1
|
Li H, Yang W, Shang Z, Lu Y, Shen A, Chen D, Lin G, Li M, Li R, Wu M, Guo Z, Qu H, Fu C, Yu Z, Chen K. Dehydrocorydaline attenuates myocardial ischemia-reperfusion injury via the FoXO signalling pathway: A multimodal study based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118738. [PMID: 39222757 DOI: 10.1016/j.jep.2024.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.
Collapse
Affiliation(s)
- Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China.
| | - Wenwen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Mengfan Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Renfeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Zhi Guo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Zikai Yu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China.
| |
Collapse
|
2
|
Belon AR, Tannuri ACA, de Albuquerque Rangel Moreira D, Figueiredo JL, da Silva AM, Serafini S, Guimarães RR, Faria CS, de Alexandre AS, Gonçalves JO, Paes VR, Tannuri U. Impact of Three Methods of Ischemic Preconditioning on Ischemia-Reperfusion Injury in a Pig Model of Liver Transplantation. J INVEST SURG 2021; 35:900-909. [PMID: 34180750 DOI: 10.1080/08941939.2021.1933274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC), either direct (DIPC) or remote (RIPC), is a procedure aimed at reducing the harmful effects of ischemia-reperfusion (I/R) injury. OBJECTIVES To assess the local and systemic effects of DIPC, RIPC, and both combined, in the pig liver transplant model. MATERIALS AND METHODS Twenty-four pigs underwent orthotopic liver transplantation and were divided into 4 groups: control, direct donor preconditioning, indirect preconditioning at the recipient, and direct donor with indirect recipient preconditioning. The recorded parameters were: donor and recipient weight, graft-to-recipient weight ratio (GRWR), surgery time, warm and cold ischemia time, and intraoperative hemodynamic values. Blood samples were collected before native liver removal (BL) and at 0 h, 1 h, 3 h, 6 h, 12 h, 18 h, and 24 h post-reperfusion for the biochemical tests: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), creatinine, BUN (blood urea nitrogen), lactate, total and direct bilirubin. Histopathological examination of liver, gut, kidney, and lung fragments were performed, as well as molecular analyses for expression of the apoptosis-related BAX (pro-apoptotic) and Bcl-XL (anti-apoptotic) genes, eNOS (endothelial nitric oxide synthase) gene, and IL-6 gene related to inflammatory ischemia-reperfusion injury, using real-time polymerase chain reaction (RT-PCR). RESULTS There were no differences between the groups regarding biochemical and histopathological parameters. We found a reduced ratio between the expression of the BAX gene and Bcl-XL in the livers of animals with IPC versus the control group. CONCLUSIONS DIPC, RIPC or a combination of both, produce beneficial effects at the molecular level without biochemical or histological changes.
Collapse
Affiliation(s)
- Alessandro Rodrigo Belon
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ana Cristina Aoun Tannuri
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Daniel de Albuquerque Rangel Moreira
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jose Luiz Figueiredo
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alessandra Matheus da Silva
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Suellen Serafini
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Raimundo Renato Guimarães
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Caroline Silverio Faria
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alcione Sanches de Alexandre
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Josiane Oliveira Gonçalves
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Vitor Ribeiro Paes
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Uenis Tannuri
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
3
|
Querio G, Geddo F, Antoniotti S, Gallo MP, Penna C. Sex and Response to Cardioprotective Conditioning Maneuvers. Front Physiol 2021; 12:667961. [PMID: 34054579 PMCID: PMC8160310 DOI: 10.3389/fphys.2021.667961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Ischemic heart disease (IHD) is a multifactorial pathological condition strictly related to genetic, dietary, and lifestyle factors. Its morbidity and mortality rate represent one of the most important pathological issues that today involve younger people in a stronger way than in the past. IHD clinical outcomes are difficult to treat and have a high economic impact on health care. So prevention of this pathological condition through cardioprotective maneuvers represents the first line of intervention, as already underlined by several animal and human studies. Even if the time of intervention is important to prevent severe outcomes, many studies highlight that sex-dependent responses are crucial for the result of cardioprotective procedures. In this scenario sexual hormones have revealed an important role in cardioprotective approach, as women seem to be more protected toward cardiac insults when compared to male counterparts. The aim of this mini review is to show the molecular pathways involved in cardioprotective protocols and to elucidate how sexual hormones can contribute in ameliorating or worsening the physiological responses to IHD.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Saber M, Rice AD, Christie I, Roberts RG, Knox KS, Nakaji P, Rowe RK, Wang T, Lifshitz J. Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse. Shock 2021; 55:256-267. [PMID: 32769821 PMCID: PMC8878575 DOI: 10.1097/shk.0000000000001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) can induce acute lung injury (ALI). The exact pathomechanism of TBI-induced ALI is poorly understood, limiting treatment options. Remote ischemic conditioning (RIC) can mitigate detrimental outcomes following transplants, cardiac arrests, and neurological injuries. In this study, we hypothesized that RIC would reduce TBI-induced ALI by regulating the sphingosine-1-phosphate (S1P)-dependent pathway, a central regulator of endothelial barrier integrity, lymphocyte, and myokine trafficking. Male mice were subjected to either diffuse TBI by midline fluid percussion or control sham injury and randomly assigned among four groups: sham, TBI, sham RIC, or TBI RIC; RIC was performed 1 h prior to TBI. Mice were euthanized at 1-h postinjury or 7 days post-injury (DPI) and lung tissue, bronchoalveolar lavage (BAL) fluid, and blood were collected. Lung tissue was analyzed for histopathology, irisin myokine levels, and S1P receptor levels. BAL fluid and blood were analyzed for cellularity and myokine/S1P levels, respectively. One-hour postinjury, TBI damaged lung alveoli and increased neutrophil infiltration; RIC preserved alveoli. BAL from TBI mice had more neutrophils and higher neutrophil/monocyte ratios compared with sham, where TBI RIC mice showed no injury-induced change. Further, S1P receptor 3 and irisin-associated protein levels were significantly increased in the lungs of TBI mice compared with sham, which was prevented by RIC. However, there was no RIC-associated change in plasma irisin or S1P. At 7 DPI, ALI in TBI mice was largely resolved, with evidence for residual lung pathology. Thus, RIC may be a viable intervention for TBI-induced ALI to preserve lung function and facilitate clinical management.
