1
|
Izquierdo M, de Souto Barreto P, Arai H, Bischoff-Ferrari HA, Cadore EL, Cesari M, Chen LK, Coen PM, Courneya KS, Duque G, Ferrucci L, Fielding RA, García-Hermoso A, Gutiérrez-Robledo LM, Harridge SDR, Kirk B, Kritchevsky S, Landi F, Lazarus N, Liu-Ambrose T, Marzetti E, Merchant RA, Morley JE, Pitkälä KH, Ramírez-Vélez R, Rodriguez-Mañas L, Rolland Y, Ruiz JG, Sáez de Asteasu ML, Villareal DT, Waters DL, Won Won C, Vellas B, Fiatarone Singh MA. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J Nutr Health Aging 2024:100401. [PMID: 39743381 DOI: 10.1016/j.jnha.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025]
Abstract
Aging, a universal and inevitable process, is characterized by a progressive accumulation of physiological alterations and functional decline over time, leading to increased vulnerability to diseases and ultimately mortality as age advances. Lifestyle factors, notably physical activity (PA) and exercise, significantly modulate aging phenotypes. Physical activity and exercise can prevent or ameliorate lifestyle-related diseases, extend health span, enhance physical function, and reduce the burden of non-communicable chronic diseases including cardiometabolic disease, cancer, musculoskeletal and neurological conditions, and chronic respiratory diseases as well as premature mortality. Physical activity influences the cellular and molecular drivers of biological aging, slowing aging rates-a foundational aspect of geroscience. Thus, PA serves both as preventive medicine and therapeutic agent in pathological states. Sub-optimal PA levels correlate with increased disease prevalence in aging populations. Structured exercise prescriptions should therefore be customized and monitored like any other medical treatment, considering the dose-response relationships and specific adaptations necessary for intended outcomes. Current guidelines recommend a multifaceted exercise regimen that includes aerobic, resistance, balance, and flexibility training through structured and incidental (integrated lifestyle) activities. Tailored exercise programs have proven effective in helping older adults maintain their functional capacities, extending their health span, and enhancing their quality of life. Particularly important are anabolic exercises, such as Progressive resistance training (PRT), which are indispensable for maintaining or improving functional capacity in older adults, particularly those with frailty, sarcopenia or osteoporosis, or those hospitalized or in residential aged care. Multicomponent exercise interventions that include cognitive tasks significantly enhance the hallmarks of frailty (low body mass, strength, mobility, PA level, and energy) and cognitive function, thus preventing falls and optimizing functional capacity during aging. Importantly, PA/exercise displays dose-response characteristics and varies between individuals, necessitating personalized modalities tailored to specific medical conditions. Precision in exercise prescriptions remains a significant area of further research, given the global impact of aging and broad effects of PA. Economic analyses underscore the cost benefits of exercise programs, justifying broader integration into health care for older adults. However, despite these benefits, exercise is far from fully integrated into medical practice for older people. Many healthcare professionals, including geriatricians, need more training to incorporate exercise directly into patient care, whether in settings including hospitals, outpatient clinics, or residential care. Education about the use of exercise as isolated or adjunctive treatment for geriatric syndromes and chronic diseases would do much to ease the problems of polypharmacy and widespread prescription of potentially inappropriate medications. This intersection of prescriptive practices and PA/exercise offers a promising approach to enhance the well-being of older adults. An integrated strategy that combines exercise prescriptions with pharmacotherapy would optimize the vitality and functional independence of older people whilst minimizing adverse drug reactions. This consensus provides the rationale for the integration of PA into health promotion, disease prevention, and management strategies for older adults. Guidelines are included for specific modalities and dosages of exercise with proven efficacy in randomized controlled trials. Descriptions of the beneficial physiological changes, attenuation of aging phenotypes, and role of exercise in chronic disease and disability management in older adults are provided. The use of exercise in cardiometabolic disease, cancer, musculoskeletal conditions, frailty, sarcopenia, and neuropsychological health is emphasized. Recommendations to bridge existing knowledge and implementation gaps and fully integrate PA into the mainstream of geriatric care are provided. Particular attention is paid to the need for personalized medicine as it applies to exercise and geroscience, given the inter-individual variability in adaptation to exercise demonstrated in older adult cohorts. Overall, this consensus provides a foundation for applying and extending the current knowledge base of exercise as medicine for an aging population to optimize health span and quality of life.
