1
|
Shell DJ, Foley CA, Wang Q, Smith CM, Guduru SKR, Zeng H, Dong A, Norris-Drouin JL, Axtman M, Hardy PB, Gupta G, Halabelian L, Frye SV, James LI, Pearce KH. Discovery of a 53BP1 Small Molecule Antagonist Using a Focused DNA-Encoded Library Screen. J Med Chem 2023; 66:14133-14149. [PMID: 37782247 PMCID: PMC10630848 DOI: 10.1021/acs.jmedchem.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Methyl-lysine reader p53 binding protein 1 (53BP1) is a central mediator of DNA break repair and is associated with various human diseases, including cancer. Thus, high-quality 53BP1 chemical probes can aid in further understanding the role of 53BP1 in genome repair pathways. Herein, we utilized focused DNA-encoded library screening to identify the novel hit compound UNC8531, which binds the 53BP1 tandem Tudor domain (TTD) with an IC50 of 0.47 ± 0.09 μM in a TR-FRET assay and Kd values of 0.85 ± 0.17 and 0.79 ± 0.52 μM in ITC and SPR, respectively. UNC8531 was cocrystallized with the 53BP1 TTD to guide further optimization efforts, leading to UNC9512. NanoBRET and 53BP1-dependent foci formation experiments confirmed cellular target engagement. These results show that UNC9512 is a best-in-class small molecule 53BP1 antagonist that can aid further studies investigating the role of 53BP1 in DNA repair, gene editing, and oncogenesis.
Collapse
Affiliation(s)
- Devan J Shell
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caroline A Foley
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qinhong Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiva K R Guduru
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Ontario M5S 1A1, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Ontario M5S 1A1, Canada
| | - Jacqueline L Norris-Drouin
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew Axtman
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - P Brian Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gaorav Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Ontario M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Ontario M5S 1A1, Canada
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Ortiz G, Kutateladze TG, Fujimori DG. Chemical tools targeting readers of lysine methylation. Curr Opin Chem Biol 2023; 74:102286. [PMID: 36948085 PMCID: PMC10264141 DOI: 10.1016/j.cbpa.2023.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/22/2023]
Abstract
Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.
Collapse
Affiliation(s)
- Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco, CA 94158, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Danica Galonic Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Stevenson MD, Vendrov AE, Yang X, Chen Y, Navarro HA, Moss N, Runge MS, Arendshorst WJ, Madamanchi NR. Reactivity of renal and mesenteric resistance vessels to angiotensin II is mediated by NOXA1/NOX1 and superoxide signaling. Am J Physiol Renal Physiol 2023; 324:F335-F352. [PMID: 36759130 PMCID: PMC10026993 DOI: 10.1152/ajprenal.00236.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Activation of NADPH oxidase (NOX) enzymes and the generation of reactive oxygen species and oxidative stress regulate vascular and renal function and contribute to the pathogenesis of hypertension. The present study examined the role of NOXA1/NOX1 function in vascular reactivity of renal and mesenteric resistance arteries/arterioles of wild-type and Noxa1-/- mice. A major finding was that renal blood flow is less sensitive to acute stimulation by angiotensin II (ANG II) in Noxa1-/- mice compared with wild-type mice, with a direct action on resistance arterioles independent of nitric oxide (NO) bioavailability. These functional results were reinforced by immunofluorescence evidence of NOXA1/NOX1 protein presence in renal arteries, afferent arterioles, and glomeruli as well as their upregulation by ANG II. In contrast, the renal vascular response to the thromboxane mimetic U46619 was effectively blunted by NO and was similar in both mouse genotypes and thus independent of NOXA1/NOX1 signaling. However, phenylephrine- and ANG II-induced contraction of isolated mesenteric arteries was less pronounced and buffering of vasoconstriction after acetylcholine and nitroprusside stimulation was reduced in Noxa1-/- mice, suggesting endothelial NO-dependent mechanisms. An involvement of NOXA1/NOX1/O2•- signaling in response to ANG II was demonstrated with the specific NOXA1/NOX1 assembly inhibitor C25 and the nonspecific NOX inhibitor diphenyleneiodonium chloride in cultured vascular smooth muscle cells and isolated mesenteric resistance arteries. Collectively, our data indicate that the NOX1/NOXA1/O2•- pathway contributes to acute vasoconstriction induced by ANG II in renal and mesenteric vascular beds and may contribute to ANG II-induced hypertension.NEW & NOTEWORTHY Renal reactivity to angiotensin II (ANG II) is mediated by superoxide signaling produced by NADPH oxidase (NOX)A1/NOX1. Acute vasoconstriction of renal arteries by ANG was blunted in Noxa1-/- compared with wild-type mice. NOXA1/NOX1/O2•- signaling was also observed in ANG II stimulation of vascular smooth muscle cells and isolated mesenteric resistance arteries, indicating that it contributes to ANG II-induced hypertension. A NOXA1/NOX1 assembly inhibitor (C25) has been characterized that inhibits superoxide production and ameliorates the effects of ANG II.
