted: 10/19/2022] [Indexed: 10/23/2023] Open
Abstract
After a neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity protocols interact with the central nervous system to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different targeted neuroplasticity protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here, we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (i) study the mechanisms and patterns of cortical reorganization after a stroke; and (ii) identify and parameterize a targeted neuroplasticity protocol that improves recovery of extension torque. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal torque recovery. To enhance recovery, we interdigitated standard training with trials in which the network was given feedback only from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on ∼20% of the total trials restored lateralized cortical activation and improved recovery of extension torque. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable the identification and parameterization of the most promising targeted neuroplasticity protocols. By providing initial guidance, computational models could facilitate and accelerate the realization of new therapies that improve motor recovery.
Collapse
Affiliation(s)
- Sumner L Norman
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Mechanical and Aerospace Engineering, University of California: Irvine, Irvine, CA 92697, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center and State University of New York, Albany, NY 12208, USA
| | - David J Reinkensmeyer
- Mechanical and Aerospace Engineering, Anatomy and Neurobiology, University of California: Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Thompson AK, Gill CR, Feng W, Segal RL. Operant down-conditioning of the soleus H-reflex in people after stroke. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:859724. [PMID: 36188979 PMCID: PMC9397863 DOI: 10.3389/fresc.2022.859724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023]
Abstract
Through operant conditioning, spinal reflex behaviors can be changed. Previous studies in rats indicate that the sensorimotor cortex and corticospinal tract are essential in inducing and maintaining reflex changes induced through conditioning. In people with incomplete spinal cord injury (SCI), an operant down-conditioning protocol decreased the soleus H-reflex size and improved walking speed and symmetry, suggesting that a partially preserved spinal cord can support conditioning-induced plasticity and benefit from it. This study examined whether down-conditioning can decrease the soleus H-reflex in people with supraspinal injury (i.e., cortical or subcortical stroke). Operant down-conditioning was applied to the soleus H-reflex in a cohort of 12 stroke people with chronic spastic hemiparesis (>12 months from stroke onset of symptoms). Each participant completed 6 baseline and 30 conditioning sessions over 12 weeks. In each baseline session, 225 control H-reflexes were elicited without any feedback on H-reflex size. In each conditioning session, 225 conditioned H-reflexes were elicited while the participant was asked to decrease H-reflex size and was given visual feedback as to whether the resulting H-reflex was smaller than a criterion value. In six of 12 participants, the conditioned H-reflex became significantly smaller by 30% on average, whereas in other 6 participants, it did not. The difference between the subgroups was largely attributable to the difference in across-session control reflex change. Ten-meter walking speed was increased by various extent (+0.04 to +0.35, +0.14 m/s on average) among the six participants whose H-reflex decreased, whereas the change was 0.00 m/s on average for the rest of participants. Although less than what was seen in participants with SCI, the fact that conditioning succeeded in 50% of stroke participants supports the feasibility of reflex down-conditioning in people after stroke. At the same time, the difference in across-session control reflex change and conditioning success rate may reflect a critical role of supraspinal activity in producing long-term plasticity in the spinal cord, as previous animal studies suggested.
Collapse
Affiliation(s)
- Aiko K. Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Christina R. Gill
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, College of Health Professions, Duke University School of Medicine, Durham, NC, United States
| | - Richard L. Segal
- Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Tansey KE, Farrell BJ, Bruce JA, McKay WB. Soleus H and Lower Limb Posterior Root Muscle Reflexes During Stepping After Incomplete SCI. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:789333. [PMID: 36188913 PMCID: PMC9397667 DOI: 10.3389/fresc.2022.789333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
The goal of this study was to examine and compare the step cycle related modulation of the soleus H and posterior root muscle (PRM) reflexes in subjects with and without spinal cord injury. Ten subjects without neurological injury and fifteen subjects with spinal cord injury (SCI) underwent soleus H reflex and lower limb PRM reflex testing while standing and stepping in a robotic gait orthosis. Reflex amplitudes were evaluated during standing, mid stance and mid swing to determine if speed and/or injury altered step cycle related neuromodulation. H and PRM reflexes in the soleus underwent step cycle related modulation in injured and uninjured subjects though the degree of modulation differed between the two reflexes with the H reflex showing more step cycle related modulation. We found in the SCI group that both the soleus H and soleus PRM reflex amplitudes were higher relative to the non-injured group and modulated less during the step cycle. We also found that modulation of the soleus H reflex, but not soleus PRM reflex, correlated to the lower extremity motor scores in individuals with SCI. Our evidence suggests that the inability to provide appropriate step cycle related reflex modulation may be due to decreased supra-spinal regulation of motoneuron and spinal excitability and could be an indicator of the severity of injury as it relates to clinically measured lower extremity motor scores.