Collapse
Affiliation(s)
- Maha Saber
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Amanda D. Rice
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Immaculate Christie
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Rebecca G. Roberts
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Kenneth S. Knox
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Peter Nakaji
- Neurosurgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Rachel K. Rowe
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| | - Ting Wang
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| |
Collapse
|
5
|
Costa FLDS, Teixeira RKC, Yamaki VN, Valente AL, Percário S, Brito MVH. Remote ischemic conditioning enhances heart and brain antioxidant defense. J Vasc Bras 2020; 19:e20190129. [PMID: 34178069 PMCID: PMC8202165 DOI: 10.1590/1677-5449.190129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Ischemia-reperfusion injury contributes to morbidity after revascularization
procedures. Along with early reperfusion, tissue conditioning by alternating
intervals of brief ischemia-reperfusion episodes is considered the best approach
to limit tissue damage. Remote ischemic conditioning is conducted remotely, in
tissues other than those under ischemia. Despite this, remote ischemic
conditioning protection mechanisms are poorly understood, which can lead to
misapplication. Objectives To assess whether remote ischemic conditioning works in the heart and brain
through enhancement of cells’ antioxidant defenses and whether the response is
sustained or temporary. Methods Twenty-one male Wistar rats were assigned to three groups (n = 7): SHAM: same
procedure as the other groups, but no remote ischemic conditioning was carried
out. RIC 10: heart and brain were harvested 10 minutes after the remote ischemic
conditioning protocol. RIC 60: heart and brain were harvested 60 minutes after the
remote ischemic conditioning protocol. The remote ischemic conditioning protocol
consisted of 3 cycles of 5 min left hindlimb ischemia followed by 5 min left
hindlimb perfusion, lasting 30 min in total. Heart and brain samples were used to
measure the tissue antioxidant capacity. Results Remote ischemic conditioning increased heart and brain antioxidant capacity after
10 minutes (0.746 ± 0.160/0.801 ± 0.227 mM/L) when compared to SHAM (0.523 ±
0.078/0.404 ± 0.124 mM/L). No enhancement of heart or brain antioxidant capacity
was detected 60 minutes after remote ischemic conditioning (0.551 ± 0.073/0.455 ±
0.107 mM/L). Conclusions Remote ischemic conditioning temporarily enhances heart and brain antioxidant
defenses in male Wistar rats.
Collapse
Affiliation(s)
| | | | - Vitor Nagai Yamaki
- Universidade do Estado do Pará - UEPA, Laboratório de Cirurgia Experimental, Belém, PA, Brasil
| | - André Lopes Valente
- Universidade do Estado do Pará - UEPA, Laboratório de Cirurgia Experimental, Belém, PA, Brasil
| | | | | |
Collapse
|
6
|
Mansour M, Degheili J, Khalifeh I, Tamim H, Jaafar RF, El-Hout Y. Remote ischemic conditioning in a rat model of testicular torsion: does it offer testicular protection? J Pediatr Urol 2019; 15:43.e1-43.e7. [PMID: 30502312 DOI: 10.1016/j.jpurol.2018.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Testicular torsion is a surgical emergency mainly affecting adolescent boys, with a relatively high rate of missed torsion and testicular loss secondary to delay in prompt diagnosis and surgical intervention. With ischemic reperfusion injury as its underlying culprit, testicular torsion may respond favorably to remote ischemic conditioning (RIC) where a non-privileged site (e.g. limb) is concurrently rendered ischemic to divert the cascade of reperfusion injury from the privileged organ (e.g. testicle), thus offering a protective effect in improving salvage. This mechanism is established for other organs, whereas it has not been evaluated for testis. AIM It was aimed to evaluate RIC in a rat model of testicular torsion as a proof of principle that, similar to what has been demonstrated in other organs, RIC does offer testicular protection. STUDY DESIGN This is an animal experimental study. Thirty Sprague-Dawley male rats were divided into control group (n = 15) and experimental group (n = 15). Non-survival surgeries of right-sided spermatic cord torsion (720° counter-clockwise twist) were performed for both the groups (45 min) followed by detorsion and reperfusion (5 min) and then orchiectomy. For the experiment group, an intervention of tail clamping to create RIC was applied 5 min after torsion, then unclamping 5 min before detorsion, followed by detorsion and reperfusion for 5 min and then orchiectomy. The testicles were histologically and immunologically examined using a hypoxia inducible factor (HIF-1α) ELISA Kit. The histological findings on ischemic changes, vascular congestion, and immunohistochemistry were quantified using previously described, validated grading systems. RESULTS DISCUSSION: This is the first study to demonstrate the concept of RIC in an animal model of testicular torsion. It is limited by the non-availability of similar studies to compare outcomes and by the caution of extrapolating animal studies on humans. It does lay grounds, however, to subsequent studies to further elaborate on this concept and its clinical applicability. CONCLUSION When RIC is applied in the experimental setting of testicular torsion, there is less evidence of hypoxic injury by histology and immunohistochemistry.
Collapse
Affiliation(s)
- M Mansour
- Division of Urology, Beirut, Lebanon
| | | | - I Khalifeh
- Department of Pathology and Laboratory Medicine, Beirut, Lebanon
| | - H Tamim
- Department of Medicine, Beirut, Lebanon
| | - R F Jaafar
- Department of Surgery at the American University of Beirut-Medical Center, Beirut, Lebanon
| | - Y El-Hout
- Division of Urology, Beirut, Lebanon.
