1
|
Yacoub MI, Aslanoğlu A, Khraim F, Alsharawneh A, Abdelkader R, Almagharbeh WT, Alhejaili AA, Alshahrani BD, Sobeh DE, Eltayeb MM, Elshatarat RA, Saleh ZT. Comparing E-Cigarettes and Traditional Cigarettes in Relation to Myocardial Infarction, Arrhythmias, and Sudden Cardiac Death: A Systematic Review and Meta-Analysis. Biol Res Nurs 2025; 27:168-185. [PMID: 39317411 DOI: 10.1177/10998004241287782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND The use of electronic cigarettes (e-cigarettes) as a perceived safer alternative to traditional cigarettes has grown rapidly. However, the cardiovascular risks associated with e-cigarettes compared to regular cigarettes remain unclear. OBJECTIVE To systematically review and compare the cardiovascular outcomes of e-cigarette use versus traditional cigarette use, focusing on the risks of myocardial infarction, arrhythmias, and sudden death. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Peer-reviewed studies published in English were included if they reported cardiovascular outcomes related to e-cigarette or traditional cigarette use. A total of 20 studies were included, covering observational and interventional studies focusing on heart rate variability, myocardial infarction, arrhythmias, and sudden cardiac events. The quality of the evidence was assessed using the GRADE criteria, and data were extracted and analyzed based on the PICOS (Population, Interventions, Comparisons, Outcomes, and Study designs) framework. RESULTS The systematic review found that both e-cigarettes and traditional cigarettes pose significant cardiovascular risks, with traditional cigarettes linked to a higher incidence of myocardial infarction, arrhythmias, and sudden cardiac death. E-cigarette users also face increased risks of arrhythmias and myocardial infarction compared to non-smokers, primarily due to the constituents of aerosolized e-liquid, including nicotine and flavorings, which contribute to adverse cardiac effects. Regular e-cigarette use, particularly in combination with traditional cigarette use, was associated with a heightened risk of myocardial infarction. Studies also reported heart function abnormalities, such as systolic and diastolic dysfunction, and reduced ejection fractions. Additionally, changes in heart rate variability, heart rate, and blood pressure were observed, indicating both acute and chronic effects of e-cigarettes on cardiovascular autonomic regulation. CONCLUSIONS While e-cigarettes may present a lower cardiovascular risk compared to traditional cigarettes, they are not without harm. Both products are linked to increased risks of myocardial infarction and arrhythmias, though traditional cigarettes pose a higher overall threat. Given the limitations in the current evidence base, particularly concerning the long-term effects of e-cigarette use, further research is needed to clarify these cardiovascular risks and inform public health guidelines.
Collapse
Affiliation(s)
- Mohammed I Yacoub
- Department of Clinical Nursing, School of Nursing, The University of Jordan, Amman, Jordan
| | - Aziz Aslanoğlu
- Department of Nursing, School of Health Sciences, Cyprus International University, Lefkoşa, Cyprus
- Department of Nursing, Vision College, Riyadh, Saudi Arabia
| | - Fadi Khraim
- College of Nursing, Qatar University, Doha, Qatar
| | - Anas Alsharawneh
- Department of Adult Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - Raghad Abdelkader
- Nursing Department, Faculty of Nursing, Applied Science Private University, Amman, Jordan
| | - Wesam T Almagharbeh
- Medical Surgical Nursing Department, Faculty of Nursing, University of Tabuk, Tabuk, Saudi Arabia
| | - Asim Abdullah Alhejaili
- Department of Medical and Surgical Nursing, College of Nursing, Taibah University, Madinah, Saudi Arabia
| | - Bassam Dhafer Alshahrani
- Department of Medical and Surgical Nursing, College of Nursing, Taibah University, Madinah, Saudi Arabia
- Honorary Fellow, School of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Dena Eltabey Sobeh
- Department of Medical Surgical Nursing, College of Nursing, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Mudathir M Eltayeb
- Department of Medical Surgical Nursing, College of Nursing, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Rami A Elshatarat
- Department of Medical and Surgical Nursing, College of Nursing, Taibah University, Madinah, Saudi Arabia
| | - Zyad T Saleh
- Department of Clinical Nursing, School of Nursing, The University of Jordan, Amman, Jordan