Collapse
Affiliation(s)
- Keith E. Tansey
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, United States
- *Correspondence: Keith E. Tansey
| | | | | | | |
Collapse
|
8
|
Sutor TW, Fuller DD, Fox EJ. Locomotor-respiratory coupling in ambulatory adults with incomplete spinal cord injury. Spinal Cord Ser Cases 2022; 8:49. [PMID: 35501342 PMCID: PMC9061751 DOI: 10.1038/s41394-022-00515-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY DESIGN Observational, analytical cohort study. OBJECTIVES After incomplete spinal cord injury (iSCI), propriospinal pathways may remain intact enabling coupling between respiration and locomotion. This locomotor-respiratory coupling (LRC) may enable coordination between these two important behaviors and have implications for rehabilitation after iSCI. However, coordination between these behaviors is not well understood and it is unknown if iSCI disrupts LRC. The objective of this study was to compare LRC in ambulatory adults with iSCI to able-bodied controls. SETTING Rehabilitation Research Center, Jacksonville, Florida, United States of America. METHODS Adults with iSCI (4 males, 1 female) and able-bodied controls (2 males, 3 females) walked at their fastest comfortable speed for 6 min over ground, and on a treadmill with bodyweight support (10-20%) and as-needed assistance at a standardized fast speed (controls) or their fastest speed (iSCI) for 6 min. LRC was quantified as the percent of breaths that were coupled with steps at a consistent ratio during the last 4 min of each walking condition. RESULTS Over ground, participants with iSCI demonstrated significantly more LRC than able-bodied controls (72.4 ± 6.4% vs. 59.1% ± 7.5, p = 0.016). During treadmill walking, LRC did not differ between groups (iSCI 67.5 ± 15.8% vs. controls 66.3 ± 4.0%, p > 0.05). CONCLUSIONS Adults with iSCI demonstrated similar or greater LRC compared to able-bodied controls. This suggests that pathways subserving coordination between these behaviors remain intact in this group of individuals who walk independently after iSCI.
Collapse
Affiliation(s)
- Tommy W Sutor
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Brooks Rehabilitation, Jacksonville, FL, USA.
| |
Collapse
|
9
|
Soleus H-reflex modulation during a double-legged drop landing task. Exp Brain Res 2022; 240:1093-1103. [PMID: 35122483 PMCID: PMC9018516 DOI: 10.1007/s00221-022-06316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Muscle spindle afferent feedback is modulated during different phases of locomotor tasks in a way that facilitates task goals. However, only a few studies have studied H-reflex modulation during landing. This study aimed to characterize soleus (SOL) H-reflex modulation during the flight and early landing period of drop landings. Since landing presumably involves a massive increase in spindle afferent firing due to rapid SOL muscle stretching, we hypothesized H-reflex size would decrease near landing reflecting neural modulation to prevent excessive motoneuron excitation. The soleus H-reflex was recorded during drop landings from a 30 cm height in nine healthy adults. Electromyography (SOL, tibialis anterior (TA), medial gastrocnemius, and vastus lateralis), ankle and knee joint motion and ground reaction force were recorded during landings. Tibial nerve stimulation was timed to elicit H-reflexes during the flight and early ground contact period (five 30 ms Bins from 90 ms before to 60 ms after landing). The H-reflexes recorded after landing (0-30 and 30-60 ms) were significantly smaller (21-36% less) than that recorded during the flight periods (90-0 ms before ground contact; P ≤ 0.004). The decrease in H-reflex size not occurring until after ground contact indicates a time-critical modulation of reflex gain during the last 30 ms of flight (i.e., time of tibial nerve stimulation). H-reflex size reduction after ground contact supports a probable neural strategy to prevent excessive reflex-mediated muscle activation and thereby facilitates appropriate musculotendon and joint stiffness.
Collapse
|
10
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
11
|
Xu J, Lopez AJ, Hoque MM, Borich MR, Kesar TM. Temporal Profile of Descending Cortical Modulation of Spinal Excitability: Group and Individual-Specific Effects. Front Integr Neurosci 2022; 15:777741. [PMID: 35197831 PMCID: PMC8859157 DOI: 10.3389/fnint.2021.777741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Sensorimotor control is modulated through complex interactions between descending corticomotor pathways and ascending sensory inputs. Pairing sub-threshold transcranial magnetic stimulation (TMS) with peripheral nerve stimulation (PNS) modulates the Hoffmann’s reflex (H-reflex), providing a neurophysiologic probe into the influence of descending cortical drive on spinal segmental circuits. However, individual variability in the timing and magnitude of H-reflex modulation is poorly understood. Here, we varied the inter-stimulus interval (ISI) between TMS and PNS to systematically manipulate the relative timing of convergence of descending TMS-induced volleys with respect to ascending PNS-induced afferent volleys in the spinal cord to: (1) characterize effective connectivity between the primary motor cortex (M1) and spinal circuits, mediated by both direct, fastest-conducting, and indirect, slower-conducting descending pathways; and (2) compare the effect of individual-specific vs. standard ISIs. Unconditioned and TMS-conditioned H-reflexes (24 different ISIs ranging from −6 to 12 ms) were recorded from the soleus muscle in 10 able-bodied individuals. The magnitude of H-reflex modulation at individualized ISIs (earliest facilitation delay or EFD and