| |
Collapse
|
7
|
Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG, Hausenloy DJ. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets 2018; 22:247-261. [DOI: 10.1080/14728222.2018.1439015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sang-Bing Ong
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Khairunnisa Katwadi
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Xiu-Yi Kwek
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nur Izzah Ismail
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Naresuan University, Phitsanulok, Thailand
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek J Hausenloy
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute of Singapore, National Heart CentreSingapore, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Chronic Neuropathic Pain Protects the Heart from Ischemia-Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:101-114. [DOI: 10.1007/978-981-13-1756-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Coronary artery bypass graft (CABG) surgery is the revascularisation strategy of choice in patients with diabetes mellitus and complex CAD. Owing to a number of factors, including the ageing population, the increased complexity of CAD being treated, concomitant valve and aortic surgery, and multiple comorbidities, higher-risk patients are being operated on, the result of which is an increased risk of sustaining perioperative myocardial injury (PMI) and poorer clinical outcomes. As such, new treatment strategies are required to protect the heart against PMI and improve clinical outcomes following cardiac surgery. In this regard, the heart can be endogenously protected from PMI by subjecting the myocardium to one or more brief cycles of ischaemia and reperfusion, a strategy called "ischaemic conditioning". However, this requires an intervention applied directly to the heart, which may be challenging to apply in the clinical setting. In this regard, the strategy of remote ischaemic conditioning (RIC) may be more attractive, as it allows the endogenous cardioprotective strategy to be applied away from the heart to the arm or leg by simply inflating and deflating a cuff on the upper arm or thigh to induce one or more brief cycles of ischaemia and reperfusion (termed "limb RIC"). Although a number of small clinical studies have demonstrated less PMI with limb RIC following cardiac surgery, three recently published large multicentre randomised clinical trials found no beneficial effects on short-term or long-term clinical outcomes, questioning the role of limb RIC in the setting of cardiac surgery. In this article, we review ischaemic conditioning as a therapeutic strategy for endogenous cardioprotection in patients undergoing cardiac surgery and discuss the potential reasons for the failure of limb RIC to improve clinical outcomes in this setting. Crucially, limb RIC still has the therapeutic potential to protect the heart in other clinical settings, such as acute myocardial infarction, and it may also protect other organs against acute ischaemia/reperfusion injury (such as the brain, kidney, and liver).
Collapse
Affiliation(s)
- Luciano Candilio
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK.,The National Institute of Health Research-University College London Hospitals Biomedical Research Centre, London, UK
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK.,The National Institute of Health Research-University College London Hospitals Biomedical Research Centre, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
El Desoky ES, Hassan AKM, Salem SY, Fadil SA, Taha AF. Cardioprotective effect of atorvastatin alone or in combination with remote ischemic preconditioning on the biochemical changes induced by ischemic/reperfusion injury in a mutual prospective study with a clinical and experimental animal arm. Int J Cardiol 2016; 222:866-873. [PMID: 27522390 DOI: 10.1016/j.ijcard.2016.07.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atorvastatin and remote ischemic preconditioning (RIPC) have beneficial cardiovascular protective effects. The aim of the study was to investigate possible effect of this drug alone and in combination with RIPC on the biochemical changes induced by ischemic/reperfusion injury (I/R) in a combined study with a clinical and experimental animal arm. METHODS Thirty consecutive patients undergoing elective percutaneous coronary intervention (PCI) were divided into three groups (10 each): group I (control group without any preconditioning), group II (patients who were maintained on atorvastatin (80mg/day) for one month before PCI), and group III (similar to group II but PCI was preceded by RIPC). On the other hand, sixty adult male New Zealand white rabbits were divided into 6 groups (10 each): group I (control), group II (sham), group III (I/R as 30min ischemia followed by 120min reperfusion), group IV (regular atorvastatin 10mg/kg for 40days orally followed by I/R), group V (I/R preceded by RIPC) and group VI (similar to group IV but I/R was preceded by RIPC). Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), troponin I (cTnI), creatine kinase MB (CK-MB) and C-reactive protein (CRP) were measured in blood for all study groups. RESULTS Clinical and experimental parts showed that groups with RIPC combined with atorvastatin pre-treatment showed a synergistic protective effect against I/R injury as evidenced by significant reduction (P<0.001) in the levels of TNF-α, cTnI (in patients) and IL-6, CK-MB and CRP (in rabbits) while the level of NO was significantly (P<0.001) increased compared with other groups. CONCLUSIONS Pretreatment with atorvastatin combined with RIPC can exert a synergistic cardioprotective effects by reducing the possible biochemical changes related to ischemic reperfusion injury.
Collapse
Affiliation(s)
- Ehab S El Desoky
- Pharmacology Department, Faculty of Medicine and University Hospital, Assiut University, Assiut. Egypt
| | - Ayman K M Hassan
- Cardiology Department, Faculty of Medicine and University Hospital, Assiut University, Assiut. Egypt.
| | - Safaa Y Salem
- Pharmacology Department, Faculty of Medicine and University Hospital, Assiut University, Assiut. Egypt
| | - Sabah A Fadil
- Pathology Department, Faculty of Medicine and University Hospital, Assiut University, Assiut. Egypt
| | - Amira F Taha
- Pharmacology Department, Faculty of Medicine and University Hospital, Assiut University, Assiut. Egypt
| |
Collapse
|
12
|
Abstract
We showed that exercise induces early and late myocardial preconditioning in dogs and that these effects are mediated through nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase activation. As the intracoronary administration of calcium induces preconditioning and exercise enhances the calcium inflow to the cell, we studied if this effect of exercise triggers exercise preconditioning independently of its hemodynamic effects. We analyzed in 81 dogs the effect of blocking sarcolemmal L-type Ca channels with a low dose of verapamil on early and late preconditioning by exercise, and in other 50 dogs, we studied the effect of verapamil on NADPH oxidase activation in early exercise preconditioning. Exercise reduced myocardial infarct size by 76% and 52% (early and late windows respectively; P < 0.001 both), and these effects were abolished by a single low dose of verapamil given before exercise. This dose of verapamil did not modify the effect of exercise on metabolic and hemodynamic parameters. In addition, verapamil blocked the activation of NADPH oxidase during early preconditioning. The protective effect of exercise preconditioning on myocardial infarct size is triggered, at least in part, by calcium inflow increase to the cell during exercise and, during the early window, is mediated by NADPH oxidase activation.