Collapse
Affiliation(s)
- Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain.
| | - Philipe de Souto Barreto
- IHU HealthAge, Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, UPS/Inserm 1295, Toulouse, France
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| | - Heike A Bischoff-Ferrari
- Department of Geriatrics and Aging Research, Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - Eduardo L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Brazil
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei Municipal Gab-Dau Hospital, Taipei, Taiwan
| | - Paul M Coen
- AdventHealth Orlando, Translational Research Institute, Orlando, Florida, United States
| | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, College of Health Sciences, University of Alberta, Edmonton, Alberta T6G 2H9, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Luigi Ferrucci
- National Institute on Aging, Baltimore, MD, United States
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, United States
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain
| | | | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, United Kingdom
| | - Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St. Albans, Melbourne, VIC, Australia
| | - Stephen Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Norman Lazarus
- Centre for Human and Applied Physiological Sciences, King's College London, United Kingdom
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Health Laboratory, Department of Physical Therapy, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute,Vancouver, BC, Canada
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Reshma A Merchant
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - John E Morley
- Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Kaisu H Pitkälä
- University of Helsinki and Helsinki University Hospital, PO Box 20, 00029 Helsinki, Finland
| | - Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain
| | - Leocadio Rodriguez-Mañas
- CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain; Geriatric Service, University Hospital of Getafe, Getafe, Spain
| | - Yves Rolland
- IHU HealthAge, Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, UPS/Inserm 1295, Toulouse, France
| | - Jorge G Ruiz
- Memorial Healthcare System, Hollywood, Florida and Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, Florida, United States
| | - Mikel L Sáez de Asteasu
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain
| | - Dennis T Villareal
- Baylor College of Medicine, and Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, Texas, United States
| | - Debra L Waters
- Department of Medicine, School of Physiotherapy, University of Otago, Dunedin, New Zealand; Department of Internal Medicine/Geriatrics, University of New Mexico, Albuquerque, Mexico
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bruno Vellas
- IHU HealthAge, Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, UPS/Inserm 1295, Toulouse, France
| | - Maria A Fiatarone Singh
- Faculty of Medicine and Health, School of Health Sciences and Sydney Medical School, University of Sydney, New South Wales, Australia, and Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
| |
Collapse
|
2
|
Brown JL, Raeder R, Troyanos C, Dyer KS. Psychological Assessment and Intervention at the Boston Marathon. Sports Med 2024; 54:2979-2991. [PMID: 39352666 DOI: 10.1007/s40279-024-02116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 12/01/2024]
Abstract
The Boston Marathon is a highly regarded event in the running world, not just for its prestige and challenging course, but also for its implementation of a psychology team to support runners. The 2013 Boston Marathon bombings underscored the essential role that mental health support plays at this event, prompting the development and expansion of its innovative care model. This review critically outlines, evaluates, and analyzes the approach and effectiveness of the psychological care model provided to runners on race day as part of the Boston Marathon medical team, including the standard of care, how it functions, and best practices for other marathons. The implications for this review contribute to the increasing trend of providing psychological care in marathon and other athletic settings, and to provide a framework for standardizing assessment and intervention procedures for both elite and novice runners.
Collapse
Affiliation(s)
- Jeffrey L Brown
- Department of Psychiatry, Harvard Medical School, Boston, USA.
- Department of Psychology, McLean Hospital, Belmont, USA.
