1
|
O'Brien JB, Wilkinson JC, Roman DL. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem 2019; 294:18571-18585. [PMID: 31636120 DOI: 10.1074/jbc.rev119.007060] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play critical roles in regulating processes such as cellular homeostasis, responses to stimuli, and cell signaling. Accordingly, GPCRs have long served as extraordinarily successful drug targets. It is therefore not surprising that the discovery in the mid-1990s of a family of proteins that regulate processes downstream of GPCRs generated great excitement in the field. This finding enhanced the understanding of these critical signaling pathways and provided potentially new targets for pharmacological intervention. These regulators of G-protein signaling (RGS) proteins were viewed by many as nodes downstream of GPCRs that could be targeted with small molecules to tune signaling processes. In this review, we provide a brief overview of the discovery of RGS proteins and of the gradual and continuing discovery of their roles in disease states, focusing particularly on cancer and neurological disorders. We also discuss high-throughput screening efforts that have led to the discovery first of peptide-based and then of small-molecule inhibitors targeting a subset of the RGS proteins. We explore the unique mechanisms of RGS inhibition these chemical tools have revealed and highlight the most up-to-date studies using these tools in animal experiments. Finally, we discuss the future opportunities in the field, as there are clearly more avenues left to be explored and potentials to be realized.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - Joshua C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242; Iowa Neuroscience Institute, Iowa City, Iowa 52242; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.
| |
Collapse
|
2
|
Chen X, Lv C, Zhu X, Lin W, Wang L, Huang Z, Yang S, Sun J. MicroRNA-504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncol Lett 2018; 17:1664-1674. [PMID: 30675226 PMCID: PMC6341607 DOI: 10.3892/ol.2018.9749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance implicates the therapeutic value of cisplatin and remains a primary obstacle to its clinical use. MicroRNAs (miRs) negatively modulate the expression of their target genes and are associated with the occurrence and progression of various types of tumor. The abnormal expression of miR-504 has been reported in certain types of human tumor and has been associated with tumor prognosis. However, the association between miR-504 and cisplatin in human osteosarcoma remains unclear. The present study therefore aimed to assess the in vitro effects and possible mechanism of miR-504 in cell proliferation, apoptosis and cisplatin resistance in MG63 osteosarcoma cells. The results demonstrated that miR-504 was overexpressed in osteosarcoma tissues and cells. This overexpression also induced cell proliferation, as determined by MTT and EdU staining assays. Furthermore, miR-504 suppressed cisplatin-induced apoptosis, which was demonstrated via MTT, cell morphology analysis and flow cytometry. Cisplatin-induced G1 arrest was also suppressed, which was determined by flow cytometry. The potential target genes of miR-504 were predicted using bioinformatics. p53 was confirmed to be a direct target of miR-504 using a luciferase reporter assay and western blot analysis revealed that miR-504 negatively regulated p53 expression at a molecular level. These results indicate that miR-504 contributes to cisplatin resistance in MG63 osteosarcoma cells by suppressing p53. miR-504 may therefore be a potential biomarker for cisplatin resistance in patients with osteosarcoma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junying Sun
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
3
|
Yu X, Zhang X, Wang Z, Jiang H, Lv Z, Shen J, Xia G, Wen K. Universal simultaneous multiplex ELISA of small molecules in milk based on dual luciferases. Anal Chim Acta 2017; 1001:125-133. [PMID: 29291795 DOI: 10.1016/j.aca.2017.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) has become the most important and widely used rapid detection technology for food safety because of its simple operation, fast speed and high sensitivity. Multiplex synchronous detection is the goal of ELISA that is always pursuing for. However, the reported multiplex ELISAs have not truly realized synchronous detection because of the complex signal generation and collection procedures. Here, we developed a dual-luciferases competitive direct bioluminescent immunoassay (DBL-cdELISA) with only one substrate addition step followed immediately by simultaneous signal acquisition. It is the first report of simultaneous multiplex analysis of small molecules based on microtiter plates and enzymes without any additional steps. The IC50 values for norfloxacin (NOR) and sulfamethazine (SMZ) were 0.051 ng mL-1 and 0.211 ng mL-1, respectively. The results demonstrated that the application of different luciferases and substrates simplified the signal generation and collection procedures and enabled simultaneous detection of small molecules with a simple procedure, high throughput and fast speed, that will be of great significance for the development of multiple assays.