Collapse
Affiliation(s)
- Mark D Stevenson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Aleksandr E Vendrov
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Xi Yang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Yuenmu Chen
- McAllister Heart Institute, Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Hernán A Navarro
- Center for Drug Discovery, Organic and Medicinal Chemistry, RTI International, Research Triangle Park, North Carolina, United States
| | - Nicholas Moss
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Marschall S Runge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - William J Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nageswara R Madamanchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Shell DJ, Rectenwald JM, Buttery PH, Johnson RL, Foley CA, Guduru SKR, Uguen M, Rubiano JS, Zhang X, Li F, Norris-Drouin JL, Axtman M, Brian Hardy P, Vedadi M, Frye SV, James LI, Pearce KH. Discovery of hit compounds for methyl-lysine reader proteins from a target class DNA-encoded library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:428-439. [PMID: 36272689 DOI: 10.1016/j.slasd.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Methyl-lysine (Kme) reader domains are prevalent in chromatin regulatory proteins which bind post-translational modification sites to recruit repressive and activating factors; therefore, these proteins play crucial roles in cellular signaling and epigenetic regulation. Proteins that contain Kme domains are implicated in various diseases, including cancer, making them attractive therapeutic targets for drug and chemical probe discovery. Herein, we report on expanding the utility of a previously reported, Kme-focused DNA-encoded library (DEL), UNCDEL003, as a screening tool for hit discovery through the specific targeting of Kme reader proteins. As an efficient method for library generation, focused DELs are designed based on structural and functional features of a specific class of proteins with the intent of novel hit discovery. To broadly assess the applicability of our library, UNCDEL003 was screened against five diverse Kme reader protein domains (53BP1 TTD, KDM7B JmjC-PHD, CDYL2 CD, CBX2 CD, and LEDGF PWWP) with varying structures and functions. From these screening efforts, we identified hit compounds which contain unique chemical scaffolds distinct from previously reported ligands. The selected hit compounds were synthesized off-DNA and confirmed using primary and secondary assays and assessed for binding selectivity. Hit compounds from these efforts can serve as starting points for additional development and optimization into chemical probes to aid in further understanding the functionality of these therapeutically relevant proteins.
Collapse
Affiliation(s)
- Devan J Shell
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin M Rectenwald
- School of Medicine, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter H Buttery
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca L Johnson
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline A Foley
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shiva K R Guduru
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juanita Sanchez Rubiano
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xindi Zhang
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jacqueline L Norris-Drouin
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Axtman
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - P Brian Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Cai B, Krusemark CJ. Multiplexed Small‐Molecule‐Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
6
|
Cai B, Krusemark CJ. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis. Angew Chem Int Ed Engl 2022; 61:e202113515. [PMID: 34758183 PMCID: PMC8748404 DOI: 10.1002/anie.202113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Small-molecule binding assays to target proteins are a core component of drug discovery and development. While a number of assay formats are available, significant drawbacks still remain in cost, sensitivity, and throughput. To improve assays by capitalizing on the power of DNA sequence analysis, we have developed an assay method that combines DNA encoding with split-and-pool sample handling. The approach involves affinity labeling of DNA-linked ligands to a protein target. Critically, the labeling event assesses ligand binding and enables subsequent pooling of several samples. Application of a purifying selection on the pool for protein-labeled DNAs allows detection of ligand binding by quantification of DNA barcodes. We demonstrate the approach in both ligand displacement and direct binding formats and demonstrate its utility in determination of relative ligand affinity, profiling ligand specificity, and high-throughput small-molecule screening.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Discovery of a novel 53BP1 inhibitor through AlphaScreen-based high-throughput screening. Bioorg Med Chem 2021; 34:116054. [PMID: 33571875 DOI: 10.1016/j.bmc.2021.116054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
Tumor suppressor p53-binding protein 1 (53BP1), a tantem tudor domain (TTD) protein, takes part in DNA Damage Repair (DDR) pathways through the specific recognition of lysine methylation on histones. The dysregulation of 53BP1 is closely related to the development of many diseases including cancer. Moreover, recent studies found that deficiency of 53BP1 could increase the efficiency of precise CRISPR/Cas9 genome editing. Thus, discovery of inhibitor is beneficial to the study of biological functions of 53BP1 and the application of CRISPR/Cas9 genome editing. UNC2170 and its derivatives have been reported as 53BP1 targeted small molecular inhibitors with modest activities. Hence, to discover better 53BP1 inhibitors, we conducted an AlphaScreen assay based high-throughput screening (HTS) and identified a novel and effective 53BP1-TTD inhibitor DP308 which disrupts the binding between 53BP1 and H4K20me2 peptide with an IC50 value of 1.69 ± 0.73 μM. Both Microscale Themophoresis (MST) and Surface Plasmon Resonance (SPR) assays confirmed the direct binding between DP308 and 53BP1-TTD protein with binding affinity (Kd) of about 2.7 μM. Molecular docking studies further suggested that DP308 possibly occupies the H4K20me2 binding pocket of the 53BP1-TTD aromatic cage. These results demonstrated that DP308 is a promising small molecule inhibitor for further optimization towards a more potent chemical probe of 53BP1. Additionally, it could be a potential valuable tool for applying to gene editing therapy by increasing the efficiency of CRISPR/Cas9 genome editing.
Collapse
|
8
|
Design and Construction of a Focused DNA-Encoded Library for Multivalent Chromatin Reader Proteins. Molecules 2020; 25:molecules25040979. [PMID: 32098353 PMCID: PMC7070942 DOI: 10.3390/molecules25040979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that ‘read’ these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.