- Department of Nursing, Vision College, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Dai W, Shi J, Carreno J, Kleinman MT, Herman DA, Arechavala RJ, Renusch S, Hasen I, Ting A, Kloner RA. Impact of electronic cigarette vaping on the cardiovascular function in young and old rats. Sci Rep 2024; 14:30420. [PMID: 39639066 PMCID: PMC11621403 DOI: 10.1038/s41598-024-81398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND While the acute exposure to electronic cigarette (E-cig) vapor has been associated with an increase in blood pressure, the chronic effect of E-cig vapor on blood pressure compared to standard cigarette smoke has not been extensively studied. We determined the effect of E-cig exposure on blood pressure and other measures of cardiac function in both young and old rats. METHODS Young Sprague Dawley rats (6 weeks old, both sexes) were randomly exposed to air (n = 34), E-cig with nicotine (E-cig Nic+; n = 30), E-cig without nicotine (E-cig Nic-; n = 28) or standard cigarette smoke (n = 27). Old Fischer 344 rats (25 months old, both sexes) were randomized into 2 groups: (1) 26 rats in the purified air (negative control) group and (2) 17 rats in the electronic cigarette vapor plus nicotine group (E-cig Nic+). After 12 weeks of exposure, hemodynamics were determined by Millar catheter, echocardiography, and thermodilution catheter, a few days after their last exposure. RESULTS In young rats, cigarette smoke was associated with higher systolic, diastolic and mean blood pressures and peak LV systolic pressure, compared to air or E-cig Nic + or E-cig Nic- groups. Neither fractional shortening nor cardiac output differed among the groups. Absolute value for dp/dt min, a measure of diastolic LV function, was lowest in the E-cig Nic- group. Tau, a measure of LV relaxation was worse in this group as well. In old rats, E-cig vaping did not change heart rate, blood pressure, and cardiac function. However, E-cig Nic + exposure was associated with a greater heart weight/BW and LV weight/BW compared to air exposure in old rats. CONCLUSIONS Chronic exposure to E-cig vaping did not cause an increase in blood pressure or heart rate, nor did it change cardiac function compared to air in young rats after 12 weeks of exposure, while standard cigarette smoking was associated with an increase in blood pressure. E-cig vaping was associated with a greater heart weight/BW and LV weight/BW compared to air exposure in old rats, suggested that older animals might be more vulnerable to E-cig stimulus than younger ones.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - David A Herman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
3
|
Alavi R, Dai W, Mazandarani SP, Arechavala RJ, Herman DA, Kleinman MT, Kloner RA, Pahlevan NM. Adverse Cardiovascular Effects of Nicotine Delivered by Chronic Electronic Cigarettes or Standard Cigarettes Captured by Cardiovascular Intrinsic Frequencies. J Am Heart Assoc 2024; 13:e035462. [PMID: 39258553 DOI: 10.1161/jaha.124.035462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Electronic cigarettes have gained popularity as a nicotine delivery system, which has been recommended by some as an aid to help people quit traditional smoking. The potential long-term effects of vaping on the cardiovascular system, as well as how their effects compare with those from standard cigarettes, are not well understood. The intrinsic frequency (IF) method is a systems approach for analysis of left ventricle and arterial function. Recent clinical studies have demonstrated the diagnostic and prognostic value of IF. Here, we aim to determine whether the novel IF metrics derived from carotid pressure waveforms can detect effects of nicotine (delivered by chronic exposure to electronic cigarette vapor or traditional cigarette smoke) on the cardiovascular system. METHODS AND RESULTS One hundred seventeen healthy adult male and female rats were exposed to purified air (control), electronic cigarette vapor without nicotine, electronic cigarette vapor with nicotine, and traditional nicotine-rich cigarette smoke, after which hemodynamics were comprehensively evaluated. IF metrics were computed from invasive carotid pressure waveforms. Standard cigarettes significantly increased the first IF (indicating left ventricle contractile dysfunction). Electronic cigarettes with nicotine significantly reduced the second IF (indicating adverse effects on vascular function). No significant difference was seen in the IF metrics between controls and electronic cigarettes without nicotine. Exposure to electronic cigarettes with nicotine significantly increased the total IF variation (suggesting adverse effects on left ventricle-arterial coupling and its optimal state), when compared with electronic cigarettes without nicotine. CONCLUSIONS Our IF results suggest that nicotine-containing electronic cigarettes adversely affect vascular function and left ventricle-arterial coupling, whereas standard cigarettes have an adverse effect on left ventricle function.
