1
|
Lee SY, Kim EO, Jang D, Hwang S, Rhee KJ, Yun M. Method to Determine the Optimal Aptamer-to-Bead Ratio by Using Flow Cytometry. SCIENTIFICA 2023; 2023:5842652. [PMID: 37469438 PMCID: PMC10353897 DOI: 10.1155/2023/5842652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Research on the effective attachment of aptamers to beads, which is essential for using aptamers, has made relatively little progress. Here, we demonstrate a new method based on flow cytometry to determine the optimal aptamer-to-bead ratio for aptamer immobilization. The fluorescence intensity increased with a gradual two-fold increase in the aptamer fluorescence concentration, peaked at an aptamer-to-bead ratio of 2.56 × 105, and tended to decrease at higher ratios. A similar pattern was observed in an additional analysis using fluorescence microscopy. However, measurement of the free aptamer concentration after the aptamer-bead conjugation reaction revealed a large aptamer loss compared to the 1.28 × 105 aptamer-bead ratio. In addition, the binding efficiency of the aptamer/bead to the target was highest at the aptamer-to-bead ratio of 1.28 × 105. Taken together, our data suggest that the proposed method is the best and easiest for determining the optimal aptamer-to-bead ratio.
Collapse
Affiliation(s)
- Sun Young Lee
- Lab of Functional Aptamer, Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
- Resource Upcycling and Discovery Research Institute, Sejong University, Seoul, Republic of Korea
| | - Eun-Ok Kim
- Medical Science Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daehyuk Jang
- Lab of Functional Aptamer, Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
- Resource Upcycling and Discovery Research Institute, Sejong University, Seoul, Republic of Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software & Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Gangwon-do, Republic of Korea
| | - Miyong Yun
- Lab of Functional Aptamer, Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
- Resource Upcycling and Discovery Research Institute, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Moteshareie H, Hassen WM, Dirieh Y, Groulx E, Dubowski JJ, Tayabali AF. Rapid, Sensitive, and Selective Quantification of Bacillus cereus Spores Using xMAP Technology. Microorganisms 2022; 10:microorganisms10071408. [PMID: 35889128 PMCID: PMC9319878 DOI: 10.3390/microorganisms10071408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Bacillus cereus is a spore-forming ubiquitous bacterium notable as a food poisoning agent. Detection of B. cereus spores using selective media is laborious and non-specific. Herein, the quantitative detection of B. cereus spores was investigated with commercial antibodies and published aptamer sequences. Several detection reagents were screened for affinity to Bacillus collagen-like protein A (BclA), an abundant exosporium glycoprotein. Sensitivity and selectivity toward B. cereus spores were tested using immunoassays and multi-analyte profiling (xMAP). A recombinant antibody developed in llama against BclA protein showed B. cereus spore selectivity and sensitivity between 102 and 105 spores/mL using xMAP. DNA aptamer sequences demonstrated sensitivity from 103 to 107 spores/mL and no cross-reaction to B. megaterium and B. subtilis. Selectivity for B. cereus spores was also demonstrated in a mixture of several diverse microorganisms and within a food sample with no compromise of sensitivity. As proof of concept for multiplexed measurement of human pathogens, B. cereus and three other microorganisms, E. coli, P. aeruginosa, and S. cerevisiae, were simultaneously detected using xMAP. These data support the development of a rapid, sensitive, and selective system for quantitation of B. cereus spores and multiplexed monitoring of human pathogens in complex matrices.
Collapse
Affiliation(s)
- Houman Moteshareie
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Walid M. Hassen
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
| | - Jan J. Dubowski
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Azam F. Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
- Correspondence:
| |
Collapse
|
3
|
Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. Viruses 2021; 13:v13101983. [PMID: 34696413 PMCID: PMC8539646 DOI: 10.3390/v13101983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
4
|
Liu L, Han Z, An F, Gong X, Zhao C, Zheng W, Mei L, Zhou Q. Aptamer-based biosensors for the diagnosis of sepsis. J Nanobiotechnology 2021; 19:216. [PMID: 34281552 PMCID: PMC8287673 DOI: 10.1186/s12951-021-00959-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis, the syndrome of infection complicated by acute organ dysfunction, is a serious and growing global problem, which not only leads to enormous economic losses but also becomes one of the leading causes of mortality in the intensive care unit. The detection of sepsis-related pathogens and biomarkers in the early stage plays a critical role in selecting appropriate antibiotics or other drugs, thereby preventing the emergence of dangerous phases and saving human lives. There are numerous demerits in conventional detection strategies, such as high cost, low efficiency, as well as lacking of sensitivity and selectivity. Recently, the aptamer-based biosensor is an emerging strategy for reasonable sepsis diagnosis because of its accessibility, rapidity, and stability. In this review, we first introduce the screening of suitable aptamer. Further, recent advances of aptamer-based biosensors in the detection of bacteria and biomarkers for the diagnosis of sepsis are summarized. Finally, the review proposes a brief forecast of challenges and future directions with highly promising aptamer-based biosensors.