Collapse
|
9
|
Walck AJ, Harkins KR. Modification of AlphaLISA Excitation Wavelength Leads to Improved Assay Sensitivity for Photosynthetic Tissue Samples. SLAS Technol 2019; 24:429-436. [DOI: 10.1177/2472630318821338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Simhadri C, Daze KD, Douglas SF, Milosevich N, Monjas L, Dev A, Brown TM, Hirsch AKH, Wulff JE, Hof F. Rational Adaptation of L3MBTL1 Inhibitors to Create Small‐Molecule Cbx7 Antagonists. ChemMedChem 2019; 14:1444-1456. [DOI: 10.1002/cmdc.201900021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/30/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Kevin D. Daze
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Sarah F. Douglas
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Natalia Milosevich
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Leticia Monjas
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Amarjot Dev
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Tyler M. Brown
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Present affiliation: Department for Drug Design and Optimization and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research (HIPS)—Helmholtz Centre for Infection Research (HZI)Saarland University Campus Building E 8.1 66123 Saarbrücken Germany
| | - Jeremy E. Wulff
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Fraser Hof
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| |
Collapse
|
11
|
Rectenwald JM, Hardy PB, Norris-Drouin JL, Cholensky SH, James LI, Frye SV, Pearce KH. A General TR-FRET Assay Platform for High-Throughput Screening and Characterizing Inhibitors of Methyl-Lysine Reader Proteins. SLAS DISCOVERY 2019; 24:693-700. [PMID: 31017815 DOI: 10.1177/2472555219844569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromatin regulatory complexes localize to specific sites via recognition of posttranslational modifications (PTMs) on N-terminal tails of histone proteins (e.g., methylation, acetylation, and phosphorylation). Molecular recognition of modified histones is mediated by "reader" protein subunits. The recruited complexes govern processes such as gene transcription, DNA replication, and chromatin remodeling. Dysregulation of histone modifications and consequent downstream effects have been associated with a variety of disease states, leading to an interest in developing small-molecule inhibitors of reader proteins. Herein, we describe a generalized time-resolved fluorescence resonance energy transfer (TR-FRET) assay for a panel of methyl-lysine (Kme) reader proteins. These assays are facile, robust, and reproducible. Importantly, this plug-and-play assay can be used for high-throughput screening (HTS) campaigns, generation of structure-activity relationships (SARs), and evaluation of inhibitor selectivity. Successful demonstration of this assay format for compound screening is highlighted with a pilot screen of a focused compound set with CBX2. This assay platform enables the discovery and characterization of chemical probes that can potently and selectively inhibit Kme reader proteins to ultimately accelerate studies of chromatin reader proteins in normal biology and disease states.
Collapse
Affiliation(s)
- Justin M Rectenwald
- 1 School of Medicine, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - P Brian Hardy
- 2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline L Norris-Drouin
- 2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie H Cholensky
- 2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey I James
- 2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen V Frye
- 2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- 2 Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Development of a NS2B/NS3 protease inhibition assay using AlphaScreen ® beads for screening of anti-dengue activities. Heliyon 2018; 4:e01023. [PMID: 30560214 PMCID: PMC6289942 DOI: 10.1016/j.heliyon.2018.e01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities. Methods The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format. Results The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable zʹ factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities. Conclusion The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.
Collapse
|
13
|
Structures of REV1 UBM2 Domain Complex with Ubiquitin and with a Small-Molecule that Inhibits the REV1 UBM2–Ubiquitin Interaction. J Mol Biol 2018; 430:2857-2872. [DOI: 10.1016/j.jmb.2018.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/25/2023]
|
14
|
Development of a cost effective and robust AlphaScreen® platform for HTS application. Biotechniques 2018; 64:181-183. [DOI: 10.2144/btn-2018-2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The use of AlphaScreen® detection has allowed researchers to examine a wide variety of molecular interactions for use in high-throughput screening. However, the cost of Alpha reagents can often be prohibitory for extended screening campaigns or for young investigators with limited funding. To reduce assay costs, many labs have focused on miniaturization, while there have been limited efforts to scale down Alpha reagents. Thus, we describe the optimization of an AlphaScreen detection platform by systematically reducing the Alpha reagents down to 2.5 μg/ml beads, without compromising assay integrity. We demonstrate that reducing bead concentration reduces detection costs substantially while yielding robust statistics. We believe this simple new protocol will enhance the future utilization of AlphaScreen technology in high-throughput screening.
Collapse
|
15
|
Hauser AT, Robaa D, Jung M. Epigenetic small molecule modulators of histone and DNA methylation. Curr Opin Chem Biol 2018; 45:73-85. [PMID: 29579619 DOI: 10.1016/j.cbpa.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
DNA and histone methylation belong to the key regulatory components in the epigenetic machinery, and dysregulations of these processes have been associated with various human diseases. Small molecule modulators of these epigenetic targets are highly valuable both as chemical probes to study the biological roles of the target proteins, and as potential therapeutics. Indeed, recent years have seen the discovery of chemical modulators of several epigenetic targets, some of which are already marketed drugs or undergoing clinical trials. In this review, we will focus on small molecule modulators of DNA and histone methylation.
Collapse
Affiliation(s)
- Alexander-Thomas Hauser
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
16
|
Vanarotti M, Evison BJ, Actis ML, Inoue A, McDonald ET, Shao Y, Heath RJ, Fujii N. Small-molecules that bind to the ubiquitin-binding motif of REV1 inhibit REV1 interaction with K164-monoubiquitinated PCNA and suppress DNA damage tolerance. Bioorg Med Chem 2018; 26:2345-2353. [PMID: 29598900 DOI: 10.1016/j.bmc.2018.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 11/27/2022]
Abstract
REV1 protein is a mutagenic DNA damage tolerance (DDT) mediator and encodes two ubiquitin-binding motifs (i.e., UBM1 and UBM2) that are essential for the DDT function. REV1 interacts with K164-monoubiquitinated PCNA (UbPCNA) in cells upon DNA-damaging stress. By using AlphaScreen assays to detect inhibition of REV1 and UbPCNA protein interactions along with an NMR-based strategy, we identified small-molecule compounds that inhibit the REV1/UbPCNA interaction and that directly bind to REV1 UBM2. In cells, one of the compound prevented recruitment of REV1 to PCNA foci on chromatin upon cisplatin treatment, delayed removal of UV-induced cyclopyrimidine dimers from nuclei, prevented UV-induced mutation of HPRT gene, and diminished clonogenic survival of cells that were challenged by cyclophosphamide or cisplatin. This study demonstrates the potential utility of a small-molecule REV1 UBM2 inhibitor for preventing DDT.