individual-specific peak facilitation) was compared with standard ISIs. Our results revealed a significant effect of ISI on H-reflex modulation. ISIs eliciting earliest-onset facilitation (EFD 0 ms) ranged from −3 to −5 ms across individuals. No difference in the magnitude of facilitation was observed at EFD 0 ms vs. a standardized short-interval ISI of −1.5 ms. Peak facilitation occurred at longer ISIs, ranging from +3 to +11 ms. The magnitude of H-reflex facilitation derived using an individual-specific peak facilitation was significantly larger than facilitation observed at a standardized longer-interval ISI of +10 ms. Our results suggest that unique insights can be provided with individual-specific measures of top-down effective connectivity mediated by direct and/or fastest-conducting pathways (indicated by the magnitude of facilitation observed at EFD 0 ms) and other descending pathways that encompass relatively slower and/or indirect connections from M1 to spinal circuits (indicated by peak facilitation and facilitation at longer ISIs). By comprehensively characterizing the temporal profile and inter-individual variability of descending modulation of spinal reflexes, our findings provide methodological guidelines and normative reference values to inform future studies on neurophysiological correlates of the complex array of descending neural connections between M1 and spinal circuits.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Alejandro J. Lopez
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Maruf M. Hoque
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Trisha M. Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Trisha M. Kesar
| |
Collapse
|
12
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
13
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Fattorini L, Rodio A, Pettorossi VE, Filippi GM. Is the Focal Muscle Vibration an Effective Motor Conditioning Intervention? A Systematic Review. J Funct Morphol Kinesiol 2021; 6:39. [PMID: 33924916 PMCID: PMC8167707 DOI: 10.3390/jfmk6020039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical vibration, applied to single or few muscles, can be a selective stimulus for muscle spindles, able to modify neuromuscular management, inducing short and long-term effects, are now mainly employed in clinic studies. Several studies reported as treatments with focal vibratory (FVT) can influence neuromuscular parameters also in healthy people. However, the application modalities and the consequent effects are remarkably fragmented. This paper aims to review these studies and to characterize the FVT effectiveness on long-term conditional capacities in relation to FVT characteristics. A systematic search of studies published from 1985 to 2020 in English on healthcare databases was performed. Articles had to meet the following criteria: (1) treatment based on a locally applied vibration on muscle belly or tendon; (2) healthy adults involved; (3) outcomes time analysis enduring for more than 24 h. Twelve studies were found, all of them presented an excellent quality score of ≥75%. All selected papers reported positive changes, comparable with traditional long-lasting training effects. Muscle force and power were the most investigated parameters. The after-effects persisted for up to several months. Among the different FV administration modalities, the most effective seems to show a stimulus frequency of ≈100 Hz, repeated more times within three-five days on a voluntary contracted muscle.
Collapse
Affiliation(s)
- Luigi Fattorini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Roma, Piazz.le A. Moro, 5, 00185 Roma, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino e Lazio Meridionale Via S. Angelo—Località Folcara, 03043 Cassino, Italy;
| | - Vito E. Pettorossi
- Department of Medicine and Surgery, University of Perugia, Piazza dell’Università, 1, 06123 Perugia, Italy;
| | - Guido M. Filippi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
15
|
A model for the transfer of control from the brain to the spinal cord through synaptic learning. J Comput Neurosci 2020; 48:365-375. [PMID: 33009635 DOI: 10.1007/s10827-020-00767-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022]
Abstract
The spinal cord is essential to the control of locomotion in legged animals and humans. However, the actual circuitry of the spinal controller remains only vaguely understood. Here we approach this problem from the viewpoint of learning. More precisely, we assume the circuitry evolves through the transfer of control from the brain to the spinal cord, propose a specific learning mechanism for this transfer based on the error between the cord and brain contributions to muscle control, and study the resulting structure of the spinal controller in a simplified neuromuscular model of human locomotion. The model focuses on the leg rebound behavior in stance and represents the spinal circuitry with 150 muscle reflexes. We find that after learning a spinal controller has evolved that produces leg rebound motions in the absence of a central brain input with only three structural reflex groups. These groups contain individual reflexes well known from physiological experiments but thought to serve separate purposes in the control of human locomotion. Our results suggest a more holistic interpretation of the role of individual sensory projections in spinal networks than is common. In addition, we discuss potential neural correlates for the proposed learning mechanism that may be probed in experiments. Together with such experiments, neuromuscular models of spinal learning likely will become effective tools for uncovering the structure and development of the spinal control circuitry.