Collapse
Affiliation(s)
- Lubin Liu
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Fei An
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xuening Gong
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Chenguang Zhao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Weiping Zheng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
5
|
Ferreira-Bravo IA, DeStefano JJ. Xeno-nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34282416 DOI: 10.1101/2021.07.13.452259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor binding domain (RBD) on the viral S protein with angiotensin converting enzyme 2 (ACE2) on the surface of human host cells. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2'-fluoroarabinonucleic acid (FANA). The best selected ~ 79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants ( K D,app ) of ~ 10-20 nM and a binding half-life for the RBD of 53 ± 18 minutes. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
6
|
Rose KM, Alves Ferreira-Bravo I, Li M, Craigie R, Ditzler MA, Holliger P, DeStefano JJ. Selection of 2'-Deoxy-2'-Fluoroarabino Nucleic Acid (FANA) Aptamers That Bind HIV-1 Integrase with Picomolar Affinity. ACS Chem Biol 2019; 14:2166-2175. [PMID: 31560515 PMCID: PMC7005942 DOI: 10.1021/acschembio.9b00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Systematic Evolution
of Ligands by Exponential Enrichment (SELEX)
is the iterative process by which nucleic acids that can bind with
high affinity and specificity (termed aptamers) to specific protein
targets are selected. Using a SELEX protocol adapted for Xeno-Nucleic
Acid (XNA) as a suitable substrate for aptamer generation, 2′-fluoroarabinonucleic
acid (FANA) was used to select several related aptamers to HIV-1 integrase
(IN). IN bound FANA aptamers with equilibrium dissociation constants
(KD,app) of ∼50–100 pM in
a buffer with 200 mM NaCl and 6 mM MgCl2. Comparisons to
published HIV-1 IN RNA and DNA aptamers as well as IN genomic binding
partners indicated that FANA aptamers bound more than 2 orders of
magnitude more tightly to IN. Using a combination of RNA folding algorithms
and covariation analysis, all strong binding aptamers demonstrated
a common four-way junction structure, despite significant sequence
variation. IN aptamers were selected from the same starting library
as FA1, a FANA aptamer that binds with pM affinity to HIV-1 Reverse
Transcriptase (RT). It contains a 20-nucleotide 5′ DNA sequence
followed by 59 FANA nucleotides. IN-1.1 (one of the selected aptamers)
potently inhibited IN activity and intasome formation in vitro. Replacing
the FANA nucleotides of IN-1.1 with 2′-fluororibonucleic acid
(F-RNA), which has the same chemical formula but with a ribose rather
than arabinose sugar conformation, dramatically reduced binding, suggesting
that FANA adopts unique structural conformations that promote binding
to HIV-1 IN.
Collapse
|
7
|
Parsa SF, Vafajoo A, Rostami A, Salarian R, Rabiee M, Rabiee N, Rabiee G, Tahriri M, Yadegari A, Vashaee D, Tayebi L, Hamblin MR. Early diagnosis of disease using microbead array technology: A review. Anal Chim Acta 2018; 1032:1-17. [PMID: 30143206 PMCID: PMC6152944 DOI: 10.1016/j.aca.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Early diagnosis of diseases (before they become advanced and incurable) is essential to reduce morbidity and mortality rates. With the advent of novel technologies in clinical laboratory diagnosis, microbead-based arrays have come to be recognized as an efficient approach, that demonstrates useful advantages over traditional assay methods for multiple disease-related biomarkers. Multiplexed microbead assays provide a robust, rapid, specific, and cost-effective approach for high-throughput and simultaneous screening of many different targets. Biomolecular binding interactions occur after applying a biological sample (such as blood plasma, saliva, cerebrospinal fluid etc.) containing the target analyte(s) to a set of microbeads with different ligand-specificities that have been coded in planar or suspension arrays. The ligand-receptor binding activity is tracked by optical signals generated by means of flow cytometry analysis in the case of suspension arrays, or by image processing devices in the case of planar arrays. In this review paper, we discuss diagnosis of cancer, neurological and infectious diseases by using optically-encoded microbead-based arrays (both multiplexed and single-analyte assays) as a reliable tool for detection and quantification of various analytes.