Collapse
|
13
|
|
14
|
Chen K, Yan M, Wu P, Qing Y, Li S, Li Y, Dong Z, Xia H, Huang D, Xin P, Li J, Wei M. Combination of remote ischemic perconditioning and remote ischemic postconditioning fails to increase protection against myocardial ischemia/reperfusion injury, compared with either alone. Mol Med Rep 2015; 13:197-205. [PMID: 26572069 PMCID: PMC4686025 DOI: 10.3892/mmr.2015.4533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023] Open
Abstract
Remote ischemic perconditioning (RIPerC) and remote ischemic postconditioning (RIPostC) have been previously demonstrated to protect the myocardium against ischemia/reperfusion (IR) injury. However, their combined effects remain to be fully elucidated. In order to investigate this, the present study used an in vivo rat model to assess whether synergistic effects are produced when RIPerC is combined with RIPostC. The rats were randomly assigned to the following groups: Sham, IR, RIPerC, RIPostC and RIPerC + RIPostC groups. The IR model was established by performing 40 min of left coronary artery occlusion, followed by 2 h of reperfusion. RIPerC and RIPostC were induced via four cycles of 5 min occlusion and 5 min reperfusion of the hindlimbs, either during or subsequent to myocardial ischemia. On measurement of infarct sizes, compared with the IR group (49.45±6.59%), the infarct sizes were significantly reduced in the RIPerC (34.36±5.87%) and RIPostC (36.04±6.16%) groups (P<0.05). However, no further reduction in infarct size was observed in the RIPerC + RIPostC group (31.43±5.43%; P>0.05), compared with the groups treated with either RIPerC or RIPostC alone. Activation of the reperfusion injury salvage kinase (RISK) Akt, extracellular signal-regulated kinase 1/2 and glycogen synthase kinase-3β, and survivor activating factor enhancement (SAFE) signal transducer and activator of transcription-3 pathways were enhanced in the RIPerC, RIPostC and the RIPerC + RIPostC groups, compared with the IR group, with no difference among the three groups. Therefore, whereas RIPerC and RIPostC were equally effective in providing protection against myocardial IR injury, the combination of RIPerC and RIPostC failed to provide further protection than treatment with either alone. The cardioprotective effects were found to be associated with increased activation of the RISK and SAFE pathways.
Collapse
Affiliation(s)
- Kankai Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meiling Yan
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Penglong Wu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yanwei Qing
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongguang Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhifeng Dong
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hongjuan Xia
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Dong Huang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ping Xin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jingbo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
15
|
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2015; 66:1142-74. [PMID: 25261534 DOI: 10.1124/pr.113.008300] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pre-, post-, and remote conditioning of the myocardium are well described adaptive responses that markedly enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not have established cardioprotective drugs on the market. Most experimental studies on cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a complex disorder caused by, or associated with, cardiovascular risk factors and comorbidities, including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered coronary circulation, and aging. These risk factors induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Moreover, some of the medications used to treat these risk factors, including statins, nitrates, and antidiabetic drugs, may impact cardioprotection by modifying cellular signaling. The aim of this article is to review the recent evidence that cardiovascular risk factors and their medication may modify the response to cardioprotective interventions. We emphasize the critical need to take into account the presence of cardiovascular risk factors and concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple risk factors.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
16
|
Preda MB, Rønningen T, Burlacu A, Simionescu M, Moskaug JØ, Valen G. Remote transplantation of mesenchymal stem cells protects the heart against ischemia-reperfusion injury. Stem Cells 2015; 32:2123-34. [PMID: 24578312 DOI: 10.1002/stem.1687] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/01/2014] [Indexed: 12/15/2022]
Abstract
Cardioprotection can be evoked through extracardiac approaches. This prompted us to investigate whether remote transplantation of stem cells confers protection of the heart against ischemic injury. The cardioprotective effect of subcutaneous transplantation of naïve versus heme oxygenase-1 (HMOX-1)-overexpressing mouse mesenchymal stem cells (MSC) to mice was investigated in hearts subjected to ischemia-reperfusion in a Langendorff perfusion system. Mice were transplanted into the interscapular region with naïve or HMOX-1 transfected MSC isolated from transgenic luciferase reporter mice and compared to sham-treated animals. The fate of transplanted cells was followed by in vivo bioluminescence imaging, revealing that MSC proliferated, but did not migrate detectably from the injection site. Ex vivo analysis of the hearts showed that remote transplantation of mouse adipose-derived MSC (mASC) resulted in smaller infarcts and improved cardiac function after ischemia-reperfusion compared to sham-treated mice. Although HMOX-1 overexpression conferred cytoprotective effects on mASC against oxidative stress in vitro, no additive beneficial effect of HMOX-1 transfection was noted on the ischemic heart. Subcutaneous transplantation of MSC also improved left ventricular function when transplanted in vivo after myocardial infarction. Plasma analysis and gene expression profile of naïve- and HMOX-1-mASC after transplantation pointed toward pentraxin 3 as a possible factor involved in the remote cardioprotective effect of mASC. These results have significant implications for understanding the behavior of stem cells after transplantation and development of safe and noninvasive cellular therapies with clinical applications. Remote transplantation of MSC can be considered as an alternative procedure to induce cardioprotection.
Collapse
Affiliation(s)
- Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania; Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Martin-Gill C, Wayne M, Guyette FX, Olafiranye O, Toma C. Feasibility of Remote Ischemic Peri-conditioning during Air Medical Transport of STEMI Patients. PREHOSP EMERG CARE 2015; 20:82-9. [PMID: 26270795 DOI: 10.3109/10903127.2015.1056894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Remote ischemic peri-conditioning (RIPC) has gained interest as a means of reducing ischemic injury in patients with acute ST-elevation myocardial infarction (STEMI) who are undergoing emergent primary percutaneous coronary intervention (pPCI). We aimed to evaluate the feasibility, process, and patient-related factors related to the delivery of RIPC during air medical transport of STEMI patients to tertiary pPCI centers. We performed a retrospective review of procedural outcomes of a cohort of STEMI patients who received RIPC as part of a clinical protocol in a multi-state air medical service over 16 months (March 2013 to June 2014). Eligible patients were transported to two tertiary PCI centers and received up to four cycles of RIPC by inflating a blood pressure cuff on an upper arm to 200 mmHg for 5 minutes and subsequently deflating the cuff for 5 minutes. Data regarding feasibility, process variables, patient comfort, and occurrence of hypotension were obtained from prehospital records and prospectively completed quality improvement surveys. The primary outcome was whether at least 3 cycles of RIPC were completed by air medical transport crews prior to pPCI. Secondary outcomes included the number of cycles completed prior to pPCI, time spent with the patient prior to transport (bedside time), patient discomfort level, and incidence of hypotension (systolic blood pressure <90 mmHg) during the procedure. RIPC was initiated in 99 patients (91 interfacility, 8 scene transports) and 83 (83.3%) received 3 or 4 cycles of RIPC, delivered over 25-35 minutes. Median bedside time for interfacility transfers was 8 minutes (IQR 7, 10). More than half of patients reported no pain related to the procedure (N = 53, 53.3%), whereas 5 (5.1%) patients reported discomfort greater than 5 out of 10. Two patients developed hypotension while receiving RIPC and both had experienced hypotension prior to initiation of RIPC. RIPC is feasible and safe to implement for STEMI patients undergoing air medical transport for pPCI, without occurrence of prolonged bedside times. The incidence of excessive RIPC-related discomfort or hemodynamic instability is rare. STEMI patients requiring on average >30 minutes transport for pPCI may be the ideal group for RIPC utilization.