Collapse
|
16
|
Thompson AK, Sinkjær T. Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis? Front Neurol 2020; 11:552. [PMID: 32765389 PMCID: PMC7381136 DOI: 10.3389/fneur.2020.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
Corticospinal pathway and its function are essential in motor control and motor rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending connections, and often diminishes corticospinal function. In people with MS, neural plasticity is available, although it does not necessarily remain stable over the course of disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve its function may lead to motor control improvements, which impact one's mobility, health, and wellness. In order to harness plasticity in people with MS, over the past two decades, non-invasive brain stimulation techniques have been examined for addressing common symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods appear promising, when it comes to motor rehabilitation, just inducing plasticity or having a capacity for it does not guarantee generation of better motor functions. Targeting plasticity to a key pathway, such as the corticospinal pathway, could change what limits one's motor control and improve function. One of such neural training methods is operant conditioning of the motor-evoked potential that aims to train the behavior of the corticospinal-motoneuron pathway. Through up-conditioning training, the person learns to produce the rewarded neuronal behavior/state of increased corticospinal excitability, and through iterative training, the rewarded behavior/state becomes one's habitual, daily motor behavior. This minireview introduces operant conditioning approach for people with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may help to prolong the duration of maintained motor function and quality of life in people living with MS.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Sinkjær
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Lundbeck Foundation, Copenhagen, Denmark
| |
Collapse
|
17
|
Torricelli D, De Marchis C, d'Avella A, Tobaruela DN, Barroso FO, Pons JL. Reorganization of Muscle Coordination Underlying Motor Learning in Cycling Tasks. Front Bioeng Biotechnol 2020; 8:800. [PMID: 32760711 PMCID: PMC7373728 DOI: 10.3389/fbioe.2020.00800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
The hypothesis of modular control, which stands on the existence of muscle synergies as building blocks of muscle coordination, has been investigated in a great variety of motor tasks and species. Yet, its role during learning processes is still largely unexplored. To what extent is such modular control flexible, in terms of spatial structure and temporal activation, to externally or internally induced adaptations, is a debated issue. To address this question, we designed a biofeedback experiment to induce changes in the timing of muscle activations during leg cycling movements. The protocol consisted in delaying the peak of activation of one target muscle and using its electromyography (EMG) envelope as visual biofeedback. For each of the 10 healthy participants, the protocol was repeated for three different target muscles: Tibialis Anterioris (TA), Gastrocnemius Medialis (GM), and Vastus Lateralis (VL). To explore the effects of the conditioning protocol, we analyzed changes in the activity of eight lower limb muscles by applying different models of modular motor control [i.e., fixed spatial components (FSC) and fixed temporal components (FTC)]. Our results confirm the hypothesis that visual EMG biofeedback is able to induce changes in muscle coordination. Subjects were able to shift the peak of activation of the target muscle, with a delay of (49 ± 27°) across subjects and conditions. This time shift generated a reorganization of all the other muscles in terms of timing and amplitude. By using different models of modular motor control, we demonstrated that neither spatially invariant nor temporally invariant muscle synergies alone were able to account for these changes in muscle coordination after learning, while temporally invariant muscle synergies with adjustments in timing could capture most of muscle activity adaptations observed after the conditioning protocol. These results suggest that short-term learning in rhythmic tasks is built upon synergistic temporal commands that are robust to changes in the task demands.
Collapse
Affiliation(s)
- Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Center (CSIC), Madrid, Spain
| | - Cristiano De Marchis
- Biomedical Engineering Laboratory, Department of Engineering, Università Roma TRE, Rome, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Università di Messina, Messina, Italy
| | - Daniel Nemati Tobaruela
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Center (CSIC), Madrid, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Center (CSIC), Madrid, Spain
| | - Jose L Pons
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Center (CSIC), Madrid, Spain.,Legs and Walking Lab, Shirley Ryan AbilityLab (formerly Rehabilitation Institute of Chicago), Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, United States.,Department of Mechanical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
Petrosyan H, Liang L, Tesfa A, Sisto SA, Fahmy M, Arvanian VL. Modulation of H-reflex responses and frequency-dependent depression by repetitive spinal electromagnetic stimulation: From rats to humans and back to chronic spinal cord injured rats. Eur J Neurosci 2020; 52:4875-4889. [PMID: 32594554 PMCID: PMC7818466 DOI: 10.1111/ejn.14885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022]
Abstract
The lack of propagation of signals through survived fibers is among the major reasons for functional loss after incomplete spinal cord injury (SCI). Our recent results of animal studies demonstrate that spinal electromagnetic stimulation (SEMS) can enhance transmission in damaged spinal cord, and this type of modulation depends on the function of NMDA receptors at the neuronal networks below the injury level. Here, our pilot human study revealed that administration of repetitive SEMS induced long‐lasting modulation of H‐responses in both healthy and participants with chronic SCI. In order to understand the mechanisms underlying these effects, we have used an animal model and examined effects of SEMS on H‐responses. Effects of SEMS on H‐responses, frequency‐dependent depression (FDD) of H‐reflex, and possible underlying mechanisms have been examined in both naïve and rats with SCI. Our results demonstrate that consistent with the effects of SEMS on H‐reflex seen in humans, repetitive SEMS induced similar modulation in excitability of peripheral nerve responses in both non‐injured and rats with SCI. Importantly, our results confirmed the reduced FDD of H‐reflex in SCI animals and revealed that SEMS was able to recover FDD in rats with chronic SCI. Using intraspinal injections of the NMDA receptor blocker MK‐801, we have identified NMDA receptors as an important contributor to these SEMS‐induced effects in rats with SCI. These results identify SEMS as a novel non‐invasive technique for modulation of neuro‐muscular circuits and, importantly, modulation of spinal networks after chronic SCI.
Collapse
Affiliation(s)
- Hayk Petrosyan
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Li Liang
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Asrat Tesfa
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Sue A Sisto
- Department of Physical Therapy, Division of Rehabilitation Sciences, Stony Brook University, Stony Brook, New York, USA.,Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Magda Fahmy
- Physical Medicine and Rehabilitation Services, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Victor L Arvanian
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
19
|
Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: a systematic review and meta-analysis. Spinal Cord 2020; 58:635-646. [DOI: 10.1038/s41393-020-0438-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023]
|
20
|
Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist 2020; 26:359-379. [DOI: 10.1177/1073858419896751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.