- Boston Marathon, Boston Athletic Association, Boston, USA.
| | - Robert Raeder
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, USA
| | - Chris Troyanos
- Boston Marathon, Boston Athletic Association, Boston, USA
| | - K Sophia Dyer
- Boston Marathon, Boston Athletic Association, Boston, USA
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, USA
| |
Collapse
|
3
|
Balezina OP, Tarasova EO, Bogacheva PO. Myogenic Classical Endocannabinoids, Their Targets and Activity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1759-1778. [PMID: 39523114 DOI: 10.1134/s0006297924100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
This review focuses on the recently discovered specific action of two classical endocannabinoids (ECs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA), in the case of their synthesis and degradation in skeletal muscles; in other words, this review is dedicated to properties and action of the myoendocannabinoid (myoEC) pool. Influence of this pool is considered at three different levels: at the level of skeletal muscles, motor synapses, and also at the level of the whole organism, including central nervous system. Special attention is paid to the still significantly underestimated and intriguing ability of ECs to have positive effect on energy exchange and contractile activity of muscle fibers, as well as on transmitter secretion in motor synapses. Role of muscle contractions in regulation of activity balance between the enzymes catalyzing synthesis and degradation of myoECs and, therefore, in the release of myoECs and exertion of their specific effects is thoroughly considered. Increasingly popular hypotheses about the prominent role of myoECs (AEA and/or 2-AG) in the rise of the overall level of ECs in the blood during muscle exercise and the development of "runner's high" and about the role of myoECs in the correction of a number of psychophysiological conditions (pain syndrome, stress, etc.) are discussed here. Thus, this review presents information about the myoEC pool from a totally new viewpoint, underlining its possible independent and non-trivial regulatory role in the body, in contrast to the traditional and well-known activity of neurogenic ECs.
Collapse
Affiliation(s)
- Olga P Balezina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Polina O Bogacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Murawska-Ciałowicz E, Ciałowicz M, Rosłanowski A, Kaczmarek A, Ratajczak-Wielgomas K, Kmiecik A, Partyńska A, Dzięgiel P, Andrzejewski W. Changes in BDNF Concentration in Men after Foam Roller Massage. Cells 2024; 13:1564. [PMID: 39329748 PMCID: PMC11430617 DOI: 10.3390/cells13181564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Massage is one of the oldest forms of therapy practiced since ancient times. Nowadays, it is used in sports practice, recovery from injury, or supportive therapy for various conditions. The practice of massage uses a variety of instruments that facilitate massaging while relieving the stress on the masseur. One of them is a foam roller. Although roller massage is widely used, there are still no scientific studies describing the biological mechanisms of its effects on the body. The purpose of our study was to analyze the effect of roller massage on BDNF levels in men undergoing self-massage 4x/week/7 weeks. The control group consisted of men who did not perform self-massage. Before the test and after the first, third, fifth, and seventh weeks of self-massage, the study participants' blood was drawn, the serum BDNF was determined, and the results were subjected to analysis of variance by ANOVA test. After the first week of self-massage, an increase in BDNF concentration was observed in the self-massage group compared to the control group (p = 0.023). Similarly, changes were observed in week five (p = 0.044) and week seven (p = 0.046). In the massaged group, BDNF concentrations were significantly higher after the first week of self-massage compared to baseline. In the third week of the study, BDNF decreased to a value comparable to the baseline study, then increased significantly in the fifth and seventh weeks compared to the value recorded in the third week (p = 0.049 and p = 0.029). It was significantly higher in week seven compared to week five (p = 0.03). Higher concentrations of BDNF in subjects undergoing roller self-massage may be one of the biological mechanisms justifying the therapeutic effects of massage in both sports and clinical practice. Studies analyzing the stimulation of BDNF synthesis through various massage techniques should be performed on a larger group of healthy individuals, patients after trauma of multiple origins, and sick people with indications for therapeutic massage.