Collapse
Affiliation(s)
- Murugendra Vanarotti
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Evison
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marcelo L Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ezelle T McDonald
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Youming Shao
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Heath
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
18
|
Barnash KD, Lamb KN, James LI, Frye SV. Peptide Technologies in the Development of Chemical Tools for Chromatin-Associated Machinery. Drug Dev Res 2017. [DOI: 10.1002/ddr.21398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kimberly D. Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| |
Collapse
|
19
|
Li L, Zhang H, Zhang M, Zhao M, Feng L, Luo X, Gao Z, Huang Y, Ardayfio O, Zhang JH, Lin Y, Fan H, Mi Y, Li G, Liu L, Feng L, Luo F, Teng L, Qi W, Ottl J, Lingel A, Bussiere DE, Yu Z, Atadja P, Lu C, Li E, Gu J, Zhao K. Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2 Inhibitors Recognition by EED. PLoS One 2017; 12:e0169855. [PMID: 28072869 PMCID: PMC5224880 DOI: 10.1371/journal.pone.0169855] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/24/2016] [Indexed: 01/23/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity.
Collapse
Affiliation(s)
- Ling Li
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Hailong Zhang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Man Zhang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Mengxi Zhao
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Lijian Feng
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Xiao Luo
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Zhenting Gao
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Ying Huang
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Ophelia Ardayfio
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Ji-Hu Zhang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Ying Lin
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Hong Fan
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yuan Mi
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Guobin Li
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Lei Liu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Leying Feng
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Fangjun Luo
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Lin Teng
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Wei Qi
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Dirksen E. Bussiere
- Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Zhengtian Yu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Peter Atadja
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Chris Lu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Justin Gu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Kehao Zhao
- China Novartis Institutes for BioMedical Research, Shanghai, China
| |
Collapse
|
20
|
Stuckey JI, Simpson C, Norris-Drouin JL, Cholensky SH, Lee J, Pasca R, Cheng N, Dickson BM, Pearce KH, Frye SV, James LI. Structure-Activity Relationships and Kinetic Studies of Peptidic Antagonists of CBX Chromodomains. J Med Chem 2016; 59:8913-8923. [PMID: 27571219 DOI: 10.1021/acs.jmedchem.6b00801] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To better understand the contribution of methyl-lysine (Kme) binding proteins to various disease states, we recently developed and reported the discovery of 1 (UNC3866), a chemical probe that targets two families of Kme binding proteins, CBX and CDY chromodomains, with selectivity for CBX4 and -7. The discovery of 1 was enabled in part by the use of molecular dynamics simulations performed with CBX7 and its endogenous substrate. Herein, we describe the design, synthesis, and structure-activity relationship studies that led to the development of 1 and provide support for our model of CBX7-ligand recognition by examining the binding kinetics of our antagonists with CBX7 as determined by surface-plasmon resonance.
Collapse
Affiliation(s)
- Jacob I Stuckey
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Catherine Simpson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Junghyun Lee
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Ryan Pasca
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Nancy Cheng
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Bradley M Dickson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Structural aspects of small-molecule inhibition of methyllysine reader proteins. Future Med Chem 2016; 8:1681-702. [PMID: 27577975 DOI: 10.4155/fmc-2016-0082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Methyl reader proteins recognize and bind to post-translationally methylated residues. They execute the commands issued by protein methyltransferases and play functional roles in diverse cellular processes including gene regulation, development and oncogenesis. Efforts to inhibit these proteins are relatively new. Only a small number of methyl reader proteins belonging to the chromodomain, malignant brain tumor domain, plant homeodomain finger and Tudor domain families have been targeted by chemical inhibitors. This review summarizes inhibitors that have been reported to date, and provides a perspective for future progress. Structural determinants for methyl reader inhibition will be presented, along with an analysis of the molecular interactions that control potency and selectivity for inhibitors of each family.
Collapse
|
22
|
Chemical probes for methyl lysine reader domains. Curr Opin Chem Biol 2016; 33:135-41. [PMID: 27348158 DOI: 10.1016/j.cbpa.2016.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
Abstract
The primary intent of a chemical probe is to establish the relationship between a molecular target, usually a protein whose function is modulated by the probe, and the biological consequences of that modulation. In order to fulfill this purpose, a chemical probe must be profiled for selectivity, mechanism of action, and cellular activity, as the cell is the minimal system in which 'biology' can be explored. This review provides a brief overview of progress towards chemical probes for methyl lysine reader domains with a focus on recent progress targeting chromodomains.
Collapse
|
23
|
Baughman BM, Pattenden SG, Norris JL, James LI, Frye SV. The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer. ACS Chem Biol 2016; 11:722-8. [PMID: 26317848 DOI: 10.1021/acschembio.5b00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L3MBTL3 recognizes mono- and dimethylated lysine residues on histone tails. The recently reported X-ray cocrystal structures of the chemical probe UNC1215 and inhibitor UNC2533 bound to the methyl-lysine reading MBT domains of L3MBTL3 demonstrate a unique and flexible 2:2 dimer mode of recognition. In this study, we describe our in vitro analysis of L3MBTL3 dimerization via its MBT domains and additionally show that this dimerization occurs within a cellular context in the absence of small molecule ligands. Furthermore, mutations to the first and second MBT domains abrogated L3MBTL3 dimerization both in vitro and in cells. These observations are consistent with the hypothesis that L3MBTL3 engages methylated histone tails as a dimer while carrying out its normal function and provides an explanation for the presence of repeated MBT domains within L3MBTL3.