Collapse
Affiliation(s)
- Sanam Foroutan Parsa
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Atieh Vafajoo
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azin Rostami
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Noor, Royan, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ghazal Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Bernard ED, Nguyen KC, DeRosa MC, Tayabali AF, Aranda-Rodriguez R. Incorporating Aptamers in the Multiple Analyte Profiling Assays (xMAP): Detection of C-Reactive Protein. Methods Mol Biol 2018; 1575:303-322. [PMID: 28255889 DOI: 10.1007/978-1-4939-6857-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aptamers are short oligonucleotide sequences used in detection systems because of their high affinity binding to a variety of macromolecules. With the introduction of aptamers over 25 years ago came the exploration of their use in many different applications as a substitute for antibodies. Aptamers have several advantages; they are easy to synthesize, can bind to analytes for which it is difficult to obtain antibodies, and in some cases bind better than antibodies. As such, aptamer applications have significantly expanded as an adjunct to a variety of different immunoassay designs. The Multiple-Analyte Profiling (xMAP) technology developed by Luminex Corporation commonly uses antibodies for the detection of analytes in small sample volumes through the use of fluorescently coded microbeads. This technology permits the simultaneous detection of multiple analytes in each sample tested and hence could be applied in many research fields. Although little work has been performed adapting this technology for use with apatmers, optimizing aptamer-based xMAP assays would dramatically increase the versatility of analyte detection. We report herein on the development of an xMAP bead-based aptamer/antibody sandwich assay for a biomarker of inflammation (C-reactive protein or CRP). Protocols for the coupling of aptamers to xMAP beads, validation of coupling, and for an aptamer/antibody sandwich-type assay for CRP are detailed. The optimized conditions, protocols and findings described in this research could serve as a starting point for the development of new aptamer-based xMAP assays.
Collapse
Affiliation(s)
- Elyse D Bernard
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada, K1A0K9
| | - Kathy C Nguyen
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada, K1A0K9
| | - Maria C DeRosa
- Chemistry Department, Carleton University, Ottawa, ON, Canada
| | - Azam F Tayabali
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada, K1A0K9
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada, K1A0K9.
| |
Collapse
|
9
|
Tsao SM, Lai JC, Horng HE, Liu TC, Hong CY. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection. Sci Rep 2017; 7:45478. [PMID: 28367958 PMCID: PMC5377317 DOI: 10.1038/srep45478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023] Open
Abstract
Aptamers are oligonucleotides that can bind to specific target molecules. Most aptamers are generated using random libraries in the standard systematic evolution of ligands by exponential enrichment (SELEX). Each random library contains oligonucleotides with a randomized central region and two fixed primer regions at both ends. The fixed primer regions are necessary for amplifying target-bound sequences by PCR. However, these extra-sequences may cause non-specific bindings, which potentially interfere with good binding for random sequences. The Magnetic-Assisted Rapid Aptamer Selection (MARAS) is a newly developed protocol for generating single-strand DNA aptamers. No repeat selection cycle is required in the protocol. This study proposes and demonstrates a method to isolate aptamers for C-reactive proteins (CRP) from a randomized ssDNA library containing no fixed sequences at 5' and 3' termini using the MARAS platform. Furthermore, the isolated primer-free aptamer was sequenced and binding affinity for CRP was analyzed. The specificity of the obtained aptamer was validated using blind serum samples. The result was consistent with monoclonal antibody-based nephelometry analysis, which indicated that a primer-free aptamer has high specificity toward targets. MARAS is a feasible platform for efficiently generating primer-free aptamers for clinical diagnoses.