Collapse
Affiliation(s)
- Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Maria Ciałowicz
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| | - Adam Rosłanowski
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| | - Agnieszka Kaczmarek
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Aleksandra Partyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Piotr Dzięgiel
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Waldemar Andrzejewski
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| |
Collapse
|
5
|
Weiermair T, Svehlikova E, Boulgaropoulos B, Magnes C, Eberl A. Investigating Runner's High: Changes in Mood and Endocannabinoid Concentrations after a 60 min Outdoor Run Considering Sex, Running Frequency, and Age. Sports (Basel) 2024; 12:232. [PMID: 39330709 PMCID: PMC11435531 DOI: 10.3390/sports12090232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Runner's high is a euphoric emotional state occurring during and post-physical exercise. Although previous data indicate endocannabinoids' involvement in animal runner's high, their role in human runner's high remains to be established. We investigated runner's high in healthy humans assessing mood and plasma endocannabinoid concentration changes pre- and post a 60 min outdoor run, considering sex (8 females/8 males), running frequency (4 occasional/12 regular runners) and age (median split 36 years). Mood, AEA, and 2-AG concentrations were significantly increased post-run considering all participants (p < 0.0001, p < 0.0001, p < 0.01, respectively), with 2-AG varying more than AEA concentrations. Concentrations of both endocannabinoids increased pre- to post-run in women (p < 0.01) but the AEA concentration increase was higher in females than in males (p < 0.05). Post-run concentration increase appeared to be more pronounced in occasional than in regular runners for 2-AG but not for AEA. However, regular runners experienced stronger mood increases and better post-run mood than occasional runners. Post-run endocannabinoid concentrations were increased regardless of age. AEA concentrations and their post-run changes were less affected by running frequency and age than those of 2-AG. These findings provide insights into the interplay of physical exercise, physiological/psychological factors and demographics, laying a valuable foundation for future research.
Collapse
Affiliation(s)
- Theresia Weiermair
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Eva Svehlikova
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christoph Magnes
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Anita Eberl
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
6
|
Dalle S, Hiroux C, Koppo K. Endocannabinoid remodeling in murine cachexic muscle associates with catabolic and metabolic regulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167179. [PMID: 38653357 DOI: 10.1016/j.bbadis.2024.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Muscle degeneration is a common feature in cancer cachexia that cannot be reversed. Recent advances show that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1), regulates muscle processes, including metabolism, anabolism and regenerative capacity. However, it is unclear whether muscle endocannabinoids, their receptors and enzymes are responsive to cachexia and exercise. Therefore, this study investigated whether cachexia and exercise affected muscle endocannabinoid signaling, and whether CB1 expression correlated with markers of muscle anabolism, catabolism and metabolism. Male BALB/c mice were injected with PBS (CON) or C26 colon carcinoma cells (C26) and had access to wheel running (VWR) or remained sedentary (n = 5-6/group). Mice were sacrificed 18 days upon PBS/tumor cell injection. Cachexic mice exhibited a lower muscle CB1 expression (-43 %; p < 0.001) and lower levels of the endocannabinoid anandamide (AEA; -22 %; p = 0.044), as well as a lower expression of the AEA-synthesizing enzyme NAPE-PLD (-37 %; p < 0.001), whereas the expression of the AEA degrading enzyme FAAH was higher (+160 %; p < 0.001). The 2-AG-degrading enzyme MAGL, was lower in cachexic muscle (-34 %; p = 0.007), but 2-AG and its synthetizing enzyme DAGLβ were not different between CON and C26. VWR increased muscle CB1 (+25 %; p = 0.005) and increased MAGL expression (+30 %; p = 0.035). CB1 expression correlated with muscle mass, markers of metabolism (e.g. p-AMPK, PGC1α) and of catabolism (e.g. p-FOXO, LC3b, Atg5). Our findings depict an emerging role of the endocannabinoid system in muscle physiology. Future studies should elaborate how this translates into potential therapies to combat cancer cachexia, and other degenerative conditions.