Collapse
|
21
|
Sun Y, Zehr EP. Training-Induced Neural Plasticity and Strength Are Amplified After Stroke. Exerc Sport Sci Rev 2019; 47:223-229. [PMID: 31283528 PMCID: PMC6887626 DOI: 10.1249/jes.0000000000000199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Following stroke, sensorimotor brain networks and descending regulation are compromised but spinal interlimb neural connections remain morphologically intact. After cross-education strength and locomotion training, amplified neural plasticity and functional responses are observed in chronic stroke compared with neurologically intact participants. We hypothesize that poststroke neuroplasticity is amplified because of the involvement of interlimb neural connections that persist from our quadrupedal ancestry.
Collapse
Affiliation(s)
- Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
22
|
Mrachacz-Kersting N, Kersting UG, de Brito Silva P, Makihara Y, Arendt-Nielsen L, Sinkjær T, Thompson AK. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol 2019; 122:435-446. [PMID: 31166816 DOI: 10.1152/jn.00211.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.
Collapse
Affiliation(s)
- N Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - U G Kersting
- Institute for Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - P de Brito Silva
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - Y Makihara
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - T Sinkjær
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - A K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
23
|
Al-Yahya E, Mahmoud W, Meester D, Esser P, Dawes H. Neural Substrates of Cognitive Motor Interference During Walking; Peripheral and Central Mechanisms. Front Hum Neurosci 2019; 12:536. [PMID: 30687049 PMCID: PMC6333849 DOI: 10.3389/fnhum.2018.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Current gait control models suggest that independent locomotion depends on central and peripheral mechanisms. However, less information is available on the integration of these mechanisms for adaptive walking. In this cross-sectional study, we investigated gait control mechanisms in people with Parkinson’s disease (PD) and healthy older (HO) adults: at self-selected walking speed (SSWS) and at fast walking speed (FWS). We measured effect of additional cognitive task (DT) and increased speed on prefrontal (PFC) and motor cortex (M1) activation, and Soleus H-reflex gain. Under DT-conditions we observed increased activation in PFC and M1. Whilst H-reflex gain decreased with additional cognitive load for both groups and speeds, H-reflex gain was lower in PD compared to HO while walking under ST condition at SSWS. Attentional load in PFC excites M1, which in turn increases inhibition on H-reflex activity during walking and reduces activity and sensitivity of peripheral reflex during the stance phase of gait. Importantly this effect on sensitivity was greater in HO. We have previously observed that the PFC copes with increased attentional load in young adults with no impact on peripheral reflexes and we suggest that gait instability in PD may in part be due to altered sensorimotor functioning reducing the sensitivity of peripheral reflexes.
Collapse
Affiliation(s)
- Emad Al-Yahya
- School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan.,Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wala' Mahmoud
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Institute for Clinical Psychology and Behavioural Neurobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Daan Meester
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Patrick Esser
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Faculty of Health and Life Sciences, Centre for Movement, Occupational and Rehabilitation Sciences, OxINMAHR, Oxford Brookes University, Oxford, United Kingdom
| | - Helen Dawes
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Faculty of Health and Life Sciences, Centre for Movement, Occupational and Rehabilitation Sciences, OxINMAHR, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
24
|
Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, Berardelli A. Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Front Neurol 2018; 9:935. [PMID: 30450077 PMCID: PMC6225532 DOI: 10.3389/fneur.2018.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The spinal cord spinal cord has in the past been considered a hardwired system which responds to inputs in a stereotyped way. A growing body of data have instead demonstrated its ability to retain information and modify its effector capabilities, showing activity-dependent plasticity. Whereas, plasticity in the spinal cord is well documented after different forms of physical exercise, whether exogenous stimulation can induce similar changes is still a matter of debate. This issue is both of scientific and clinical relevance, since at least one form of stimulation, i.e., focal muscle vibration (fMV), is currently used as a treatment for spasticity. The aim of the present study was to assess whether fMV can induce plasticity at the SC level when applied to different muscles of the upper limb. Changes in different electrophysiological measures, such as H-reflex testing homonymous and heteronymous pathways, reciprocal inhibition and somatosensory evoked potentials were used as outcomes. We found that fMV was able to induce long-term depression-like plasticity in specific spinal cord circuits depending on the muscle vibrated. These findings helped understand the basic mechanisms underlying the effects of fMV and might help to develop more advanced stimulation protocols.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| | - Claudia Celletti
- Physical Medicine and Rehabilitation Division, Sapienza University of Rome, Rome, Italy
| | - Filippo Camerota
- Physical Medicine and Rehabilitation Division, Sapienza University of Rome, Rome, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| |
Collapse
|
25
|
Wolpaw JR. The negotiated equilibrium model of spinal cord function. J Physiol 2018; 596:3469-3491. [PMID: 29663410 PMCID: PMC6092289 DOI: 10.1113/jp275532] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and ageing, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long-recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth CenterNYS Department of HealthAlbanyNYUSA
- Department of NeurologyStratton VA Medical CenterAlbanyNYUSA