Collapse
Affiliation(s)
- Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xiya Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Ziquan Lv
- Department of Genetic Toxicology, Shenzhen Center for Disease Control and Prevention, No.8, Longyuan Road, Longzhu Road, Nanshan District, Shenzhen 518020, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.
| |
Collapse
|
4
|
Filteau M, Vignaud H, Rochette S, Diss G, Chrétien AÈ, Berger CM, Landry CR. Multi-scale perturbations of protein interactomes reveal their mechanisms of regulation, robustness and insights into genotype-phenotype maps. Brief Funct Genomics 2015; 15:130-7. [PMID: 26476431 DOI: 10.1093/bfgp/elv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular architectures and signaling machineries are organized through protein-protein interactions (PPIs). High-throughput methods to study PPIs in yeast have opened a new perspective on the organization of the cell by allowing the study of whole protein interactomes. Recent investigations have moved from the description of this organization to the analysis of its dynamics by experimenting how protein interaction networks (PINs) are rewired in response to perturbations. Here we review studies that have used the budding yeast as an experimental system to explore these altered networks. Given the large space of possible PPIs and the diversity of potential genetic and environmental perturbations, high-throughput methods are an essential requirement to survey PIN perturbations on a large scale. Network perturbations are typically conceptualized as the removal of entire proteins (nodes), the modification of single PPIs (edges) or changes in growth conditions. These studies have revealed mechanisms of PPI regulation, PIN architectural organization, robustness and sensitivity to perturbations. Despite these major advances, there are still inherent limits to current technologies that lead to a trade-off between the number of perturbations and the number of PPIs that can be considered simultaneously. Nevertheless, as we exemplify here, targeted approaches combined with the existing resources remain extremely powerful to explore the inner organization of cells and their responses to perturbations.
Collapse
|
5
|
Abstract
Multiplexed assay chemistries provide for multiple measurements of cellular parameters within a single assay well. This experimental practice is not only more cost efficient, but also provides more information about a compound or treatment. The ability to combine the activity profiles within the same sample provides a level of normalization not possible with parallel assays. Furthermore, multiplexing caspase activity assays with viability and/or cytotoxicity assays can support conclusions regarding cytotoxic mechanism and provide normalization, which may help correct for differences in cell number.
Collapse
Affiliation(s)
- Andrew L Niles
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA,
| | | |
Collapse
|
6
|
Bodle CR, Mackie DI, Roman DL. RGS17: an emerging therapeutic target for lung and prostate cancers. Future Med Chem 2013; 5:995-1007. [PMID: 23734683 PMCID: PMC3865709 DOI: 10.4155/fmc.13.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligands for G-protein-coupled receptors (GPCRs) represent approximately 50% of currently marketed drugs. RGS proteins modulate heterotrimeric G proteins and, thus, GPCR signaling, by accelerating the intrinsic GTPase activity of the Gα subunit. Given the prevalence of GPCR targeted therapeutics and the role RGS proteins play in G protein signaling, some RGS proteins are emerging as targets in their own right. One such RGS protein is RGS17. Increased RGS17 expression in some prostate and lung cancers has been demonstrated to support cancer progression, while reduced expression of RGS17 can lead to development of chemotherapeutic resistance in ovarian cancer. High-throughput screening is a powerful tool for lead compound identification, and utilization of high-throughput technologies has led to the discovery of several RGS inhibitors, thus far. As screening technologies advance, the identification of novel lead compounds the subsequent development of targeted therapeutics appears promising.