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Dept. of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Dept. of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Dept. of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Claussen MC, Currie A, Koh Boon Yau E, Nishida M, Martínez V, Burger J, Creado S, Schorb A, Nicola RF, Pattojoshi A, Menon R, Glick I, Whitehead J, Edwards C, Baron D. First international consensus statement on sports psychiatry. Scand J Med Sci Sports 2024; 34:e14627. [PMID: 38610076 DOI: 10.1111/sms.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Sports psychiatry is a young field of medicine and psychiatry that focuses on mental health among athletes, and sports and exercise within psychiatry and mental disorders. However, the development of sports psychiatry and its fields of activity vary from region to region and are not uniform yet. Sports psychiatry and the role of sports psychiatrists have also already been discussed in the field of sports and exercise medicine, and within medical teams in competitive and elite sports. A uniform definition on sports psychiatry, its fields of activity, sports psychiatrist, and the essential knowledge, skills, and abilities (plus attitudes, eKSA+A) of the sports psychiatrist were developed as part of an International Society for Sports Psychiatry (ISSP) Summit, as well as First International Consensus Statement on Sports Psychiatry. Three fields of activity can be distinguished within sports psychiatry: (i) mental health and disorders in competitive and elite sports, (ii) sports and exercise in prevention of and treatment for mental disorders, and (iii) mental health and sport-specific mental disorders in recreational sports. Each of these fields have its own eKSA+A. The definitions on sports psychiatry and sports psychiatrists, as well as the framework of eKSA+A in the different fields of activity of sports psychiatrists will help to unify and standardize the future development of sports psychiatry, establish a standard of service within sports psychiatry and together with the neighboring disciplines, and should be included into current, and future sports psychiatry education and training.
Collapse
Affiliation(s)
- Malte Christian Claussen
- Clinic for Depression and Anxiety, Psychiatric Centre Muensingen, Münsingen, Switzerland
- Research Group Sports Psychiatry, Center for Psychiatric Research, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Alan Currie
- Regional Affective Disorders Service, Cumbria Northumberland Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Eugene Koh Boon Yau
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Masaki Nishida
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Vania Martínez
- Centro de Medicina Reproductiva y Desarrollo Integral del Adolescente, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Santiago, Chile
| | - James Burger
- HIV Mental Health Research Unit, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Alexander Schorb
- University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria
| | - Roberto Fernandes Nicola
- Department of Science, Health and Performance, Grêmio Foot-Ball Porto Alegrense, Porto Alegre, Brazil
| | - Amrit Pattojoshi
- Department of Psychiatry, Hi-Tech Medical College and Hospital, Bhubaneshwar, Odisha, India
| | - Ranjit Menon
- Mentalogue Sports & Exercise Psychiatry Clinic, Melbourne, Victoria, Australia
| | - Ira Glick
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Jim Whitehead
- International Society for Sports Psychiatry, Indianapolis, Indiana, USA
| | - Carla Edwards
- Department of Psychiatry and Behavioral Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Kitchener, Ontario, Canada
| | - David Baron
- Department of Psychiatry, Department of Clinical Sciences, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
8
|
Qirko H. Pace setting as an adaptive precursor of rhythmic musicality. Ann N Y Acad Sci 2024; 1533:5-15. [PMID: 38412090 DOI: 10.1111/nyas.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Human musicality (the capacity to make and appreciate music) is difficult to explain in evolutionary terms, though many theories attempt to do so. This paper focuses on musicality's potential adaptive precursors, particularly as related to rhythm. It suggests that pace setting for walking and running long distances over extended time periods (endurance locomotion, EL) is a good candidate for an adaptive building block of rhythmic musicality. The argument is as follows: (1) over time, our hominin lineage developed a host of adaptations for efficient EL; (2) the ability to set and maintain a regular pace was a crucial adaptation in the service of EL, providing proximate rewards for successful execution; (3) maintaining a pace in EL occasioned hearing, feeling, and attending to regular rhythmic patterns; (4) these rhythmic patterns, as well as proximate rewards for maintaining them, became disassociated from locomotion and entrained in new proto-musical contexts. Support for the model and possibilities for generating predictions to test it are discussed.