Collapse
Affiliation(s)
- Shih-Ming Tsao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Sections of Infectious Diseases, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ji-Ching Lai
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
- Research Assistant Center, Chang Hua Show Chwan Health Care System, Changhua, Taiwan
| | - Horng-Er Horng
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Tu-Chen Liu
- Department of Chest Medicine, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Chin-Yih Hong
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Alves Ferreira-Bravo I, Cozens C, Holliger P, DeStefano JJ. Selection of 2'-deoxy-2'-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res 2015; 43:9587-99. [PMID: 26476448 PMCID: PMC4751925 DOI: 10.1093/nar/gkv1057] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/02/2015] [Indexed: 11/17/2022] Open
Abstract
Using a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol capable of selecting xeno-nucleic acid (XNA) aptamers, a 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamer (referred to as FA1) to HIV-1 reverse transcriptase (HIV-1 RT) was selected. FA1 bound HIV-1 RT with KD,app values in the low pM range under different ionic conditions. Comparisons to published HIV-1 RT RNA and DNA aptamers indicated that FA1 bound at least as well as these aptamers. FA1 contained a 20 nucleotide 5′ DNA sequence followed by a 57 nucleotide region of FANA nucleotides. Removal of the fourteen 5′ DNA nucleotides did not affect binding. FA1's predicted structure was composed of four stems and four loops. All stem nucleotides could be modified to G-C base pairs (14 total changes) with a small effect on binding. Eliminating or altering most loop sequences reduced or abolished tight binding. Overall, results suggested that the structure and the sequence of FA1 were important for binding. FA1 showed strong inhibition of HIV-1 RT in extension assays while no specific binding to avian myeloblastosis or Moloney murine leukemia RTs was detected. A complete DNA version of FA1 showed low binding to HIV-1 RT, emphasizing the unique properties of FANA in HIV-1 RT binding.
Collapse
Affiliation(s)
- Irani Alves Ferreira-Bravo
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| | - Christopher Cozens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| |
Collapse
|
11
|
Moore MD, Escudero-Abarca BI, Suh SH, Jaykus LA. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 2015; 209:41-9. [PMID: 26080079 DOI: 10.1016/j.jbiotec.2015.06.389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Human noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target-the P domain protein. Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment) directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7 VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly (p<0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that specifically bind and broadly recognize diverse human NoV strains.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA.
| | - Blanca I Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Soo Hwan Suh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Bernard ED, Nguyen KC, DeRosa MC, Tayabali AF, Aranda-Rodriguez R. Development of a bead-based aptamer/antibody detection system for C-reactive protein. Anal Biochem 2014; 472:67-74. [PMID: 25481739 DOI: 10.1016/j.ab.2014.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
A multiplexing bead-based platform provides an approach for the development of assays targeting specific analytes for biomonitoring and biosensing applications. Multi-Analyte Profiling (xMAP) assays typically employ a sandwich-type format using antibodies for the capture and detection of analytes of interest, and the system permits the simultaneous quantitation of multiple targets. In this study, an aptamer/antibody assay for the detection of C-reactive protein (CRP) was developed. CRP is an acute phase marker of inflammation whose elevated basal levels are correlated with an increased risk for a number of pathologies. For this assay, an RNA aptamer that binds CRP was conjugated to beads to act as the capture agent. Biotinylated anti-CRP antibody coupled to fluorescently labeled streptavidin was used for quantification of CRP. The detection limit of the CRP assay was 0.4 mg/L in diluted serum. The assay was then used to detect spiked CRP samples in the range of 0.4 to 10mg/L in diluted serum with acceptable recoveries (extrapolated values of 70-130%), including that of a certified reference material (129% recovery). The successful incorporation of the CRP aptamer into this platform demonstrates that the exploration of other aptamer-target systems could increase the number of analytes measurable using xMAP-type assays.