Collapse
Affiliation(s)
- Christopher R Bodle
- The Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Division of Medicinal & Natural Products Chemistry, University of Iowa, College of Pharmacy, Iowa City, IA, USA
| | - Duncan I Mackie
- The Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Division of Medicinal & Natural Products Chemistry, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Cancer Signaling and Experimental Therapeutics Program, The Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - David L Roman
- The Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Division of Medicinal & Natural Products Chemistry, University of Iowa, College of Pharmacy, Iowa City, IA, USA
- Cancer Signaling and Experimental Therapeutics Program, The Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| |
Collapse
|
7
|
Niles AL, Moravec RA, Riss TL. Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 2013; 3:655-69. [PMID: 23506147 DOI: 10.1517/17460441.3.6.655] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND in vitro cytotoxicity testing provides a crucial means of ranking compounds for consideration in drug discovery. The choice of using a particular viability or cytotoxicity assay technology may be influenced by specific research goals. OBJECTIVE Although the high-throughput screening (HTS) utility is typically dependent upon sensitivity and scalability, it is also impacted by signal robustness and resiliency to assay interferences. Further consideration should be given to data quality, ease-of-use, reagent stability, and matters of cost-effectiveness. METHODS Here we focus on three main classes of assays that are at present the most popular, useful, and practical for HTS drug discovery efforts. These methods measure: i) viability by metabolism reductase activities; ii) viability by bioluminescent ATP assays; or iii) cytotoxicity by enzymes 'released' into culture medium. Multi-parametric technologies are also briefly discussed. RESULTS/CONCLUSION Each of these methods has its relative merits and detractions; however multi-parametric methods using both viability and cytotoxicity markers may mitigate the inherent shortcomings of single parameter measures.
Collapse
Affiliation(s)
- Andrew L Niles
- Senior Research Scientist Promega Corporation, Research and Development, 2800 Woods Hollow Road, Madison, Wisconsin, 53711, USA +1 608 247 4330, ext. 1447 ; +1 608 298 4818 ;
| | | | | |
Collapse
|
8
|
Bancos I, Bida JP, Tian D, Bundrick M, John K, Holte MN, Her YF, Evans D, Saenz DT, Poeschla EM, Hook D, Georg G, Maher LJ. High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. PLoS One 2013; 8:e56827. [PMID: 23451094 PMCID: PMC3579935 DOI: 10.1371/journal.pone.0056827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/15/2013] [Indexed: 01/06/2023] Open
Abstract
Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic acid (TCA) cycle of central metabolism. Loss of SDH initiates PGL through mechanisms that remain unclear. Could this metabolic defect provide a novel opportunity for chemotherapy of PGL? We report the results of high throughput screening to identify compounds differentially toxic to SDH mutant cells using a powerful S. cerevisiae (yeast) model of PGL. Screening more than 200,000 compounds identifies 12 compounds that are differentially toxic to SDH-mutant yeast. Interestingly, two of the agents, dequalinium and tetraethylthiuram disulfide (disulfiram), are anti-malarials with the latter reported to be a glycolysis inhibitor. We show that four of the additional hits are potent inhibitors of yeast alcohol dehydrogenase. Because alcohol dehydrogenase regenerates NAD(+) in glycolytic cells that lack TCA cycle function, this result raises the possibility that lactate dehydrogenase, which plays the equivalent role in human cells, might be a target of interest for PGL therapy. We confirm that human cells deficient in SDH are differentially sensitive to a lactate dehydrogenase inhibitor.