Collapse
Affiliation(s)
- Hector Qirko
- Department of Sociology and Anthropology, College of Charleston, Charleston, South Carolina, USA
| |
Collapse
|
9
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
10
|
Bhattacharya P, Chatterjee S, Roy D. Impact of exercise on brain neurochemicals: a comprehensive review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-022-01030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
11
|
Stenseng F, Steinsholt IB, Hygen BW, Kraft P. Running to get "lost"? Two types of escapism in recreational running and their relations to exercise dependence and subjective well-being. Front Psychol 2023; 13:1035196. [PMID: 36760907 PMCID: PMC9905121 DOI: 10.3389/fpsyg.2022.1035196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Escapism is a fundamental motivation in many forms of activity engagements. At its core, escapism is "a habitual diversion of the mind … as an escape from reality or routine". Accordingly, escapism may entail many adaptive and maladaptive psychological antecedents, covariates, and outcomes. However, few studies have been conducted on escapism as a motivational mindset in running. Here, in a sample of recreational runners (N = 227), we applied a two-dimensional model of escapism, comprising self-expansion (adaptive escapism) and self-suppression (maladaptive escapism), and examined how they were related to exercise dependence and subjective well-being. First, confirmatory factor analyses showed that the escapism dimensions were highly diversifiable in the sample. Then, correlational analyses showed that self-expansion was positively correlated to subjective well-being, whereas self-suppression was negatively related to well-being. Self-suppression was more strongly related to exercise dependence compared to self-expansion. Finally, path analyses evidenced an explanatory role of self-expansion and self-suppression in the inverse relationship between exercise dependence and well-being. In conclusion, the present findings support escapism as a relevant framework for understanding the relationship between exercise dependence in running and subjective well-being.
Collapse
Affiliation(s)
- Frode Stenseng
- Department of Education and Lifelong Learning, Norwegian University of Science and Technology, Trondheim, Norway,Oslo University College, Oslo, Norway,*Correspondence: Frode Stenseng, ✉
| | | | - Beate Wold Hygen
- Norwegian University of Science and Technology Social Research, Trondheim, Norway
| | - Pål Kraft
- Oslo University College, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24:ijms24031989. [PMID: 36768332 PMCID: PMC9916354 DOI: 10.3390/ijms24031989] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) is involved in various processes, including brain plasticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endogenous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner's high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.
Collapse
|
13
|
Botsford C, Brellenthin AG, Cisler JM, Hillard CJ, Koltyn KF, Crombie KM. Circulating endocannabinoids and psychological outcomes in women with PTSD. J Anxiety Disord 2023; 93:102656. [PMID: 36469982 PMCID: PMC9839585 DOI: 10.1016/j.janxdis.2022.102656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent research has attempted to elucidate the relationship between blood-based biomarkers (e.g., endocannabinoids; eCBs: including N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and mental health outcomes in psychiatric populations such as posttraumatic stress disorder (PTSD). Prior research suggests that adults with PTSD may have altered circulating eCB tone and a blunted mobilization of eCBs (particularly 2-AG) in response to stress (e.g., aerobic exercise), although our understanding has been limited in part due to heterogenous samples and small sample sizes. METHODS A subset of data was pooled from five studies in which women with and without PTSD (N = 98) completed questionnaires related to mood states and a blood draw prior to and following a bout of moderate-intensity aerobic exercise in order to determine: 1) whether circulating eCBs differ between groups and whether depressive and PTSD symptom severity are associated with baseline eCBs, 2) whether a bout of aerobic exercise increases circulating eCBs in adult women with PTSD, and 3) whether circulating eCBs are associated with overall mood states and exercise-induced improvements in mood states in women with and without PTSD. RESULTS PTSD diagnoses were not associated with baseline concentrations of eCBs. Greater depressive symptom severity and PTSD symptom severity within the negative alteration in cognition and mood cluster were associated with lower circulating AEA. Circulating AEA significantly increased following aerobic exercise for both groups, whereas circulating 2-AG only increased in women without PTSD. Greater circulating AEA within the PTSD group was associated with lower depressive mood, confusion, and total mood disturbance. CONCLUSIONS These findings suggest that greater circulating AEA is associated with better overall mood and lower depressive and PTSD symptom severity, and that an acute bout of moderate-intensity aerobic exercise increases circulating AEA (but not 2-AG) in adult women with PTSD. These findings are consistent with the idea that greater eCB tone (particularly AEA) following pharmacological and/or non-pharmacological manipulations may be beneficial for improving psychological outcomes (e.g., mood, cognition) among PTSD, and possibly other psychiatric populations.