Collapse
Affiliation(s)
- Rashid Alavi
- Department of Aerospace and Mechanical Engineering University of Southern California Los Angeles CA
- Cardiovascular Research Huntington Medical Research Institutes Pasadena CA
| | - Wangde Dai
- Division of Cardiovascular Medicine, Keck School of Medicine University of Southern California Los Angeles CA
- Cardiovascular Research Huntington Medical Research Institutes Pasadena CA
| | - Sohrab P Mazandarani
- Division of Cardiovascular Medicine, Keck School of Medicine University of Southern California Los Angeles CA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, College of Health Sciences University of California Irvine CA
| | - David A Herman
- Department of Environmental and Occupational Health, College of Health Sciences University of California Irvine CA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, College of Health Sciences University of California Irvine CA
| | - Robert A Kloner
- Division of Cardiovascular Medicine, Keck School of Medicine University of Southern California Los Angeles CA
- Cardiovascular Research Huntington Medical Research Institutes Pasadena CA
| | - Niema M Pahlevan
- Department of Aerospace and Mechanical Engineering University of Southern California Los Angeles CA
- Division of Cardiovascular Medicine, Keck School of Medicine University of Southern California Los Angeles CA
- Cardiovascular Research Huntington Medical Research Institutes Pasadena CA
| |
Collapse
|
4
|
Dabdoub S, Greenlee A, Abboud G, Brengartner L, Zuiker E, Gorr MW, Wold LE, Kumar PS, Cray J. Acute exposure to electronic cigarette components alters mRNA expression of pre-osteoblasts. FASEB J 2024; 38:e70017. [PMID: 39213037 PMCID: PMC11371384 DOI: 10.1096/fj.202302014rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The use of traditional nicotine delivery products such as tobacco has long been linked to detrimental health effects. However, little work to date has focused on the emerging market of aerosolized nicotine delivery known as electronic nicotine delivery systems (ENDS) or electronic cigarettes, and their potential for new effects on human health. Challenges studying these devices include heterogeneity in the formulation of the common components of most available ENDS, including nicotine and a carrier (commonly composed of propylene glycol and vegetable glycerin, or PG/VG). In the present study, we report on experiments interrogating the effects of major identified components in e-cigarettes. Specifically, the potential concomitant effects of nicotine and common carrier ingredients in commercial "vape" products are explored in vitro to inform the potential health effects on the craniofacial skeleton through novel vectors as compared to traditional tobacco products. MC3T3-E1 murine pre-osteoblast cells were cultured in vitro with clinically relevant liquid concentrations of nicotine, propylene glycol (PG), vegetable glycerin (VG), Nicotine+PG/VG, and the vape liquid of a commercial product (Juul). Cells were treated acutely for 24 h and RNA-Seq was utilized to determine segregating alteration in mRNA signaling. Influential gene targets identified with sparse partial least squares discriminant analysis (sPLS-DA) implemented in mixOmics were assessed using the PANTHER Classification system for molecular functions, biological processes, cellular components, and pathways of effect. Additional endpoint functional analyses were used to confirm cell cycle changes. The initial excitatory concentration (EC50) studied defined a target concentration of carrier PG/VG liquid that altered the cell cycle of the calvarial cells. Initial sPLS-DA analysis demonstrated the segregation of nicotine and non-nicotine exposures utilized in our in vitro modeling. Pathway analysis suggests a strong influence of nicotine exposures on cellular processes including metabolic processes and response to stimuli including autophagic flux. Further interrogation of the individual treatment conditions demonstrated segregation by treatment modality (Control, Nicotine, Carrier (PG+VG), Nicotine+PG/VG) along three dimensions best characterized by: latent variable 1 (PLSDA-1) showing strong segregation based on nicotine influence on cellular processes associated with cellular adhesion to collagen, osteoblast differentiation, and calcium binding and metabolism; latent variable 2 (PLSDA-2) showing strong segregation of influence based on PG+VG and Control influence on cell migration, survival, and cycle regulation; and latent variable 3 (PLSDA-3) showing