Collapse
Affiliation(s)
- Irina Bancos
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John Paul Bida
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Defeng Tian
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Mary Bundrick
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Kristen John
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Debra Evans
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Dyana T. Saenz
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Derek Hook
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Gunda Georg
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
9
|
Quantitative real-time PCR as a sensitive protein–protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system. Methods 2012; 58:376-84. [DOI: 10.1016/j.ymeth.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
|
10
|
Sun Z, Sun Y, Zhou Y, Wan Y. Yeast Genomics Technique for High-Throughput Drug Target Discovery. Drug Dev Res 2012. [DOI: 10.1002/ddr.21030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Sun
- The Key Laboratory of Developmental Genes and Human Disease; Ministry of Education; Institute of Life Sciences; Southeast University; Nanjing; 210096; China
| | - Yanyan Sun
- The Key Laboratory of Developmental Genes and Human Disease; Ministry of Education; Institute of Life Sciences; Southeast University; Nanjing; 210096; China
| | - Yaxian Zhou
- The Key Laboratory of Developmental Genes and Human Disease; Ministry of Education; Institute of Life Sciences; Southeast University; Nanjing; 210096; China
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease; Ministry of Education; Institute of Life Sciences; Southeast University; Nanjing; 210096; China
| |
Collapse
|
11
|
Flusin O, Saccucci L, Contesto-Richefeu C, Hamdi A, Bardou C, Poyot T, Peinnequin A, Crance JM, Colas P, Iseni F. A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex. Antiviral Res 2012; 96:187-95. [PMID: 22884885 DOI: 10.1016/j.antiviral.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées (IRBA), 24 avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012; 33:109-18. [DOI: 10.1016/j.tips.2011.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
|
13
|
Kimple AJ, Bosch DE, Giguère PM, Siderovski DP. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 2011; 63:728-49. [PMID: 21737532 DOI: 10.1124/pr.110.003038] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.
Collapse
Affiliation(s)
- Adam J Kimple
- Department of Pharmacology, UNC Neuroscience Center, UNC School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Suite 4010, Chapel Hill, NC 27599-7365, USA
| | | | | | | |
Collapse
|
14
|
Roman DL, Blazer LL, Monroy CA, Neubig RR. Allosteric inhibition of the regulator of G protein signaling-Galpha protein-protein interaction by CCG-4986. Mol Pharmacol 2010; 78:360-5. [PMID: 20530129 DOI: 10.1124/mol.109.063388] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins act to temporally modulate the activity of G protein subunits after G protein-coupled receptor activation. RGS proteins exert their effect by directly binding to the activated Galpha subunit of the G protein, catalyzing the accelerated hydrolysis of GTP and returning the G protein to its inactive, heterotrimeric form. In previous studies, we have sought to inhibit this GTPase-accelerating protein activity of the RGS protein by using small molecules. In this study, we investigated the mechanism of CCG-4986 [methyl-N-[(4-chlorophenyl)sulfonyl]-4-nitro-benzenesulfinimidoate], a previously reported small-molecule RGS inhibitor. Here, we find that CCG-4986 inhibits RGS4 function through the covalent modification of two spatially distinct cysteine residues on RGS4. We confirm that modification of Cys132, located near the RGS/Galpha interaction surface, modestly inhibits Galpha binding and GTPase acceleration. In addition, we report that modification of Cys148, a residue located on the opposite face of RGS4, can disrupt RGS/Galpha interaction through an allosteric mechanism that almost completely inhibits the Galpha-RGS protein-protein interaction. These findings demonstrate three important points: 1) the modification of the Cys148 allosteric site results in significant changes to the RGS interaction surface with Galpha; 2) this identifies a "hot spot" on RGS4 for binding of small molecules and triggering an allosteric change that may be significantly more effective than targeting the actual protein-protein interaction surface; and 3) because of the modification of a positional equivalent of Cys148 in RGS8 by CCG-4986, lack of inhibition indicates that RGS proteins exhibit fundamental differences in their responses to small-molecule ligands.