Collapse
Affiliation(s)
- Elyse D Bernard
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kathy C Nguyen
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Azam F Tayabali
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
13
|
Toh SY, Citartan M, Gopinath SCB, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 2014; 64:392-403. [PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
Collapse
Affiliation(s)
- Saw Yi Toh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Subash C B Gopinath
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia; Department of Oral Biology & Biomedical Sciences and OCRCC, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
14
|
Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 2014; 6:563-73. [PMID: 23090891 DOI: 10.1002/prca.201200042] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023]
Abstract
Antibodies have been extensively used as capture and detection reagents in diagnostic applications of proteomics-based technologies. Proteomic assays need high sensitivity and specificity, a wide dynamic range for detection, and accurate, reproducible quantification with small confidence values. However, several inherent limitations of monoclonal antibodies in meeting the emerging challenges of proteomics led to the development of a new class of oligonucleotide-based reagents. Natural and derivatized nucleic acid aptamers are emerging as promising alternatives to monoclonal antibodies. Aptamers can be effectively used to simultaneously detect thousands of proteins in multiplex discovery platforms, where antibodies often fail due to cross-reactivity problems. Through chemical modification, vast range of additional functional groups can be added at any desired position in the oligonucleotide sequence, therefore the best features of small molecule drugs, proteins, and antibodies can be brought together into aptamers, making aptamers the most versatile reagent in proteomics. In this review, we discuss the recent developments in aptamer technology, including new selection methods and the aptamers' application in proteomics.
Collapse
Affiliation(s)
- Varatharasa Thiviyanathan
- Centers for Proteomics & Systems Biology, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | |
Collapse
|
15
|
Lai YT, DeStefano JJ. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 2012; 22:162-76. [PMID: 22554064 PMCID: PMC3423876 DOI: 10.1089/nat.2011.0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/24/2012] [Indexed: 12/17/2022] Open
Abstract
A 30-nucleotide DNA aptamer (5'-AGGAAGGCTTTAGGTCTGAGATCTCGGAAT-3', denoted PF1) selected for high affinity to human immunodeficiency virus reverse transcriptase (HIV RT) using a primer-free SELEX (systematic evolution of ligands by exponential enrichment) method was characterized to determine features promoting tight binding. PF1's equilibrium dissociation constant for RT was ∼80 nM, over 10-fold lower than a random 30-mer. Changing the 2 terminal diguanosine repeats (underlined above) to diadenosine or dithymidine modestly decreased binding. Any changes to the 2 central diguanosines dramatically decreased binding. Binding was highly sensitive to length, with any truncations that deleted part of the 4 diguanosine motifs resulting in a 6-fold or more decrease in affinity. Even a construct with all the diguanosine motifs but lacking the 5' terminal A and 3 nucleotides at the 3' end showed ∼3-fold binding decrease. Changes to the nucleotides between the diguanosines, even those that did not alter PF1's low secondary structure (free energy of folding ΔG=-0.61 kcal/mol), dramatically decreased binding, suggesting sequence specificity. Despite the diguanosine motifs, circular dichroism (CD) spectra indicated that PF1 did not form a G-quartet. PF1 inhibited HIV RT synthesis with a half-maximal inhibitory value (IC(50)) of ∼60 nM. Larger, more structured RT DNA aptamers based on the HIV polypurine tract and those that formed G-quartets (denoted S4 and R1T) were more potent inhibitors, with IC(50) values of ∼4 and ∼1 nM, respectively. An RNA pseudoknot aptamer (denoted 1.1) showed an IC(50) near 4 nM. Competition binding assays with PF1 and several previously characterized RT aptamers indicated that they all bound at or near the primer-template pocket. These other more structured and typically larger aptamers bound more tightly than PF1 to RT based on filter binding assays. Results indicate that PF1 represents a new class of RT aptamers that are relatively small and have very low secondary structure, attributes that could be advantageous for further development as HIV inhibitors.
Collapse
Affiliation(s)
- Yi-Tak Lai
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | |
Collapse
|
16
|
|
17
|
Henseleit A, Schmieder S, Bley T, Sonntag F, Schilling N, Quenzel P, Danz N, Klotzbach U, Boschke E. A compact and rapid aptasensor platform based on surface plasmon resonance. Eng Life Sci 2011. [DOI: 10.1002/elsc.201100036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Taitt CR, Shriver-Lake LC, Anderson GP, Ligler FS. Surface modification and biomolecule immobilization on polymer spheres for biosensing applications. Methods Mol Biol 2011; 726:77-94. [PMID: 21424444 DOI: 10.1007/978-1-61779-052-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microspheres and nanospheres are being used in many of today's biosensing applications for automated sample processing, flow cytometry, signal amplification in microarrays, and labeling in multiplexed analyses. The surfaces of the spheres/particles need to be modified with proteins and other biomolecules to be used in these sensing applications. This chapter contains protocols to modify carboxyl- and amine-coated polymer spheres with proteins and peptides.