- Department of Biomedical SciencesSchool of Public HealthSUNY AlbanyNYUSA
- Department of Neurology, Neurological InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
26
|
Hoque MM, Ardizzone MA, Sabatier M, Borich MR, Kesar TM. Longer Duration of Downslope Treadmill Walking Induces Depression of H-Reflexes Measured during Standing and Walking. NEUROLOGY (E-CRONICON) 2018; 10:761-770. [PMID: 31032493 PMCID: PMC6483108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The Hoffman-reflex (H-reflex) is an electrophysiological technique used to evaluate the excitability of the monosynaptic spinal reflex arc. In individuals with upper motor neuron lesions who show elevated spinal excitability, a depression of spinal excitability may indicate adaptive spinal plasticity. Downslope walking (DSW), an exercise intervention comprising repetitive eccentric muscle activity, has been shown to induce depression of soleus H-reflex amplitudes while seated, however, the dose-response time-course of H-reflex modulation during DSW has not been characterized. The objectives of this study were twofold: (1) to evaluate DSW-induced soleus H-reflex depression in the standing posture and during walking, and (2) to investigate the effect of walking duration (20 minutes and 40 minutes) of DSW (-15% decline) on soleus H-reflexes, (with level walking (LW) as a control intervention). METHODS Soleus H-reflexes were collected Pre, Post-20 minutes, and Post-40 minutes of walking in the standing position; and H-reflexes were also measured at 4 different time points during the terminal stance phase of walking. RESULTS Our results showed that soleus H-reflexes evaluated in standing showed a greater % depression after DSW compared to LW, with a statistical trend for greater depression with longer durations (40-minutes). H-reflexes measured during walking showed greater depression after 40 minutes of walking compared to 20- or 30-minutes for both DSW and LW. CONCLUSIONS Longer duration treadmill walking (40-minutes) may induce a greater acute depressive effect on soleus H-reflex excitability compared to shorter durations (20-minutes) of treadmill walking. Future work will investigate the potential for DSW as a gait training intervention in people with upper motor neuron lesions such as multiple sclerosis and stroke.
Collapse
Affiliation(s)
- Maruf M Hoque
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Melissa A Ardizzone
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Manning Sabatier
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Trisha M Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Operant Up-Conditioning of the Tibialis Anterior Motor-Evoked Potential in Multiple Sclerosis: Feasibility Case Studies. Neural Plast 2018; 2018:4725393. [PMID: 30123249 PMCID: PMC6079394 DOI: 10.1155/2018/4725393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/12/2018] [Indexed: 11/18/2022] Open
Abstract
Damage to the corticospinal pathway often results in weak dorsiflexion of the ankle, thereby limiting the mobility of people with multiple sclerosis (MS). Thus, strengthening corticospinal connectivity may improve locomotion. Here, we investigated the feasibility of tibialis anterior (TA) motor-evoked potential (MEP) operant conditioning and whether it can enhance corticospinal excitability and alleviate locomotor problems in people with chronic stable MS. The protocol consisted of 6 baseline and 24 up-conditioning sessions over 10 weeks. In all sessions, TA MEPs were elicited at 10% above active threshold while the sitting subject provided 30–35% maximum voluntary contraction (MVC) level of TA background EMG. During baseline sessions, MEPs were simply measured. During conditioning trials of the conditioning sessions, the subject was encouraged to increase MEP and was given immediate feedback indicating whether MEP size was above a criterion. In 3/4 subjects, TA MEP increased 32–75%, MVC increased 28–52%, locomotor EMG modulation improved in multiple leg muscles, and foot drop became less severe. In one of them, MEP and MVC increases were maintained throughout 3 years of extensive follow-up sessions. These initial results support a therapeutic possibility of MEP operant conditioning for improving locomotion in people with MS or other CNS disorders, such as spinal cord injury and stroke.
Collapse
|
28
|
Dishman JD, Burke JR, Dougherty P. Motor Neuron Excitability Attenuation as a Sequel to Lumbosacral Manipulation in Subacute Low Back Pain Patients and Asymptomatic Adults: A Cross-Sectional H-Reflex Study. J Manipulative Physiol Ther 2018; 41:363-371. [PMID: 29997032 DOI: 10.1016/j.jmpt.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of the study was to compare a time series of tibial nerve H-reflex trials between patients with subacute low back pain (LBP) and asymptomatic adults using pre and post high-velocity, low-amplitude (HVLA) spinal manipulation (SM) and control procedures. METHODS Asymptomatic adults (n = 66) and patients with subacute LBP (n = 45) were randomized into 3 lumbosacral procedures: side-posture positioning, joint preloading with no thrust, and HVLA SM. A time series of 40 Hmax/Mmax ratios at a rate of 0.1 Hz were recorded in blocks of 10 trials at baseline and after the lumbosacral procedures at time points corresponding to immediately after, 5 minutes after, and 10 minutes after the procedure. Descriptive time series analysis techniques included time plots, outlier detection, and autocorrelation functions. A mixed analysis of variance model (group × procedure × time) was used to compare the effects of lumbosacral procedures on Hmax/Mmax ratios between the patients with subacute LBP and asymptomatic participants. RESULTS The time series analysis and the significant lumbosacral × time interaction term (P < .05) indicated that inhibition of the Hmax/Mmax ratios at the 10-second postlumbosacral procedure time point was greatest after the HVLA SM procedure. The effects of lumbosacral procedures on Hmax/Mmax ratios were similar between patients with subacute LBP and asymptomatic participants. CONCLUSIONS Although nonspecific effects of movement or position artifacts on the Hmax/Mmax ratio were present, a reliable and valid attenuation of the Hmax/Mmax ratio occurred as a specific aspect of HVLA SM in both asymptomatic adults and patients with subacute LBP.