Collapse
|
18
|
Crisafulli A, Mancardi D, Marongiu E, Rastaldo R, Penna C, Pagliaro P. Preconditioning cardioprotection and exercise performance: a radical point of view. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0225-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Fiorentino F, Angelini GD, Suleiman MS, Rahman A, Anderson J, Bryan AJ, Culliford LA, Moscarelli M, Punjabi PP, Reeves BC. Investigating the effect of remote ischaemic preconditioning on biomarkers of stress and injury-related signalling in patients having isolated coronary artery bypass grafting or aortic valve replacement using cardiopulmonary bypass: study protocol for a randomized controlled trial. Trials 2015; 16:181. [PMID: 25899533 PMCID: PMC4425928 DOI: 10.1186/s13063-015-0696-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/30/2015] [Indexed: 01/14/2023] Open
Abstract
Background Ischaemia-reperfusion injury occurs during heart surgery that uses cardiopulmonary bypass (CPB) and cardioplegic arrest. It is hypothesised that remote ischaemic preconditioning (RIPC) protects the heart against such injury. Despite the numerous studies investigating the protective effects of RIPC, there is still uncertainty about the interpretation of the findings as well as conflicting results between studies. The objective of this trial is to investigate the cardioprotective effect of RIPC in patients having coronary artery bypass grafting (CABG) or aortic valve replacement surgery. This will be achieved by estimating the effect of the intervention in the two groups of pathologies and by investigating the signalling mechanisms that may underpin the cardioprotective effect. Methods/Design A two-centre randomised controlled trial will be used to investigate the effects of RIPC in two pathologies: patients having isolated CABG and those having aortic valve replacement surgery (AVR) with CPB. Participants will be randomised to RIPC or control (sham RIPC), stratified by surgical stratum. The intervention will be delivered by a research nurse. Data will be collected by a research nurse blinded to the intervention. The patient and the theatre staff are also blinded to the allocation. Markers of myocardial injury and inflammation will be measured in myocardial biopsies and in blood samples at different times. Discussion This trial is designed to investigate whether RIPC will reduce myocardial injury and inflammation following heart surgery and whether there is a difference in effect between participants having CABG or AVR. This trial is a unique opportunity to study the mechanisms associated with RIPC using human myocardial tissue and blood, and to relate these to the extent of myocardial injury/protection. Trial registration Current Controlled Trials ISRCTN33084113 (25 March 2013). Electronic supplementary material The online version of this article (doi:10.1186/s13063-015-0696-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Fiorentino
- National Heart and Lung Institute, Cardiothoracic Surgery Department, Imperial College London, Du Cane Road, W12 0NN, London, UK.
| | - Gianni D Angelini
- National Heart and Lung Institute, Cardiothoracic Surgery Department, Imperial College London, Du Cane Road, W12 0NN, London, UK. .,Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, Bristol, UK.
| | - M-Saadeh Suleiman
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, Bristol, UK.
| | - Alima Rahman
- National Heart and Lung Institute, Cardiothoracic Surgery Department, Imperial College London, Du Cane Road, W12 0NN, London, UK.
| | - Jon Anderson
- National Heart and Lung Institute, Cardiothoracic Surgery Department, Imperial College London, Du Cane Road, W12 0NN, London, UK.
| | - Alan J Bryan
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, Bristol, UK.
| | - Lucy A Culliford
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, Bristol, UK.
| | - Marco Moscarelli
- National Heart and Lung Institute, Cardiothoracic Surgery Department, Imperial College London, Du Cane Road, W12 0NN, London, UK.
| | - Prakash P Punjabi
- National Heart and Lung Institute, Cardiothoracic Surgery Department, Imperial College London, Du Cane Road, W12 0NN, London, UK.
| | - Barnaby C Reeves
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, Bristol, UK.
| |
Collapse
|
20
|
Pickard JMJ, Bøtker HE, Crimi G, Davidson B, Davidson SM, Dutka D, Ferdinandy P, Ganske R, Garcia-Dorado D, Giricz Z, Gourine AV, Heusch G, Kharbanda R, Kleinbongard P, MacAllister R, McIntyre C, Meybohm P, Prunier F, Redington A, Robertson NJ, Suleiman MS, Vanezis A, Walsh S, Yellon DM, Hausenloy DJ. Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Res Cardiol 2014; 110:453. [PMID: 25449895 PMCID: PMC4250562 DOI: 10.1007/s00395-014-0453-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022]
Abstract
In 1993, Przyklenk and colleagues made the intriguing experimental observation that ‘brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion’ and that this effect ‘…. may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion’. This seminal study laid the foundation for the discovery of ‘remote ischemic conditioning’ (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit.