strong segregation based on Nicotine and Control exposure influence on cell activity and growth and developmental processes. Further, gene co-expression network analysis implicates targets of the major pathway genes associated with bone growth and development, particularly craniofacial (FGF, Notch, TGFβ, WNT) and analysis of active subnetwork pathways found these additionally overrepresented in the Juul exposure relative to Nicotine+PG/VG. Finally, experimentation confirmed alterations in cell count, and increased evidence of cell stress (markers of autophagy), but no alteration in apoptosis. These data suggest concomitant treatment with Nicotine+PG/VG drives alterations in pre-osteoblast cell cycle signaling, specifically transcriptomic targets related to cell cycle and potentially cell stress. Although we suspected cell stress and well as cytotoxic effects of Nicotine+PG/VG, no great influence on apoptotic factors was observed. Further RNA-Seq analysis allowed for the direct interrogation of molecular targets of major pathways involved in bone and craniofacial development, each demonstrating segregation (altered signaling) due to e-cigarette-type exposure. These data have implications directed toward ENDS formulation as synergistic effects of Nicotine+PG/VG are evidenced here. Thus, future research will continue to interrogate how varied formulation of Nicotine+PG/VG affects overall cell functions in multiple vital systems.
Collapse
Affiliation(s)
- Shareef Dabdoub
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ashley Greenlee
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - George Abboud
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lexie Brengartner
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Eryn Zuiker
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Matthew W. Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Purnima S. Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Divisions of Biosciences and Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
5
|
Velayutham M, Mills A, Khramtsov VV, Olfert IM. An electron paramagnetic resonance time-course study of oxidative stress in the plasma of electronic cigarette exposed rats. Exp Physiol 2024; 109:1420-1425. [PMID: 39090831 PMCID: PMC11363090 DOI: 10.1113/ep092064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The long-term consequences of electronic cigarette (Ecig) use in humans are not yet known, but it is known that Ecig aerosols contain many toxic compounds of concern. We have recently shown that Ecig exposure impairs middle cerebral artery (MCA) endothelial function and that it takes 3 days for MCA reactivity to return to normal. However, the sources contributing to impairment of the endothelium were not investigated. We hypothesized that the increased levels of oxidative stress markers in the blood are correlated with impaired MCA reactivity. We used electron paramagnetic resonance (EPR) spectroscopy to examine plasma from 4-month-old male Sprague-Dawley rats that were exposed to either air (n = 5) or 1 h Ecig exposure, after which blood samples were collected at varying times after exposure (i.e., 1-4, 24, 48 and 72 h postexposure, n = 4 or 5 in each time group). The EPR analyses were performed using the redox-sensitive hydroxylamine spin probe 1-hydroxy-3-carboxymethyl-2,2,5,5-tetramethyl-pyrrolidine (CMH) to measure the level of reactive oxidant species in the plasma samples. We found that EPR signal intensity from the CM• radical was significantly increased in plasma at 1-4, 24 and 48 h (P < 0.05, respectively) and returned to control (air) levels by 72 h. When evaluating the EPR results with MCA reactivity, we found a significant negative correlation (Pearson's P = 0.0027). These data indicate that impaired cerebrovascular reactivity resulting from vaping is associated with the oxidative stress level (measured by EPR from plasma) and indicate that a single 1 h vaping session can negatively influence vascular health for up to 3 days after vaping. HIGHLIGHTS: What is the central question of this study? Does the time course of oxidative stress triggered by electronic cigarette exposure follow the cerebral vascular dysfunction? What is the main finding and its importance? Electron paramagnetic resonance analysis shows that the oxidative stress induced after a single 1 h exposure to electronic cigarette aerosol takes ≤72 h to return to normal, which mirrors the time course for vascular dysfunction in the middle cerebral artery that we have reported previously.