Collapse
Affiliation(s)
- J Donald Dishman
- Clinical Neurosciences Institute, Palmer College of Chiropractic Florida, Port Orange, Florida
| | - Jeanmarie R Burke
- Research Department, New York Chiropractic College, Seneca Falls, New York.
| | - Paul Dougherty
- Research Department, New York Chiropractic College, Seneca Falls, New York
| |
Collapse
|
29
|
Abstract
Recent advances in neuroscience and devices are ushering in a new generation of medical treatments. Engineered biodevices are demonstrating the potential to create long-term changes in neural circuits, termed neuroplasticity. Thus, the approach of engineering neuroplasticity is rapidly expanding, building on recent demonstrations of improved quality of life for people with movement disorders, epilepsy, and spinal cord injury. In addition, discovering the fundamental mechanisms of engineered neuroplasticity by leveraging anatomically well-documented systems like the spinal cord is likely to provide powerful insights into solutions for other neurotraumas, such as stroke and traumatic brain injury, as well as neurodegenerative disorders, such as Alzheimer's, Parkinson disease, and multiple sclerosis. Now is the time for advancing both the experimental neuroscience, device development, and pioneering human trials to reap the benefits of engineered neuroplasticity as a therapeutic approach for improving quality of life after spinal cord injury.
Collapse
Affiliation(s)
- Chet T Moritz
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA.
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
- UW Institute of Neuroengineering (UWIN), University of Washington, Seattle, WA, USA.
- Washington Spinal Cord Injury Consortium, University of Washington, Seattle, WA, USA.
- Center for Sensorimotor Neural Engineering, Seattle, WA, USA.
- Department of Electrical Engineering, University of Washington , Box 356490, Seattle, WA, 98195, USA.
| |
Collapse
|
30
|
Piazza S, Torricelli D, Gómez-Soriano J, Serrano-Muñoz D, Ávila-Martín G, Galán-Arriero I, Pons JL, Taylor J. Assessing sensorimotor excitability after spinal cord injury: a reflex testing method based on cycling with afferent stimulation. Med Biol Eng Comput 2018; 56:1425-1434. [PMID: 29340899 DOI: 10.1007/s11517-018-1787-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Several studies have examined spinal reflex modulation during leg cycling in healthy and spinal cord injury (SCI) subjects. However, the effect of cutaneous plantar afferent input on spinal excitability during leg cycling after SCI has not been characterised. The aim of the study was to test the feasibility of using controlled leg cycling in combination with plantar cutaneous electrical stimulation (ES) cycling to assess lower limb spinal sensorimotor excitability in subjects with motor complete or incomplete SCI. Spinal sensorimotor excitability was estimated by measuring cutaneomuscular-conditioned soleus H-reflex activity. Reflex excitability was tested before and after a 10-min ES cycling session in 13 non-injured subjects, 6 subjects with motor incomplete SCI (iSCI) who had moderately impaired gait function, 4 subjects with motor iSCI who had severely impaired gait function, and 5 subjects with motor complete SCI (cSCI). No modulation of soleus H-reflex with plantar cutaneous stimuli was observed after either iSCI or cSCI when compared to non-injured subjects. However, after ES cycling, reflex excitability significantly increased in subjects with iSCI and moderately impaired gait function. ES cycling facilitated spinal sensorimotor excitability only in subjects with motor iSCI with residual gait function. Increased spinal excitability induced with a combination of exercise and afferent stimulation could be adopted with diagnostic and prognostic purposes to reveal the activity-based neurorehabilitation profile of individual subjects with motor iSCI. TRIAL REGISTRATION ISRCTN 26172500 ; retrospectively registered on 15 July 2016 Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain. .,Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, University of Castilla-La Mancha, 45072, Toledo, Spain.
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - Gerardo Ávila-Martín
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - Iriana Galán-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain.,Tecnológico de Monterrey, Monterrey, Mexico
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain.,Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury, HP21 8AL, UK.,Harris Manchester College, University of Oxford, Oxford, OX1 3TD, UK
| |
Collapse
|
31
|
Goganau I, Sandner B, Weidner N, Fouad K, Blesch A. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp Neurol 2017; 300:247-258. [PMID: 29183676 DOI: 10.1016/j.expneurol.2017.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI.