Collapse
Affiliation(s)
- Jack M. J. Pickard
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Gabriele Crimi
- Cardiology Department, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | | | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - David Dutka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | | | | | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | - Christopher McIntyre
- SchulichSchool of Medicine and Dentistry, University of Western Ontario, Ontario, Canada
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fabrice Prunier
- Cardiology Department, L’UNAM Université, University of Angers, EA3860 Cardioprotection, Remodelage et Thrombose, University Hospital, Angers, France
| | - Andrew Redington
- The Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Nicola J. Robertson
- Neonatology, Institute for Women’s Health, University College London, London, WC1E 6HX UK
| | - M. Saadeh Suleiman
- Bristol Heart Institute Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Andrew Vanezis
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - Derek M. Yellon
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| | - Derek J. Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|
21
|
Dongworth RK, Hall AR, Burke N, Hausenloy DJ. Targeting mitochondria for cardioprotection: examining the benefit for patients. Future Cardiol 2014; 10:255-72. [DOI: 10.2217/fca.14.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT: Mitochondria are critical for sustaining life, not only as the essential powerhouses of cells but as critical mediators of cell survival and death. Mitochondrial dysfunction has been identified as a key perturbation underlying numerous pathologies including myocardial ischemia–reperfusion injury and the subsequent development of impaired left ventricular systolic function and compensatory cardiac hypertrophy. This article outlines the role of mitochondrial dysfunction in these important cardiac pathologies and highlights current cardioprotective strategies and their clinical efficacy in acute myocardial infarction and heart failure patients. Finally, we explore novel mitochondrial targets and evaluate their potential future translation for clinical cardioprotection.
Collapse
Affiliation(s)
- Rachel K Dongworth
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
| | - Andrew R Hall
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
| | - Niall Burke
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
| |
Collapse
|
22
|
Abstract
Myocardial conditioning is an endogenous cardioprotective phenomenon that profoundly limits infarct size in experimental models. The current challenge is to translate this paradigm from the laboratory to the clinic. Accordingly, our goal in this review is to provide a critical summary of the progress toward, opportunities for, and caveats to, the successful clinical translation of postconditioning and remote conditioning, the 2 conditioning strategies considered to have the broadest applicability for real-world patient care. In the majority of phase II studies published to date, postconditioning evoked a ≈35% reduction of infarct size in ST-segment-elevation myocardial infarction patients. Essential criteria for the successful implementation of postconditioning include the appropriate choice of patients (ie, those with large risk regions and negligible collateral flow), timely application of the postconditioning stimulus (immediately on reperfusion), together with proper choice of end points (infarct size, with concomitant assessment of risk region). Remote conditioning has been applied in planned ischemic events (including cardiac surgery and elective percutaneous coronary intervention) and in ST-segment-elevation myocardial infarction patients during hospital transport. Controversies with regard to efficacy have emerged, particularly among surgical trials. These disparate outcomes in all likelihood reflect the remarkable heterogeneity within and among studies, together with a deficit in our understanding of the impact of these variations on the infarct-sparing effect of remote conditioning. Ongoing phase III trials will provide critical insight into the future role of postconditioning and remote conditioning as clinically relevant cardioprotective strategies.
Collapse
Affiliation(s)
- Michel Ovize
- Centre d'Investigation Clinique de Lyon, Service d’Explorations Fonctionnelles Cardiovasculaires, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | | | | |
Collapse
|
23
|
|
24
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Reduction of myocardial infarct size with ischemic "conditioning": physiologic and technical considerations. Anesth Analg 2013; 117:891-901. [PMID: 23960036 DOI: 10.1213/ane.0b013e318294fc63] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wealth of evidence has revealed that the heart can be "conditioned" and rendered less vulnerable to ischemia-reperfusion injury via the upregulation of endogenous protective signaling pathways. Three distinct conditioning strategies have been identified: (1) preconditioning, the phenomenon where brief episodes of myocardial ischemia (too brief to cause cardiomyocyte death) limit necrosis caused by a subsequent sustained ischemic insult; (2) postconditioning, the concept that relief of myocardial ischemia in a staged or stuttered manner attenuates lethal ischemia-reperfusion injury; and (3) remote conditioning, or upregulation of a cardioprotective phenotype initiated by ischemia in a remote organ or tissue and "transported" to the heart. Progress has been made in defining the technical requirements and limitations of each of the 3 ischemic conditioning models (including the timing and severity of the protective stimulus), as well as elucidating the molecular mechanisms (in particular, the receptor-mediated signaling pathways) responsible for conditioning-induced myocardial protection. Moreover, phase III clinical trials are in progress, seeking to capitalize on the protection that can be achieved by postconditioning and remote conditioning, and applying these strategies in patients undergoing cardiac surgery or angioplasty for the treatment of acute myocardial infarction. There is, however, a potentially important caveat to the clinical translation of myocardial conditioning: emerging data suggest that the efficacy of ischemic conditioning is compromised in aging, diabetic, and hypertensive cohorts, the specific populations in which myocardial protection is most relevant. Successful clinical application of myocardial conditioning will therefore require an understanding of the potential confounding consequences of these comorbidities on the "conditioned" phenotype.
Collapse
|
26
|
Abstract
Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we review the literature on stress-induced adaptations versus stress sensitization in models of neurodegenerative diseases. We also describe our recent findings that chronic proteotoxic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sensitizes cells to subsequent challenges. In these experiments, long-term, low-dose proteasome inhibition elicited protection in a superoxide dismutase-dependent manner. In contrast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic challenges by eliciting catastrophic loss of glutathione. However, even in the latter model of synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity. This led us to wonder whether high-dose proteotoxic stress can elicit protection against subsequent challenges in astrocytes, a cell type well known for their resilience. In support of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity became harder to kill. The adaptive mechanism was glutathione dependent. If these findings can be generalized to the human brain, similar endogenous adaptations may help explain why neurodegenerative diseases are so delayed in appearance and so slow to progress. In contrast, sensitization to severe stress may explain why defenses eventually collapse in vulnerable neurons.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University
| |
Collapse
|
27
|
Przyklenk K, Whittaker P. Genesis of remote conditioning: action at a distance--'hypotheses non fingo'? J Cardiovasc Med (Hagerstown) 2013; 14:180-6. [PMID: 22964648 DOI: 10.2459/jcm.0b013e328358c8eb] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Remote ischemic preconditioning is the phenomenon whereby brief episodes of ischemia-reperfusion applied in a distant organ or tissue render the myocardium resistant to infarction. The discovery of remote conditioning was not a serendipitous finding, but, rather, was predicted by mathematical modeling. In the current review, we describe how the hypothesis for remote conditioning was formulated and tested, how the paradigm has expanded to encompass a spectrum of remote triggers, and summarize the progress that has been made in elucidating the mechanisms responsible for this intriguing form of cardioprotection.