Collapse
Affiliation(s)
- Chloe Botsford
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719, United States.
| | - Angelique G Brellenthin
- Iowa State University, Department of Kinesiology, Forker Building, 534 Wallace Road, Ames, IA 50011, United States.
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School & Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States.
| | - Cecilia J Hillard
- Medical College of Wisconsin, Neuroscience Research Center, Department of Pharmacology and Toxicology, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Kelli F Koltyn
- University of Wisconsin - Madison, Department of Kinesiology, 1300 University Avenue, Madison, WI 53706, United States.
| | - Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States.
| |
Collapse
|
14
|
Casimiro-Andújar AJ, Martín-Moya R, Maravé-Vivas M, Ruiz-Montero PJ. Effects of a Personalised Physical Exercise Program on University Workers Overall Well-Being: "UAL-Activa" Program. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11331. [PMID: 36141603 PMCID: PMC9516988 DOI: 10.3390/ijerph191811331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Background and objectives: Regular individualised physical exercise (PE) is a habit that not only has consequences for overall health (physical, emotional, social and mental) but can also have positive effects on organisations and institutions, as it helps workers to improve their personal balance and recover from the effort of their working day, showing higher levels of energy, commitment and productivity. The aim of this study was to understand the relationship between the practice of PE and well-being in personal life and at work, as well as job satisfaction, overall health and the assessment of the personal training service provided by final-year students studying for a degree in Physical Activity and Sport Sciences. Methods: This study used a qualitative research methodology. There were 25 employees of the University of Almeria (UAL) (M = 52.16 ± 9.55 years), divided into two focus groups and participating in the physical exercise program "UAL Activa". Results: The following three main themes, based on the results, emerged: (a) social well-being during PE practice, (b) assessment of the personal training service and (c) physical exercise as an emotional benefit at work. Conclusion. The workers' interventions have shown that participating in a personalised PE program led by a personal trainer can improve overall health and mood, with a very positive influence on the working environment.
Collapse
Affiliation(s)
- Antonio Jesús Casimiro-Andújar
- SPORT Research Group (CTS-1024), CERNEP Research Center, Department of Education, Faculty of Education Sciences, University of Almería, 04120 Almería, Spain
| | - Ricardo Martín-Moya
- Physical Education and Sport Department, Faculty of Education and Sport Sciences, Campus of Melilla, University of Granada, 52005 Melilla, Spain
| | - María Maravé-Vivas
- Department of Pedagogy and Didactics of Social Sciences, Language and Literature, Universitat Jaume I, 12006 Castellón, Spain
| | - Pedro Jesús Ruiz-Montero
- Physical Education and Sport Department, Faculty of Education and Sport Sciences, Campus of Melilla, University of Granada, 52005 Melilla, Spain
| |
Collapse
|
15
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|