Collapse
Affiliation(s)
- David L Roman
- Division of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
15
|
Roman DL, Ota S, Neubig RR. Polyplexed flow cytometry protein interaction assay: a novel high-throughput screening paradigm for RGS protein inhibitors. JOURNAL OF BIOMOLECULAR SCREENING 2009; 14:610-9. [PMID: 19531661 PMCID: PMC2908316 DOI: 10.1177/1087057109336590] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular signaling cascades are a series of regulated protein-protein interactions that may provide a number of targets for potential drug discovery. Here, the authors examine the interaction of regulators of G-protein signaling (RGS) proteins with the G-protein Galphao, using a flow cytometry protein interaction assay (FCPIA). FCPIA accurately measures nanomolar binding constants of this protein-protein interaction and has been used in high-throughput screening. This report focuses on 5 RGS proteins (4, 6, 7, 8, and 16). To increase the content of screens, the authors assessed high-throughput screening of these RGS proteins in multiplex, by establishing binding constants of each RGS with Galphao in isolation, and then in a multiplex format with 5 RGS proteins present. To use this methodology as a higher-content multiplex protein-protein interaction screen, they established Z-factor values for RGS proteins in multiplex of 0.73 to 0.92, indicating this method is suitable for screening using FCPIA. To increase throughput, they also compressed a set of 8000 compounds by combining 4 compounds in a single assay well. Subsequent deconvolution of the compounds mixtures verified the identification of active compounds at specific RGS targets in their mixtures using the polyplexed FCPIA method.
Collapse
Affiliation(s)
- David L Roman
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
16
|
Bardou C, Borie C, Bickle M, Rudkin BB, Colas P. Peptide aptamers for small molecule drug discovery. Methods Mol Biol 2009; 535:373-388. [PMID: 19377984 DOI: 10.1007/978-1-59745-557-2_21] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Peptide aptamers have primarily been used as research tools to manipulate protein function and study regulatory networks. However, they also find multiple applications in therapeutic research, from target identification and validation to drug discovery. Because of their unbiased combinatorial nature, peptide aptamers interrogate the biological significance of numerous molecular surfaces on target proteins. Their use enables the identification and validation of some of these surfaces as interesting therapeutic targets to pursue. Peptide aptamers can subsequently be used to guide the discovery of small molecule drugs specific for these molecular surfaces.Here, we present a high-throughput screening assay that identifies small molecules that displace interactions between proteins and their cognate peptide aptamers. AptaScreen is a duplex yeast two-hybrid assay featuring two luciferase reporter genes. It can be performed in 96- or 384-well plates and can be fully automated.
Collapse
|
17
|
Chapter 11 Identification of Ligands Targeting RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:335-56. [DOI: 10.1016/s1877-1173(09)86011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
18
|
Bauer A, Stockwell B. Neurobiological applications of small molecule screening. Chem Rev 2008; 108:1774-86. [PMID: 18447397 DOI: 10.1021/cr0782372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andras Bauer
- Columbia University, Department of Biological Sciences, 614 Fairchild Center, New York, New York 10027, USA
| | | |
Collapse
|
19
|
Lentze N, Auerbach D. The yeast two-hybrid system and its role in drug discovery. Expert Opin Ther Targets 2008; 12:505-15. [PMID: 18348685 DOI: 10.1517/14728222.12.4.505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The yeast two-hybrid system is the most widely used genetic assay to identify and characterize novel protein interactions. Over the past decade, the system has been adapted to cover an increasingly wide range of applications, including various tasks within the drug discovery and development process. OBJECTIVE We highlight the role of different two-hybrid systems within the drug discovery process, including target identification and validation and the selection of affinity reagents for protein targets, such as peptides and small molecules. METHODS We have focused on applications where the two-hybrid system has been used to great advantage and have sought to put a special emphasis on less conventional but promising approaches, such as the identification of agents which block therapeutically relevant protein interactions. CONCLUSIONS The yeast two-hybrid system has evolved from a method mainly used in basic research to a collection of versatile screening systems with the potential to affect many different aspects of drug discovery today.
Collapse
Affiliation(s)
- Nicolas Lentze
- Dualsystems Biotech AG, Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | | |
Collapse
|
20
|
Abstract
Multiplexed assay chemistries provide for multiple measurements of cellular parameters within a single assay well. This experimental practice not only is more cost efficient but provides more informational content about a compound or treatment. For instance, multiplexed caspase activity assays can help establish the kinetics and magnitude of initiator and effector caspase induction by candidate compounds or treatments. The ability to combine the activity profiles within the same sample provides a level of normalization not possible with parallel assays. Furthermore, multiplexing caspase activity assays with viability and/or cytotoxicity assays can support conclusions regarding cytotoxic mechanism and provide normalization that may help correct for differences in cell number.