Collapse
Affiliation(s)
- Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
28
|
Walters AM, Porter GA, Brookes PS. Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 2013; 111:1222-36. [PMID: 23065345 DOI: 10.1161/circresaha.112.265660] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is a significant cause of morbidity and mortality in Western society. Although interventions, such as thrombolysis and percutaneous coronary intervention, have proven efficacious in ischemia and reperfusion injury, the underlying pathological process of ischemic heart disease, laboratory studies suggest further protection is possible, and an expansive research effort is aimed at bringing new therapeutic options to the clinic. Mitochondrial dysfunction plays a key role in the pathogenesis of ischemia and reperfusion injury and cardiomyopathy. However, despite promising mitochondria-targeted drugs emerging from the laboratory, very few have successfully completed clinical trials. As such, the mitochondrion is a potential untapped target for new ischemic heart disease and cardiomyopathy therapies. Notably, there are a number of overlapping therapies for both these diseases, and as such novel therapeutic options for one condition may find use in the other. This review summarizes efforts to date in targeting mitochondria for ischemic heart disease and cardiomyopathy therapy and outlines emerging drug targets in this field.
Collapse
Affiliation(s)
- Andrew M Walters
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
29
|
Chen Y, Zheng H, Wang X, Zhou Z, Luo A, Tian Y. Remote Ischemic Preconditioning Fails to Improve Early Renal Function of Patients Undergoing Living-Donor Renal Transplantation. Transplantation 2013; 95:e6-e10. [DOI: 10.1097/tp.0b013e3182782f3a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Szijártó A, Czigány Z, Turóczi Z, Harsányi L. Remote ischemic perconditioning--a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background. A review. J Surg Res 2012; 178:797-806. [PMID: 22868050 DOI: 10.1016/j.jss.2012.06.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
Interruption of blood flow can cause ischemic reperfusion injury, which sometimes has a fatal outcome. Recognition of the phenomenon known as reperfusion injury has led to initial interventional approaches to lessen the degree of damage. A number of efficient pharmacologic agents and surgical techniques (e.g., local ischemic preconditioning and postconditioning) are available. A novel, alternative approach to target organ protection is remote ischemic conditioning triggered by brief repetitive ischemia and reperfusion periods in distant organs. Among the different surgical techniques is so-called remote ischemic perconditioning, a method that applies short periods of ischemic reperfusion to a distant organ delivered during target organ ischemia. Although ischemic reperfusion injury is reduced by this technique, the explanation for this phenomenon is still unclear, and approximately only a dozen reports on the topic have appeared in the literature. In our study, therefore, we investigated the connective mechanisms, signal transduction, and effector mechanisms behind remote perconditioning, with a review on molecular background and favorable effects. In addition, we summarize the various treatment protocols and models to promote future experimental and clinical research.
Collapse
Affiliation(s)
- Attila Szijártó
- First Department of Surgery, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
31
|
Abstract
Based on a wealth of mechanistic evidence supported by the fact that ouabain mimics the spleen-liver effect in this article, the hypothesis is established that the endogenous hormone ouabain not only mimics the effects of ischemic preconditioning but also may be an ideal drug for the prevention of ischemic diseases. Moreover, it is argued that the spleen-liver effect may represent a general protective mechanism for the protection of organisms against oxygen deficiency. Investigating the spleen-liver mechanism offers a new approach to decipher the secrets of ischemic conditioning. Preconditioning represents a basic mechanism to protect a wide variety of cells against stressful stimuli such as ischemia. The ability to undergo preconditioning is almost ubiquitous in tissues and is highly conserved across species. Reinvestigation of the "spleen-liver mechanism" will allow the study of metabolic inhibitors and hormone mimics that all could help to transform ischemic preconditioning into a cure of the epidemic ischemic heart disease. Ouabain mimics the effects of the spleen factor. Cardioprotection induced by ouabain is due to the activation of pathways that are also activated in ischemic preconditioning. Just like ischemic preconditioning, ouabain activates the reperfusion injury salvage kinase pathway. Activation of nuclear factor kappa B and other transcription factors contribute to the long lasting effects of ouabain. The endogenous hormone ouabain just like preconditioning offers multiorgan protection based on innate mechanisms, which warrants clinical investigation. Clinical studies with ouabain that correspond to current standards are warranted.
Collapse
|
32
|
Unnithan AS, Choi HJH, Titler AM, Posimo JM, Leak RK. Rescue from a two hit, high-throughput model of neurodegeneration with N-acetyl cysteine. Neurochem Int 2012; 61:356-68. [PMID: 22691629 DOI: 10.1016/j.neuint.2012.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/17/2012] [Accepted: 06/01/2012] [Indexed: 12/21/2022]
Abstract
Postmortem tissue from patients with neurodegeneration exhibits protein-misfolding stress and reduced proteasome activity. This hallmark burden of proteotoxic stress has led to the term "proteinopathies" for neurodegenerative diseases. Proteinopathies may also be exacerbated by previous insults, according to the two hit hypothesis of accelerated neurodegeneration. In order to model the response to two successive insults in a high-throughput fashion, we exposed the neuronal cell line N2a to two hits of the proteasome inhibitor MG132 and performed three unbiased viability assays. MG132 toxicity was synergistically exacerbated following sequential hits provided the first hit was high enough to be toxic. This accelerated viability loss was apparent by (1) a nuclear and cytoplasmic stain (DRAQ5+Sapphire), (2) immunocytochemistry for a cytoskeletal marker (α-tubulin), and (3) ATP levels (Cell Titer Glo). Ubiquitin-conjugated proteins were raised by toxic, but not subtoxic MG132, and were thus correlated with toxicity exacerbation at higher doses. We hypothesized that levels of autophagic and antioxidant defenses would be reduced with toxic, but not subtoxic MG132, explaining their differential impact on a second hit. However, proteins involved in chaperone-mediated autophagy were raised by toxic MG132, not reduced. Furthermore, inhibiting autophagy enhanced the toxicity of both subtoxic and toxic MG132 as well as of dual hits, suggesting that autophagic removal of cellular debris protected against proteasome inhibition. Two toxic hits of MG132 synergistically decreased the antioxidant glutathione. The glutathione precursor N-acetyl cysteine reversed this glutathione loss and prevented the toxic response to dual hits by all three assays. Dietary supplementation with N-acetyl cysteine benefits Alzheimer's patients and is currently undergoing clinical trials in Parkinson's disease. The present report is the first demonstration that this versatile compound is protective against synergistic loss of viability as well as of glutathione following unrelenting, sequential hits of proteotoxic stress as may occur in the diseased brain.