Collapse
Affiliation(s)
- Brandi M. Baughman
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G. Pattenden
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L. Norris
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Stuckey JI, Dickson BM, Cheng N, Liu Y, Norris JL, Cholensky SH, Tempel W, Qin S, Huber KG, Sagum C, Black K, Li F, Huang XP, Roth BL, Baughman BM, Senisterra G, Pattenden SG, Vedadi M, Brown PJ, Bedford MT, Min J, Arrowsmith CH, James LI, Frye SV. A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat Chem Biol 2016; 12:180-7. [PMID: 26807715 PMCID: PMC4755828 DOI: 10.1038/nchembio.2007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022]
Abstract
We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.
Collapse
Affiliation(s)
- Jacob I Stuckey
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bradley M Dickson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancy Cheng
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Katherine G Huber
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Karynne Black
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Brandi M Baughman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Samantha G Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Powell DJ, Hertzberg RP, Macarrόn R. Design and Implementation of High-Throughput Screening Assays. Methods Mol Biol 2016; 1439:1-32. [PMID: 27316985 DOI: 10.1007/978-1-4939-3673-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTS remains at the core of the drug discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful consideration of many options and variables, starting with the choice of screening strategy and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines should be established to ensure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces.
Collapse
Affiliation(s)
- David J Powell
- Alternative Drug Discovery, GSK Pharmaceuticals, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK.
| | | | - Ricardo Macarrόn
- Alternative Drug Discovery, GSK Pharmaceuticals, 1250 South Collegeville Road, Upper Providence, PA, 19426, USA
| |
Collapse
|
26
|
Ma H, Howitz KT, Horiuchi KY, Wang Y. Histone Methyltransferase Activity Assays. EPIGENETICS FOR DRUG DISCOVERY 2015. [DOI: 10.1039/9781782628484-00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Histone methyltransferases (HMTs) methylate either the lysine or arginine residues on histones and other proteins and play a crucial role in epigenetic regulation. Over 70 HMTs are encoded by the human genome, and many have been implicated in the aetiology of cancer, inflammatory diseases, neurodegenerative diseases and other conditions. There are currently about a dozen HMT activity assays available, and many of these assay formats are applicable to other epigenetic factors, such as histone acetyltransferases, histone deacetylases, and histone and DNA demethylases. Many factors need to be considered in selecting an HMT assay for drug discovery studies, including cost, adaptability to high-throughput screening, and rates of false positives and false negatives. This chapter describes the mechanisms of the major assay platforms available for HMT screening and profiling and presents the advantages and limitations associated with each.
Collapse
Affiliation(s)
- Haiching Ma
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| | - Konrad T. Howitz
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| | - Kurumi Y. Horiuchi
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| | - Yuren Wang
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| |
Collapse
|
27
|
Wang Y, Han Y, Fan E, Zhang K. Analytical strategies used to identify the readers of histone modifications: A review. Anal Chim Acta 2015; 891:32-42. [PMID: 26388362 DOI: 10.1016/j.aca.2015.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
The so-called "readers" of histone post-translational modifications (HPTMs) refer to proteins or complexes that are recruited to HPTMs thus eventually regulate gene transcription. To identify these "readers", mass spectrometry plays an essential role following various enriching strategies. These enriching methods include the use of modified histone peptides/proteins or chemically synthesized histones/nucleosomes containing desired HPTMs to enrich the readers of HPTMs. Despite the peptide- or protein-based assay is straightforward and easy to perform for most labs, this strategy has limited applications for those weak or combinational interactions among various HPTMs and false-positive results are a potential big problem. While the results derived from synthesized histone proteins/nucleosomes is more reliable as it mimics the real chromatic conditions thus is able to analyze the binders of those cross-talked HPTMs, usually the synthesis is so difficult that their applications are impeded for high throughput analysis. In this review, an overview of these analytical techniques is provided and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Ye Wang
- Department of Chemistry, Nankai University, 300071 Tianjin, China
| | - Yanpu Han
- Department of Chemistry, Nankai University, 300071 Tianjin, China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Stefan-Meier-Straße 17, 79104 Freiburg, Germany; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Jungong Road No. 516, 200093 Shanghai, China.
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Medical Epigenetics, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, 300070 Tianjin, China; Department of Chemistry, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
28
|
Janzen WP. Screening technologies for small molecule discovery: the state of the art. ACTA ACUST UNITED AC 2015; 21:1162-70. [PMID: 25237860 DOI: 10.1016/j.chembiol.2014.07.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023]
Abstract
Screening, high-throughput screening, and ultra-high-throughput screening are all really just points on a spectrum that represent differing applications of the same process: the creation of biologically relevant assays that are relevant, reproducible, reliable, and robust. Whether the discovery program is developing a pharmaceutical, an academic probe, cosmetics, pesticides, or a toxicity monitoring assay, the development of a screen focuses on generating a method that will reliably deliver reproducible results over a period of weeks, months, or years and that will generate consistent results for every test along the way. This review provides both historical perspective on how this unique scientific discipline evolved and commentary on the current state of the art technologies and techniques.
Collapse
Affiliation(s)
- William P Janzen
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Perfetti MT, Baughma BM, Dickson BM, Mu Y, Cui G, Mader P, Dong A, Norris JL, Rothbart SB, Strahl BD, Brown PJ, Janzen WP, Arrowsmith CH, Mer G, McBride KM, James LI, Frye SV. Identification of a fragment-like small molecule ligand for the methyl-lysine binding protein, 53BP1. ACS Chem Biol 2015; 10:1072-81. [PMID: 25590533 PMCID: PMC4402254 DOI: 10.1021/cb500956g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Improving our understanding of the role of chromatin regulators in the initiation, development, and suppression of cancer and other devastating diseases is critical, as they are integral players in regulating DNA integrity and gene expression. Developing small molecule inhibitors for this target class with cellular activity is a crucial step toward elucidating their specific functions. We specifically targeted the DNA damage response protein, 53BP1, which uses its tandem tudor domain to recognize histone H4 dimethylated on lysine 20 (H4K20me2), a modification related to double-strand DNA breaks. Through a cross-screening approach, we identified UNC2170 (1) as a micromolar ligand of 53BP1, which demonstrates at least 17-fold selectivity for 53BP1 as compared to other methyl-lysine (Kme) binding proteins tested. Structural studies revealed that the tert-butyl amine of UNC2170 anchors the compound in the methyl-lysine (Kme) binding pocket of 53BP1, making it competitive with endogenous Kme substrates. X-ray crystallography also demonstrated that UNC2170 binds at the interface of two tudor domains of a 53BP1 dimer. Importantly, this compound functions as a 53BP1 antagonist in cellular lysates and shows cellular activity by suppressing class switch recombination, a process which requires a functional 53BP1 tudor domain. These results demonstrate that UNC2170 is a functionally active, fragment-like ligand for 53BP1.