Collapse
Affiliation(s)
- Ioana Goganau
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Beatrice Sandner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry and Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, 3-87 Corbett Hall, Edmonton, Alberta T6G 2G4, Canada
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany; Stark Neurosciences Research Institute, Indiana University School of Medicine, Dept. of Neurological Surgery and Goodman Campbell Brain and Spine, 320 West 15th St., Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Kathe C, Hutson TH, McMahon SB, Moon LDF. Intramuscular Neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats. eLife 2016; 5. [PMID: 27759565 PMCID: PMC5070949 DOI: 10.7554/elife.18146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022] Open
Abstract
Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms. DOI:http://dx.doi.org/10.7554/eLife.18146.001 Injuries to the brain and spinal cord cause disability in millions of people worldwide. Physical rehabilitation can restore some muscle control and improve mobility in affected individuals. However, no current treatments provide long-term relief from the unwanted muscle contractions and spasms that affect as many as 78% of people with a spinal cord injury. These spasms can seriously hamper a person’s ability to carry out day-to-day tasks and get around independently. A few treatments can help in the short term but have side effects; indeed while Botox injections are used to paralyse the muscle, these also reduce the chances of useful improvements. As such, better therapies for muscle spasms are needed; especially ones that reduce spasms in the arms. Rats with injuries to the spinal cord between their middle to lower back typically develop spasms in their legs or tail, and rat models have helped scientists begin to understand why these involuntary movements occur. Now, Kathe et al. report that cutting one specific pathway that connects the brain to the spinal cord in anesthetised rats leads to the development of spasms in the forelimbs as well. Several months after the surgery, the rats had spontaneous muscle contractions in their forelimbs and walked abnormally. Further experiments showed that some other neural pathways in the rats became incorrectly wired and hyperactive and that this resulted in the abnormal movements. Next, Kathe et al. asked whether using gene therapy to deliver a protein that is required for neural circuits to form between muscles and the spinal cord (called neurotrophin-3) would stop the involuntary movements in the forelimbs. Delivering the gene therapy directly into the forelimb muscles of the disabled rats a day after their injury increased the levels of neurotrophin-3 in these muscles. Rats that received this treatment had fewer spasms and walked better than those that did not. Further experiments confirmed that this was because the rats’ previously hyperactive and abnormally wired neural circuits became more normal after the treatment. Together these results suggest that neurotrophin-3 might be a useful treatment for muscle spasms in people with spinal injury. There have already been preliminary studies in people showing that treatment with neurotrophin-3 is safe and well tolerated. Future studies are needed to confirm that it could be useful in humans. DOI:http://dx.doi.org/10.7554/eLife.18146.002
Collapse
Affiliation(s)
- Claudia Kathe
- Neurorestoration Department, Wolfson Centre for Age-Related Diseases, King's College London, University of London, London, United Kingdom
| | - Thomas Haynes Hutson
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Stephen Brendan McMahon
- Neurorestoration Department, Wolfson Centre for Age-Related Diseases, King's College London, University of London, London, United Kingdom
| | - Lawrence David Falcon Moon
- Neurorestoration Department, Wolfson Centre for Age-Related Diseases, King's College London, University of London, London, United Kingdom
| |
Collapse
|
34
|
Mrachacz-Kersting N, Jiang N, Stevenson AJT, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, Farina D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol 2015; 115:1410-21. [PMID: 26719088 DOI: 10.1152/jn.00918.2015] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 01/12/2023] Open
Abstract
Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention.
Collapse
Affiliation(s)
- Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark;
| | - Ning Jiang
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Andrew James Thomas Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Imran Khan Niazi
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Kostic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasa Radovanovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Kim Dremstrup
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
35
|
Stevenson AJ, Mrachacz-Kersting N, van Asseldonk E, Turner DL, Spaich EG. Spinal plasticity in robot-mediated therapy for the lower limbs. J Neuroeng Rehabil 2015; 12:81. [PMID: 26377324 PMCID: PMC4574007 DOI: 10.1186/s12984-015-0073-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/03/2015] [Indexed: 12/02/2022] Open
Abstract
Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.
Collapse
Affiliation(s)
- Andrew Jt Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| | - Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| | - Edwin van Asseldonk
- Biomedical Engineering, University of Twente, 7522NB, Enschede, The Netherlands.
| | - Duncan L Turner
- NeuroRehabilitation Unit, School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, England.
| | - Erika G Spaich
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| |
Collapse
|
36
|
Abstract
An operant-conditioning protocol that bases reward on the electromyographic response produced by a specific CNS pathway can change that pathway. For example, in both animals and people, an operant-conditioning protocol can increase or decrease the spinal stretch reflex or its electrical analog, the H-reflex. Reflex change is associated with plasticity in the pathway of the reflex as well as elsewhere in the spinal cord and brain. Because these pathways serve many different behaviors, the plasticity produced by this conditioning can change other behaviors. Thus, in animals or people with partial spinal cord injuries, appropriate reflex conditioning can improve locomotion. Furthermore, in people with spinal cord injuries, appropriate reflex conditioning can trigger widespread beneficial plasticity. This wider plasticity appears to reflect an iterative process through which the multiple behaviors in the individual's repertoire negotiate the properties of the spinal neurons and synapses that they all use. Operant-conditioning protocols are a promising new therapeutic method that could complement other rehabilitation methods and enhance functional recovery. Their successful use requires strict adherence to appropriately designed procedures, as well as close attention to accommodating and engaging the individual subject in the conditioning process.
Collapse
|
37
|
Makihara Y, Segal RL, Wolpaw JR, Thompson AK. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans. J Neurophysiol 2014; 112:1439-46. [PMID: 24944216 DOI: 10.1152/jn.00225.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion.
Collapse
Affiliation(s)
- Yukiko Makihara
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Program in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard L Segal
- Program in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Neurology, Neurological Institute, Columbia University, New York, New York; and Department of Biomedical Sciences, State University of New York, Albany, New York
| | - Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Neurology, Neurological Institute, Columbia University, New York, New York; and Department of Biomedical Sciences, State University of New York, Albany, New York
| |
Collapse
|