Collapse
|
21
|
|
22
|
Baines IC, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 2006; 11:334-41. [PMID: 16580975 DOI: 10.1016/j.drudis.2006.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/21/2005] [Accepted: 02/17/2006] [Indexed: 11/17/2022]
Abstract
Peptide aptamers are combinatorial protein reagents that bind to target proteins with a high specificity and a strong affinity. By so doing, they can modulate the function of their cognate targets. Because peptide aptamers introduce perturbations that are similar to those caused by therapeutic molecules, their use identifies and/or validates therapeutic targets with a higher confidence level than is typically provided by methods that act upon protein expression levels. The unbiased combinatorial nature of peptide aptamers enables them to 'decorate' numerous polymorphic protein surfaces, whose biological relevance can be inferred through characterization of the peptide aptamers. Bioactive aptamers that bind druggable surfaces can be used in displacement screening assays to identify small-molecule hits to the surfaces. The peptide aptamer technology has a positive impact on drug discovery by addressing major causes of failure and by offering a seamless, cost-effective process from target validation to hit identification.
Collapse
Affiliation(s)
- Ivan C Baines
- Aptanomics, 181-203 avenue Jean Jaurès, 69007 Lyon, France
| | | |
Collapse
|
23
|
Abstract
RGSZ1 has been reported to interact with G-protein subunits of the Galphai family and function as a GTPase-accelerating protein on intrinsic Galphai GTPase activity. This article describes several experimental approaches and assays used to investigate the effect of RGSZ1 on Galphai subunits. The formats described here include physical and functional interaction assays by which the association of RGSZ1 with Galphai is explored both in vitro and in vivo. The methods analyzing physical interaction include pull-down and coimmunoprecipitation assays. We also apply yeast two-hybrid techniques to detect RGSZ1 protein interaction with Galpha subunits. Additionally, we developed several functional assay systems to identify the functional relationship between RGSZ1 and Galphai, such as the single turnover GTPase assay, yeast pheromone response assay, mitogen-activated protein kinase assay, and serum response element reporter assay.
Collapse
Affiliation(s)
- Yuren Wang
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543, USA
| | | |
Collapse
|
24
|
Young KH, Wang Y, Bender C, Ajit S, Ramirez F, Gilbert A, Nieuwenhuijsen BW. Yeast-Based Screening for Inhibitors of RGS Proteins. Methods Enzymol 2004; 389:277-301. [PMID: 15313572 DOI: 10.1016/s0076-6879(04)89017-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article provides information on two screening platforms for the identification of regulators of G-protein signaling (RGS) protein modulators. Utilization of the yeast pheromone response pathway enabled the creation of a functional screen for RGS4 modulators. The RGSZ1-focused screen employs advances in yeast two-hybrid screening technologies and targets the protein-protein interface of the RGS domain/Galpha interaction. Moreover, the RGSZ1 screen provides the opportunity to multiplex the screening of two targets of interest, given the development of two different luciferase reporter genes that enabled sequential determination and intraassay controls. The screen formats were validated, implemented, and conducted as automated 384-well, liquid-based, high-throughput small molecule screens. Primary "hits" were confirmed using benchtop 96-well formats of these assays and advanced to in vitro functional evaluation assays. The yeast-based assay platforms provide robust cellular assays that result in the identification of small molecule modulators for both RGS targets. These molecules can serve both as tools with which to probe biological implications of RGS proteins and as potential starting points toward the development of novel modulators of G-protein signaling pathways. Such modulators may show potential for controlling and treating diseases resulting from inappropriate activity of G-protein signaling pathways.
Collapse
Affiliation(s)
- Kathleen H Young
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543-8000, USA
| | | | | | | | | | | | | |
Collapse
|