Collapse
Affiliation(s)
- Michael T. Perfetti
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brandi M. Baughma
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bradley M. Dickson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yunxiang Mu
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pavel Mader
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
| | - Jacqueline L. Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Scott B. Rothbart
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
| | - William P. Janzen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin M. McBride
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
30
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
31
|
Yang B, Ming X, Cao C, Laing B, Yuan A, Porter MA, Hull-Ryde EA, Maddry J, Suto M, Janzen WP, Juliano RL. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Res 2015; 43:1987-96. [PMID: 25662226 PMCID: PMC4344505 DOI: 10.1093/nar/gkv060] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The therapeutic use of antisense and siRNA oligonucleotides has been constrained by the limited ability of these membrane-impermeable molecules to reach their intracellular sites of action. We sought to address this problem using small organic molecules to enhance the effects of oligonucleotides by modulating their intracellular trafficking and release from endosomes. A high-throughput screen of multiple small molecule libraries yielded several hits that markedly potentiated the actions of splice switching oligonucleotides in cell culture. These compounds also enhanced the effects of antisense and siRNA oligonucleotides. The hit compounds preferentially caused release of fluorescent oligonucleotides from late endosomes rather than other intracellular compartments. Studies in a transgenic mouse model indicated that these compounds could enhance the in vivo effects of a splice-switching oligonucleotide without causing significant toxicity. These observations suggest that selected small molecule enhancers may eventually be of value in oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- B Yang
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - X Ming
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - C Cao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - B Laing
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Yuan
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M A Porter
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - E A Hull-Ryde
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Maddry
- Southern Research Institute, Birmingham, AL 35205, USA
| | - M Suto
- Southern Research Institute, Birmingham, AL 35205, USA
| | - W P Janzen
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - R L Juliano
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Musselman CA, Khorasanizadeh S, Kutateladze TG. Towards understanding methyllysine readout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:686-93. [PMID: 24727128 DOI: 10.1016/j.bbagrm.2014.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND Lysine methylation is the most versatile covalent posttranslational modification (PTM) found in histones and non-histone proteins. Over the past decade a number of methyllysine-specific readers have been discovered and their interactions with histone tails have been structurally and biochemically characterized. More recently innovative experimental approaches have emerged that allow for studying reader interactions in the context of the full nucleosome and nucleosomal arrays. SCOPE OF REVIEW In this review we give a brief overview of the known mechanisms of histone lysine methylation readout, summarize progress recently made in exploring interactions with methylated nucleosomes, and discuss the latest advances in the development of small molecule inhibitors of the methyllysine-specific readers. MAJOR CONCLUSIONS New studies reveal various reader-nucleosome contacts outside the methylated histone tail, thus offering a better model for association of histone readers to chromatin and broadening our understanding of the functional implications of these interactions. In addition, some progress has been made in the design of antagonists of these interactions. GENERAL SIGNIFICANCE Specific lysine methylation patterns are commonly associated with certain chromatin states and genomic elements, and are linked to distinct biological outcomes such as transcription activation or repression. Disruption of patterns of histone modifications is associated with a number of diseases, and there is tremendous therapeutic potential in targeting histone modification pathways. Thus, investigating binding of readers of these modifications is not only important for elucidating fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
| | - Sepideh Khorasanizadeh
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Wagner T, Robaa D, Sippl W, Jung M. Mind the Methyl: Methyllysine Binding Proteins in Epigenetic Regulation. ChemMedChem 2014; 9:466-83. [DOI: 10.1002/cmdc.201300422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 11/07/2022]
|
34
|
RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci U S A 2013; 110:19754-9. [PMID: 24248379 DOI: 10.1073/pnas.1310658110] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo and extraterminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue-specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here, we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2s). Cocrystal structures revealed binding modes of RVX-208 and its synthetic precursor, and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene-expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation.
Collapse
|
35
|
James LI, Korboukh VK, Krichevsky L, Baughman BM, Herold JM, Norris JL, Jin J, Kireev DB, Janzen WP, Arrowsmith CH, Frye SV. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J Med Chem 2013; 56:7358-71. [PMID: 24040942 PMCID: PMC3846386 DOI: 10.1021/jm400919p] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysine methylation is a key epigenetic mark, the dysregulation of which is linked to many diseases. Small-molecule antagonism of methyl-lysine (Kme) binding proteins that recognize such epigenetic marks can improve our understanding of these regulatory mechanisms and potentially validate Kme binding proteins as drug-discovery targets. We previously reported the discovery of 1 (UNC1215), the first potent and selective small-molecule chemical probe of a methyl-lysine reader protein, L3MBTL3, which antagonizes the mono- and dimethyl-lysine reading function of L3MBTL3. The design, synthesis, and structure-activity relationship studies that led to the discovery of 1 are described herein. These efforts established the requirements for potent L3MBTL3 binding and enabled the design of novel antagonists, such as compound 2 (UNC1679), that maintain in vitro and cellular potency with improved selectivity against other MBT-containing proteins. The antagonists described were also found to effectively interact with unlabeled endogenous L3MBTL3 in cells.