Collapse
Affiliation(s)
- Murugesan Velayutham
- In vivo Multifunctional Magnetic Resonance CenterWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Biochemistry and Molecular MedicineWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - Amber Mills
- Department of Physiology, Pharmacology & ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - Valery V. Khramtsov
- In vivo Multifunctional Magnetic Resonance CenterWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Biochemistry and Molecular MedicineWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - I. Mark Olfert
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Physiology, Pharmacology & ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Human Performance, Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| |
Collapse
|
6
|
Muthumalage T, Noel A, Thanavala Y, Alcheva A, Rahman I. Challenges in current inhalable tobacco toxicity assessment models: A narrative review. Tob Induc Dis 2024; 22:TID-22-102. [PMID: 38860150 PMCID: PMC11163881 DOI: 10.18332/tid/188197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in vivo experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products. In this review, we discuss current state-of-the-art in vitro and in vivo models and their challenges, as well as insights into risk estimation of novel products and recommendations for toxicological parameters for reporting, allowing comparability of the research studies between laboratories, resulting in usable data for regulation of these products before approval by regulatory authorities.
Collapse
Affiliation(s)
| | - Alexandra Noel
- School of Veterinary Medicine Louisiana State University, Baton Rouge, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | - Aleksandra Alcheva
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
7
|
Dai W, Shi J, Siddarth P, Carreno J, Kleinman MT, Herman DA, Arechavala RJ, Renusch S, Hasen I, Ting A, Kloner RA. Effects of Electronic Cigarette Vaping on Cardiac and Vascular Function, and Post-myocardial Infarction Remodeling in Rats. Cardiovasc Toxicol 2024; 24:199-208. [PMID: 38340234 PMCID: PMC10896768 DOI: 10.1007/s12012-024-09835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The effect of electronic cigarette (E-cig) vaping on cardiac and vascular function during the healing phase of myocardial infarction (MI), and post-MI remodeling was investigated. Sprague Dawley rats were subjected to left coronary artery ligation to induce MI. One week later, rats were randomized to receive either 12 weeks of exposure to purified air (n = 37) or E-cig vapor (15 mg/ml of nicotine) (n = 32). At 12 weeks, cardiac and vascular function, and post-MI remodeling were assessed. Baseline blood flow in the femoral artery did not differ between groups, but peak reperfusion blood flow was blunted in the E-cig group (1.59 ± 0.15 ml/min) vs. the air group (2.11 ± 0.18 ml/min; p = 0.034). Femoral artery diameter after reperfusion was narrower in the E-cig group (0.54 ± 0.02 mm) compared to the air group (0.60 ± 0.02 mm; p = 0.023). Postmortem left ventricular (LV) volumes were similar in the E-cig (0.69 ± 0.04 ml) and air groups (0.73 ± 0.04 ml; p = NS); and myocardial infarct expansion index did not differ between groups (1.4 ± 0.1 in E-cig group versus 1.3 ± 0.1 in air group; p = NS). LV fractional shortening by echo did not differ between groups at 12 weeks (E-cig at 29 ± 2% and air at 27 ± 1%; p = NS). Exposure to E-cig during the healing phase of MI was associated with altered vascular function with reduced femoral artery blood flow and diameter at reperfusion, but not with worsened LV dilation or worsened cardiac function.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| | - Prabha Siddarth
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - David A Herman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|