Collapse
Affiliation(s)
- Chris R Taitt
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | | | | |
Collapse
|
19
|
A primer-free method that selects high-affinity single-stranded DNA aptamers using thermostable RNA ligase. Anal Biochem 2011; 414:246-53. [PMID: 21420926 DOI: 10.1016/j.ab.2011.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/22/2022]
Abstract
This article describes a method for selecting single-stranded DNA (ssDNA) molecules that bind with high-affinity aptamers to specific target proteins. This SELEX (systematic evolution of ligands by exponential enrichment) method is similar to other "primer-free" approaches where the random sequence ssDNA starting pool has no fixed sequences at the 5' and 3' termini. Therefore, there are no predetermined sequences that could bias selection. Like other SELEX methods, repeated cycles (typically 5-15) of selection and then amplification and reselection are used. The method differs from other primer-free approaches in that the key step for regenerating new material for subsequent rounds is ligation of the selected ssDNA to a defined sequence oligonucleotide using thermostable RNA ligase. Under specific conditions, this ligase ligated 30-nt random sequence ssDNA (5'-N(30)-3') to a specified 20-nt ssDNA with approximately 50% efficiency. Efficiency was improved to approximately 90% by the addition of a single T residue to the 3' end (5'-N(29)T-3'). High efficiency in this step is critical, especially early in the procedure because any selected material that is not ligated is lost. In this study, human immunodeficiency virus reverse transcriptase was used as the target protein, but the method could be applied to essentially any protein.
Collapse
|
20
|
Optical detection systems using immobilized aptamers. Biosens Bioelectron 2011; 26:3725-36. [PMID: 21419619 DOI: 10.1016/j.bios.2011.02.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 11/24/2022]
Abstract
Advances in the development and the applications of optical biosensing systems based on immobilized aptamers are presented. These nucleic acid sequences have been used as new molecular recognition elements to develop heterogeneous assays, biosensors and microarrays. Among different detection modes that have been employed, optical ones which are described here are among the most used. Since their first report in 1996, numerous optical detection systems using aptamers and mainly based on fluorescence have been developed. Two main approaches have been used: label-based (using fluorophore, luminophore, enzyme, nanoparticles) or aptamer label-free detection systems (e.g. surface plasmon resonance, optical resonance). Most methods are based on a labeling approach. Some targets can be optically detected using not only colorimetry, chemiluminescence or the most developed fluorescence mode but also more recent non conventional optical methods such as surface plasmon-coupled directional emission (SPCDE). The first SPCDE-based aptasensor for thrombin detection has recently been reported in 2009. Aptasensors based on surface-enhanced Raman scattering spectroscopy (SERS) which presents advantages compared to fluorescence have also been described. Different label-free techniques have recently been shown to be suitable for developing performant aptasensors or aptamer-based microarrays, such as surface plasmon resonance (SPR), diffraction grating, evanescent-field-coupled (EFC) waveguide-mode, optical resonance or Brewster angle straddle interferometry (BASI). Important advances have been realized on optical aptamer-based detection systems that appear as highly efficient devices with enormous potential.
Collapse
|
21
|
Krishhan VV, Khan IH, Luciw PA. Multiplexed microbead immunoassays by flow cytometry for molecular profiling: Basic concepts and proteomics applications. Crit Rev Biotechnol 2009; 29:29-43. [PMID: 19514901 DOI: 10.1080/07388550802688847] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Flow cytometry was originally established as an automated method for measuring optical or fluorescence characteristics of cells or particles in suspension. With the enormous increase in development of reliable electronics, lasers, micro-fluidics, as well as many advances in immunology and other fields, flow cytometers have become user-friendlier, less-expensive instruments with an increasing importance for both basic research and clinical applications. Conventional uses of flow cytometry include immunophenotyping of blood cells and the analysis of the cell cycle. Importantly, methods for labeling microbeads with unique combinations of fluorescent spectral signatures have made multiplex analysis of soluble analytes (i.e. the ability to detect multiple targets in a single test sample) feasible by flow cytometry. The result is a rapid, high-throughput, sensitive, and reproducible detection technology for a wide range of biomedical applications requiring detection of proteins (in cells and biofluids) and nucleic acids. Thus, novel methods of flow cytometry are becoming important for diagnostic purposes (e.g. identifying multiple clinical biomarkers for a wide range of diseases) as well as for developing novel therapies (e.g. elucidating drug mechanisms and potential toxicities). In addition, flow cytometry for multiplex analysis, coupled with automated sample handling devices, has the potential to significantly enhance proteomics research, particularly analysis of post-translational modifications of proteins, on a large scale. Inherently, flow cytometry methods are strongly rooted in the laws of the physics of optics, fluidics, and electromagnetism. This review article describes principles and early sources of flow cytometry, provides an introduction to the multiplex microbead technology, and discusses its applications and advantages in comparison to other methods. Anticipated future directions, particularly for translational research in medicine, are also discussed.