Collapse
Affiliation(s)
- Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria K. Korboukh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liubov Krichevsky
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario, Canada, M5G 1L7
| | - Brandi M. Baughman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - J. Martin Herold
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jacqueline L. Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dmitri B. Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - William P. Janzen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, M5G 1L7
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario, Canada, M5G 1L7
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
36
|
Yegorova S, Chavaroche AE, Rodriguez MC, Minond D, Cudic M. Development of an AlphaScreen assay for discovery of inhibitors of low-affinity glycan–lectin interactions. Anal Biochem 2013; 439:123-31. [DOI: 10.1016/j.ab.2013.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
|
37
|
Evaluation of phage display discovered peptides as ligands for prostate-specific membrane antigen (PSMA). PLoS One 2013; 8:e68339. [PMID: 23935860 PMCID: PMC3723849 DOI: 10.1371/journal.pone.0068339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD~1 µM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy.
Collapse
|
38
|
Abstract
Methylation of histone lysine and arginine residues constitutes a highly complex control system directing diverse functions of the genome. Owing to their immense signaling potential with distinct sites of methylation and defined methylation states of mono-, di- or trimethylation as well as their higher biochemical stability compared with other histone modifications, these marks are thought to be part of epigenetic regulatory networks. Biological principles of how histone methylation is read and translated have emerged over the last few years. Only very few methyl marks directly impact chromatin. Conversely, a large number of histone methylation binding proteins has been identified. These contain specialized modules that are recruited to chromatin in a methylation site- and state-specific manner. Besides the molecular mechanisms of interaction, patterns of regulation of the binding proteins are becoming evident.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
39
|
James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Korboukh VK, Herold MJ, MacNevin CJ, Norris JL, Sagum CA, Tempel W, Marcon E, Guo H, Gao C, Huang XP, Duan S, Emili A, Greenblatt JF, Kireev DB, Jin J, Janzen WP, Brown PJ, Bedford MT, Arrowsmith CH, Frye SV. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol 2013; 9:184-91. [PMID: 23292653 PMCID: PMC3577944 DOI: 10.1038/nchembio.1157] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/26/2012] [Indexed: 01/16/2023]
Abstract
We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.
Collapse
Affiliation(s)
- Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Nan Zhong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Liubov Krichevsky
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Victoria K. Korboukh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Martin J. Herold
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher J. MacNevin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA
| | - Jacqueline L. Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Cari A. Sagum
- M. D. Anderson Cancer Center Department of Carcinogenesis, University of Texas, Smithville, TX, USA
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Edyta Marcon
- Banting and Best Department of Medical Research, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1
| | - Hongbo Guo
- Banting and Best Department of Medical Research, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1
| | - Cen Gao
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA
| | - Shili Duan
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1
| | - Jack F. Greenblatt
- Banting and Best Department of Medical Research, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1
| | - Dmitri B. Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - William P. Janzen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Mark T. Bedford
- M. D. Anderson Cancer Center Department of Carcinogenesis, University of Texas, Smithville, TX, USA
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
40
|
Simard JR, Plant M, Emkey R, Yu V. Development and implementation of a high-throughput AlphaLISA assay for identifying inhibitors of EZH2 methyltransferase. Assay Drug Dev Technol 2013; 11:152-62. [PMID: 23409774 DOI: 10.1089/adt.2012.481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The methylation state of lysine residues within histone H3 is a major determinant of active and inactive regions of the genome. Enhancer of Zeste homolog 2 (EZH2) is a histone lysine methyltransferase that is part of the polycomb repressive complex 2 (PRC2). Elevated EZH2 expression levels have been linked to hypertrimethylation of histone H3 lysine 27 (H3K27), repression of tumor repressor genes, and the onset of several types of cancers. We used the AlphaLISA technology to develop a high-throughput assay for identifying small molecule inhibitors of EZH2. AlphaLISA Acceptor Beads coated with antibodies directed against methylated H3K27 provided a sensitive method of detecting EZH2 activity through measurement of K27 methylation of a biotinylated H3-based peptide substrate. Optimized assay conditions resulted in a robust assay (Z'>0.7) which was successfully implemented in a high-throughput screening campaign. Small molecule inhibitors identified by this method may serve as powerful tools to further elucidate the potential importance of EZH2 in the development and treatment of cancer.
Collapse
|
41
|
Camerino MA, Zhong N, Dong A, Dickson BM, James LI, Baughman BM, Norris JL, Kireev DB, Janzen WP, Arrowsmith CH, Frye SV. The structure-activity relationships of L3MBTL3 inhibitors: flexibility of the dimer interface. MEDCHEMCOMM 2013; 4:1501-1507. [PMID: 24466405 DOI: 10.1039/c3md00197k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We recently reported the discovery of UNC1215, a potent and selective chemical probe for the L3MBTL3 methyllysine reader domain. In this article, we describe the development of structure-activity relationships (SAR) of a second series of potent L3MBTL3 antagonists which evolved from the structure of the chemical probe UNC1215. These compounds are selective for L3MBTL3 against a panel of methyllysine reader proteins, particularly the related MBT family proteins, L3MBTL1 and MBTD1. A co-crystal structure of L3MBTL3 and one of the most potent compounds suggests that the L3MBTL3 dimer rotates about the dimer interface to accommodate ligand binding.