Collapse
Affiliation(s)
- Ajay S Unnithan
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Cardiac xenotransplantation (CXTx) remains a promising approach to alleviate the chronic shortage of donor hearts. This review summarizes recent results of heterotopic and orthotopic CXTx, highlights the role of non-Gal antibody in xenograft rejection, and discusses challenges to clinical orthotopic CXTx. RECENT FINDINGS Pigs mutated in the α 1,3 galactosyltransferase gene (GTKO pigs) are devoid of the galactose α1,3 galactose (αGal) carbohydrate antigen. This situation effectively eliminates any role for anti-Gal antibody in GTKO cardiac xenograft rejection. Survival of heterotopic GTKO cardiac xenografts in nonhuman primates continues to increase. GTKO graft rejection commonly involves vascular antibody deposition and variable complement deposition. Non-Gal antibody responses to porcine antigens associated with inflammation, complement, and hemostatic regulation and to new carbohydrate antigens have been identified. Their contribution to rejection remains under investigation. Orthotopic CXTx is limited by early perioperative cardiac xenograft dysfunction (PCXD). However, hearts affected by PCXD recover full cardiac function and orthotopic survival up to 2 months without rejection has been reported. SUMMARY CXTx remains a promising technology for treating end-stage cardiac failure. Genetic modification of the donor and refinement of immunosuppressive regimens have extended heterotopic cardiac xenograft survival from minutes to in excess of 8 months.
Collapse
Affiliation(s)
- Guerard W Byrne
- University College London, Institute for Cardiovascular Sciences, London, UK.
| | | |
Collapse
|
34
|
Cardiac dysfunction in the CABG patient. Curr Opin Pharmacol 2012; 12:166-71. [DOI: 10.1016/j.coph.2012.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/09/2012] [Accepted: 01/21/2012] [Indexed: 12/15/2022]
|
35
|
Lim SY, Hausenloy DJ. Remote ischemic conditioning: from bench to bedside. Front Physiol 2012; 3:27. [PMID: 22363297 PMCID: PMC3282534 DOI: 10.3389/fphys.2012.00027] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
Remote ischemic conditioning (RIC) is a therapeutic strategy for protecting organs or tissue against the detrimental effects of acute ischemia-reperfusion injury (IRI). It describes an endogenous phenomenon in which the application of one or more brief cycles of non-lethal ischemia and reperfusion to an organ or tissue protects a remote organ or tissue from a sustained episode of lethal IRI. Although RIC protection was first demonstrated to protect the heart against acute myocardial infarction, its beneficial effects are also seen in other organs (lung, liver, kidney, intestine, brain) and tissues (skeletal muscle) subjected to acute IRI. The recent discovery that RIC can be induced non-invasively by simply inflating and deflating a standard blood pressure cuff placed on the upper arm or leg, has facilitated its translation into the clinical setting, where it has been reported to be beneficial in a variety of cardiac scenarios. In this review article we provide an overview of RIC, the potential underlying mechanisms, and its potential as a novel therapeutic strategy for protecting the heart and other organs from acute IRI.
Collapse
Affiliation(s)
- Shiang Yong Lim
- O'Brien Institute, Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, VIC, Australia
| | | |
Collapse
|
36
|
Chanyshev B, Shainberg A, Isak A, Chepurko Y, Porat E, Hochhauser E. Conditioned medium from hypoxic cells protects cardiomyocytes against ischemia. Mol Cell Biochem 2011; 363:167-78. [PMID: 22160856 DOI: 10.1007/s11010-011-1169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/23/2011] [Indexed: 01/20/2023]
Abstract
The hypothesis of the present study is that cardiomyocytes subjected to prolonged ischemia, may release survival factors that will protect new cardiac cells from ischemic stress. We exposed neonatal rat cardiomyocyte primary cultures to hypoxia, collected the supernatant, treated intact cardiac cells by this posthypoxic supernatant, and exposed them to hypoxia. The results show cardioprotection of the treated cells compared with the untreated ones. We named the collected posthypoxic supernatant "conditioned medium" (CM), which acts in a dose-dependent manner to protect new cardiac cells from hypoxia: 100 or 75% of CM diluted in phosphate-buffered saline (PBS) protected cells as if they were not exposed to hypoxia (P < 0.001). When CM was removed from the cells before hypoxia, protection was not observed. CM also protected skeletal muscle cultures from hypoxia, but not cardiac cells against H(2)O(2)-induced cell damage. Finally, CM treatment protected the isolated heart in Langendorff set-up against ischemia. Smaller infarct size (9.9 ± 4.4% vs. 28.3 ± 8.5%, P < 0.05), better Rate Pressure Product (67 ± 11% vs. 48.6 ± 13.4%, P < 0.05) and better rate of contraction and relaxation were observed following ischemia and reperfusion (1341 ± 399 mmHg/s vs. 951 ± 349 mmHg/s, P < 0.05 and 1053 ± 347 mmHg/s vs. 736 ± 314 mmHg/s, P < 0.05). To conclude, there are factors that are released from the heart cells subjected to ischemia/hypoxia that protects cardiomyocytes from ischemic stress.
Collapse
Affiliation(s)
- B Chanyshev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Osswald H, Moerike K. Remote conditioning in clinical practice: a type of distant healing? Cardiology 2011; 119:214-6. [PMID: 21985801 DOI: 10.1159/000333013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Hartmut Osswald
- Division of Clinical Pharmacology, Department of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Eberhard Karls University of Tübingen, Germany. hartmut.osswald @ uni-tuebingen.de
| | | |
Collapse
|