Collapse
Affiliation(s)
- V V Krishhan
- Department of Chemistry, California State University, Fresno, CA 93740, USA.
| | | | | |
Collapse
|
22
|
Abstract
Aptamers are small single-stranded nucleic acids that fold into a well-defined three-dimensional structure. They show a high affinity and specificity for their target molecules and inhibit their biological functions. Aptamers belong to the nucleic acids family and can be synthesized by chemical or enzymatic procedures, or a combination of the two. They can, therefore, be considered as both chemical and biological substances. This Review summarizes the most convenient approaches to their preparation and new developments in the field of aptamers. The application of aptamers in chemical biology is also discussed.
Collapse
Affiliation(s)
- Günter Mayer
- Life and Medical Sciences, Prog. Unit Chemical Biology and Medicinal Chemistry, University of Bonn c/o Kekulé-Institute for Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
23
|
|
24
|
Rasooly A, Herold KE. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis 2008; 5:531-50. [PMID: 18673074 DOI: 10.1089/fpd.2008.0119] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limitations since they are generally faster and can provide more information than culture-based methods. One limitation of traditional PCR-based methods is that they are normally limited to the analysis of a single pathogen, a small group of related pathogens, or a small number of relevant genes. Microarray technology enables a significant expansion of the capability of DNA-based methods in terms of the number of DNA sequences that can be analyzed simultaneously, enabling molecular identification and characterization of multiple pathogens and many genes in a single array assay. Microarray analysis of microbial pathogens has potential uses in research, food safety, medical, agricultural, regulatory, public health, and industrial settings. In this article, we describe the main technical elements of microarray technology and the application and potential use of DNA microarrays for food microbial analysis.
Collapse
Affiliation(s)
- Avraham Rasooly
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, USA.
| | | |
Collapse
|
25
|
DeStefano JJ, Nair GR. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. Oligonucleotides 2008; 18:133-44. [PMID: 18637731 DOI: 10.1089/oli.2008.0103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primer-template-based double-stranded nucleic acids capable of binding human immunodeficiency virus reverse transcriptase (HIV-RT) with high affinity were used as starting material to develop small single-stranded loop-back DNA aptamers. The original primer-templates were selected using a SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach and consisted of 46- and 50-nt primer and template strands, respectively. The major determinant of the approximately 10-fold tighter binding in selected sequences relative to control primer-templates was a run of 6.8 G residues at the 3' primer end. Sixty, thirty-seven, twenty-seven, and twenty-two nucleotide loop-back single-stranded versions that retained the base pairs near the 3' primer terminus were constructed. Both the 60- and 37-nt versions retained high affinity for RT with K(d) values of approximately 0.44 nM and 0.66 nM, respectively. Random sequence primer-templates of the same length had K(d)s of approximately 20 nM and approximately 161 nM. The shorter 27- and 22-nt aptamers bound with reduced affinity. Several modifications of the 37-nt aptamer were also tested including changes to the terminal 3' G nucleotide and internal bases in the G run, replacement of specific nucleotides with phosphothioates, and alterations to the 5' overhang. Optimal binding required a 4- to 5-nt overhang, and internal changes within the G run had a pronounced negative effect on binding. Phosphothioate nucleotides or the presence of a 3' dideoxy G residue did not alter affinity. The 37-nt aptamer was a potent inhibitor of HIV-RT in vitro and functioned by blocking binding of other primer-templates.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
26
|
|
27
|
Novel protein detection method based on proximity-dependent polymerase reaction and aptamers. CHINESE SCIENCE BULLETIN-CHINESE 2008. [DOI: 10.1007/s11434-007-0487-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Fischer NO, Tarasow TM, Tok JBH. Protein detection via direct enzymatic amplification of short DNA aptamers. Anal Biochem 2007; 373:121-8. [PMID: 17980857 DOI: 10.1016/j.ab.2007.09.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Here we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. Because both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 microM to 10 pM).