Collapse
Affiliation(s)
- Michelle A Camerino
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - Nan Zhong
- Structural Genomics Consortium, University of Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Ontario, Canada
| | - Bradley M Dickson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - Brandi M Baughman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - Jacqueline L Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - Dmitri B Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - William P Janzen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| | - Cheryl H Arrowsmith
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486 ; Structural Genomics Consortium, University of Toronto, Ontario, Canada ; Department of Medical Biophysics, University of Toronto Ontario, Canada ; Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario, Canada, M5G 1L7
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ; Tel: (919) 843-5486
| |
Collapse
|
42
|
Blancafort P, Jin J, Frye S. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Mol Pharmacol 2012; 83:563-76. [PMID: 23150486 DOI: 10.1124/mol.112.080697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The epigenomic era has revealed a well-connected network of molecular processes that shape the chromatin landscape. These processes comprise abnormal methylomes, transcriptosomes, genome-wide histone post-transcriptional modifications patterns, histone variants, and noncoding RNAs. The mapping of these processes in large scale by chromatin immunoprecipitation sequencing and other methodologies in both cancer and normal cells reveals novel therapeutic opportunities for anticancer intervention. The goal of this minireview is to summarize pharmacological strategies to modify the epigenetic landscape of cancer cells. These approaches include the use of novel small molecule inhibitors of epigenetic processes specifically deregulated in cancer cells and the design of engineered proteins able to stably reprogram the epigenetic code in cancer cells in a way that is similar to normal cells.
Collapse
Affiliation(s)
- Pilar Blancafort
- School of Anatomy, Physiology, and Human Biology, M309, the University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia.
| | | | | |
Collapse
|
43
|
Wagner EK, Nath N, Flemming R, Feltenberger JB, Denu JM. Identification and characterization of small molecule inhibitors of a plant homeodomain finger. Biochemistry 2012; 51:8293-306. [PMID: 22994852 DOI: 10.1021/bi3009278] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of histone-binding domains are implicated in cancer through improper binding of chromatin. In a clinically reported case of acute myeloid leukemia (AML), a genetic fusion protein between nucleoporin 98 and the third plant homeodomain (PHD) finger of JARID1A drives an oncogenic transcriptional program that is dependent on histone binding by the PHD finger. By exploiting the requirement for chromatin binding in oncogenesis, therapeutics targeting histone readers may represent a new paradigm in drug development. In this study, we developed a novel small molecule screening strategy that utilizes HaloTag technology to identify several small molecules that disrupt binding of the JARID1A PHD finger to histone peptides. Small molecule inhibitors were validated biochemically through affinity pull downs, fluorescence polarization, and histone reader specificity studies. One compound was modified through medicinal chemistry to improve its potency while retaining histone reader selectivity. Molecular modeling and site-directed mutagenesis of JARID1A PHD3 provided insights into the biochemical basis of competitive inhibition.
Collapse
Affiliation(s)
- Elise K Wagner
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
44
|
Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443:851-6. [PMID: 22417684 PMCID: PMC3327999 DOI: 10.1042/bj20120150] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.
Collapse
|
45
|
Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65:565-76. [DOI: 10.1016/j.phrs.2012.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
|
46
|
Jadwin JA, Ogiue-Ikeda M, Machida K. The application of modular protein domains in proteomics. FEBS Lett 2012; 586:2586-96. [PMID: 22710164 DOI: 10.1016/j.febslet.2012.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
The ability of modular protein domains to independently fold and bind short peptide ligands both in vivo and in vitro has allowed a significant number of protein-protein interaction studies to take advantage of them as affinity and detection reagents. Here, we refer to modular domain based proteomics as "domainomics" to draw attention to the potential of using domains and their motifs as tools in proteomics. In this review we describe core concepts of domainomics, established and emerging technologies, and recent studies by functional category. Accumulation of domain-motif binding data should ultimately provide the foundation for domain-specific interactomes, which will likely reveal the underlying substructure of protein networks as well as the selectivity and plasticity of signal transduction.
Collapse
Affiliation(s)
- Joshua A Jadwin
- Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
47
|
Lu Q, Quinn AM, Patel MP, Semus SF, Graves AP, Bandyopadhyay D, Pope AJ, Thrall SH. Perspectives on the discovery of small-molecule modulators for epigenetic processes. ACTA ACUST UNITED AC 2012; 17:555-71. [PMID: 22392809 DOI: 10.1177/1087057112437763] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epigenetic gene regulation is a critical process controlling differentiation and development, the malfunction of which may underpin a variety of diseases. In this article, we review the current landscape of small-molecule epigenetic modulators including drugs on the market, key compounds in clinical trials, and chemical probes being used in epigenetic mechanistic studies. Hit identification strategies for the discovery of small-molecule epigenetic modulators are summarized with respect to writers, erasers, and readers of histone marks. Perspectives are provided on opportunities for new hit discovery approaches, some of which may define the next generation of therapeutic intervention strategies for epigenetic processes.
Collapse
Affiliation(s)
- Quinn Lu
- GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Herold JM, James LI, Korboukh VK, Gao C, Coil KE, Bua DJ, Norris JL, Kireev DB, Brown PJ, Jin J, Janzen WP, Gozani O, Frye SV. Structure–activity relationships of methyl-lysine reader antagonists. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00195g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure–activity relationships for small molecule antagonists of the Malignant Brain Tumor (MBT) domain family of methyl-lysine readers are described and activity demonstrated in histone peptide pull-down assays.
Collapse
|
49
|
Wagner EK, Albaugh BN, Denu JM. High-Throughput Strategy to Identify Inhibitors of Histone-Binding Domains. Methods Enzymol 2012; 512:161-85. [DOI: 10.1016/b978-0-12-391940-3.00008-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Daze KD, Pinter T, Beshara CS, Ibraheem A, Minaker SA, Ma MCF, Courtemanche RJM, Campbell RE, Hof F. Supramolecular hosts that recognize methyllysines and disrupt the interaction between a modified histone tail and its epigenetic reader protein. Chem Sci 2012. [DOI: 10.1039/c2sc20583a] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|