Collapse
Affiliation(s)
- Nicholas O Fischer
- BioSecurity and NanoSciences Laboratory, Chemistry, Materials, and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | |
Collapse
|
29
|
Balamurugan S, Obubuafo A, Soper SA, Spivak DA. Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 2007; 390:1009-21. [PMID: 17891385 DOI: 10.1007/s00216-007-1587-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/09/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
In this review we examine various methods for the immobilization of aptamers onto different substrates that can be utilized in a diverse array of analytical formats. In most cases, covalent linking to surfaces is preferred over physisorption, which is reflected in the bulk of the reports covered within this review. Conjugation of aptamers with appropriate linkers directly to gold films or particles is discussed first, followed by methods for conjugating aptamers to functionally modified surfaces. In many aptamer-based applications, silicates and silicon oxide surfaces provide an advantage over metallic substrates, and generally require surface modification prior to covalent attachment of the aptamers. Chemical protocols for covalent attachment of aptamers to functionalized surfaces are summarized in the review, showing common pathways employed for aptamer immobilization on different surfaces. Biocoatings, such as avidin or one of its derivatives, have been shown to be highly successful for immobilizing biotin-tethered aptamers on various surfaces (e.g., gold, silicates, polymers). There are also a few examples reported of aptamer immobilization on other novel substrates, such as quantum dots, carbon nanotubes, and carbohydrates. This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3' versus 5' attachment, and regeneration methods of aptamers on surfaces.
Collapse
|
30
|
Tang Q, Su X, Loh KP. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. J Colloid Interface Sci 2007; 315:99-106. [PMID: 17689549 DOI: 10.1016/j.jcis.2007.06.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/16/2022]
Abstract
We have applied surface plasmon resonance (SPR) spectroscopy, in combination with one-step direct binding, competition, and sandwiched assay schemes, to study thrombin binding to its DNA aptamers, with the aim to further the understanding of their interfacial binding characteristics. Using a 15-mer aptamer that binds thrombin primarily at the fibrinogen-recognition exosite as a model, we have demonstrated that introducing a DNA spacer in the aptamer enhances thrombin-binding capacity and stability, as similarly reported for hydrocarbon linkers. The bindings are aptamer surface coverage and salt concentration dependent. When free aptamers or DNA sequences complementary to the immobilized aptamer are applied after the formation of thrombin/aptamer complexes, bound thrombin is displaced to a certain extent, depending on the stability of the complexes formed under different conditions. When the 29-mer aptamer (specific to thrombin's heparin-binding exosite) is immobilized on the surface, its affinity to thrombin appears to be lower than the immobilized 15-mer aptamer, although the 29-mer aptamer is known to have a higher affinity in the solution phase. These findings underline the importance of aptamers' ability to fold into intermolecular structures and their accessibility for target capture. Using a sandwiched assay scheme followed by an additional signaling step involving biotin-streptavidin chemistry, we have observed the simultaneous binding of the 15- and 29-mer aptamers to thrombin protein at different exosites and have found that one aptamer depletes thrombin's affinity to the other when they bind together. We believe that these findings are invaluable for developing DNA aptamer-based biochips and biosensors.
Collapse
Affiliation(s)
- Qianjun Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive, 117543 Singapore
| | | | | |
Collapse
|
31
|
Fischer NO, Tarasow TM, Tok JBH. Aptasensors for biosecurity applications. Curr Opin Chem Biol 2007; 11:316-28. [PMID: 17548236 DOI: 10.1016/j.cbpa.2007.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Nucleic acid (aptasensors) have found steadily increased utility and application over the past decade. In particular, aptamers have been touted as a valuable complement to and, in some cases, replacement for antibodies owing to their structural and functional robustness as well as their ease in generation and synthesis. They are thus attractive for biosecurity applications (e.g. pathogen detection) and are especially well suited because their in vitro generation process does not require infection of any host systems. Herein we provide a brief overview of the aptamers generated against pathogens and toxins over the past few years. In addition, a few recently described detection platforms using aptamers and potentially suitable applications for biosecurity will be discussed.
Collapse
Affiliation(s)
- Nicholas O Fischer
- BioSecurity and NanoSciences Laboratory, Chemistry, Materials & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | |
Collapse
|