1
|
Dulay ANG, de Guzman JCC, Marquez ZYD, Santana ESD, Arce J, Orosco FL. The potential of Chlorella spp. as antiviral source against African swine fever virus through a virtual screening pipeline. J Mol Graph Model 2024; 132:108846. [PMID: 39151375 DOI: 10.1016/j.jmgm.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
African swine fever (ASF) causes high mortality in pigs and threatens global swine production. There is still a lack of therapeutics available, with two vaccines under scrutiny and no approved small-molecule drugs. Eleven (11) viral proteins were used to identify potential antivirals in in silico screening of secondary metabolites (127) from Chlorella spp. The metabolites were screened for affinity and binding selectivity. High-scoring compounds were assessed through in silico ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions, compared to structurally similar drugs, and checked for off-target docking with prepared swine receptors. Molecular dynamics (MD) simulations determined binding stability while binding energy was measured in Molecular Mechanics - Generalized Born Surface Area (MMGBSA) or Poisson-Boltzmann Surface Area (MMPBSA). Only six (6) compounds passed until MD analyses, of which five (5) were stable after 100 ns of MD runs. Of these five compounds, only three had binding affinities that were comparable to or stronger than controls. Specifically, phytosterols 24,25-dihydrolanosterol and CID 4206521 that interact with the RNA capping enzyme (pNP868R), and ergosterol which bound to the Erv-like thioreductase (pB119L). The compounds identified in this study can be used as a theoretical basis for in vitro screening to develop potent antiviral drugs against ASFV.
Collapse
Affiliation(s)
- Albert Neil G Dulay
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - John Christian C de Guzman
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - Zyra Ysha D Marquez
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Elisha Sofia D Santana
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Jessamine Arce
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig, 1632, Philippines.
| |
Collapse
|
2
|
Álvarez-Mínguez A, del Río N, Belén-Blázquez A, Casanova E, Orduña JM, Camarero P, Hurtado-Marcos C, del Águila C, Pérez-Pérez M, Martín-Acebes MA, Agudo R. Development of a luminescence-based method for measuring West Nile Virus MTase activity and its application to screen for antivirals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100282. [PMID: 39445035 PMCID: PMC11497361 DOI: 10.1016/j.crmicr.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
West Nile virus (WNV) is a flavivirus responsible for causing febrile illness and severe neurological diseases, with an increasing impact on human health around the world. However, there is still no adequate therapeutic treatment available to struggle WNV infections. Therefore, there is an urgent need to develop new techniques to accelerate the discovery of drugs against this pathogen. The main protein implicated in the replication of WNV is the non-structural protein 5 (NS5). This multifunctional protein contains methyltransferase (MTase) activity involved in the capping formation at the 5'-end of RNA and the methylation of internal viral RNA residues, both functions being essential for viral processes, such as RNA translation and escape from the innate immune response. We have developed a straightforward luminescence-based assay to monitor the MTase activity of the WNV NS5 protein with potential for high-throughput screening. We have validated this method as a sensitive and suitable assay for the identification of WNV MTase inhibitors assessing the inhibitory effect of the broad MTase inhibitor sinefungin, a natural nucleoside analog of the universal methyl donor S-adenosyl methionine (SAM). The screening of a small series of purine derivatives identified an adenosine derivative as a dose-dependent inhibitor of the MTase activity. The antiviral efficacy of this compound was further confirmed in WNV infections, displaying a measurable antiviral effect. This result supports the utility of this novel method for the screening of inhibitors against WNV MTase activity, which can be of special relevance to the discovery and development of therapeutics against WNV.
Collapse
Affiliation(s)
- Alejandra Álvarez-Mínguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Natalia del Río
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
- Escuela de Doctorado, Universidad Autónoma de Madrid, Spain
| | - Ana Belén-Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Elena Casanova
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - José-María Orduña
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Patricia Camarero
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carolina Hurtado-Marcos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Carmen del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | | | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Rubén Agudo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| |
Collapse
|
3
|
Bashore F, Annor-Gyamfi J, Du Y, Katis V, Nwogbo F, Flax RG, Frye SV, Pearce KH, Fu H, Willson TM, Drewry DH, Axtman AD. Fused Tetrahydroquinolines Are Interfering with Your Assay. J Med Chem 2023; 66:14434-14446. [PMID: 37874947 PMCID: PMC10641811 DOI: 10.1021/acs.jmedchem.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Tricyclic tetrahydroquinolines (THQs) have been repeatedly reported as hits across a diverse range of high-throughput screening (HTS) campaigns. The activities of these compounds, however, are likely due to reactive byproducts that interfere with the assay. As a lesser studied class of pan-assay interference compounds, the mechanism by which fused THQs react with protein targets remains largely unknown. During HTS follow-up, we characterized the behavior and stability of several fused tricyclic THQs. We synthesized key analogues to pinpoint the cyclopentene ring double bond as a source of reactivity of fused THQs. We found that these compounds degrade in solution under standard laboratory conditions in days. Importantly, these observations make it likely that fused THQs, which are ubiquitously found within small molecule screening libraries, are unlikely the intact parent compounds. We urge deprioritization of tricylic THQ hits in HTS follow-up and caution against the investment of resources to follow-up on these problematic compounds.
Collapse
Affiliation(s)
- Frances
M. Bashore
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joel Annor-Gyamfi
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuhong Du
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Vittorio Katis
- Alzheimer’s
Research UK Oxford Drug Discovery Institute, Centre for Medicines
Discovery, Nuffield Department of Medicine Research Building, Old
Road Campus, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Felix Nwogbo
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Raymond G. Flax
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Haian Fu
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger
Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Thomas PW, Cho EJ, Bethel CR, Smisek T, Ahn YC, Schroeder JM, Thomas CA, Dalby KN, Beckham JT, Crowder MW, Bonomo RA, Fast W. Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infect Dis 2022; 8:811-824. [PMID: 35353502 DOI: 10.1021/acsinfecdis.1c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify novel inhibitors of the carbapenemase New Delhi metallo-β-lactamase (NDM) as possible therapeutic compounds, we conducted a high-throughput screen of a 43,358-compound library. One of these compounds, a 2-quinazolinone linked through a diacylhydrazine to a phenyl ring (QDP-1) (IC50 = 7.9 ± 0.5 μM), was characterized as a slow-binding reversible inhibitor (Kiapp = 4 ± 2 μM) with a noncompetitive mode of inhibition in which substrate and inhibitor enhance each other's binding affinity. These studies, along with differential scanning fluorimetry, zinc quantitation, and selectivity studies, support an allosteric mechanism of inhibition. Cotreatment with QDP-1 effectively lowers minimum inhibitory concentrations of carbapenems for a panel of resistant Escherichia coli and Klebsiella pneumoniae clinical isolates expressing NDM-1 but not for those expressing only serine carbapenemases. QDP-1 represents a novel allosteric approach for NDM drug development for potential use alone or with other NDM inhibitors to counter carbapenem resistance in enterobacterales.
Collapse
Affiliation(s)
- Pei W. Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Thomas Smisek
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Yeong-Chan Ahn
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - John M. Schroeder
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Josh T. Beckham
- Texas Institute for Discovery Education in Science, University of Texas, Austin, Texas 78712, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Departments of Pharmacology, Molecular Biology & Microbiology, and Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Kasprzyk R, Jemielity J. Enzymatic Assays to Explore Viral mRNA Capping Machinery. Chembiochem 2021; 22:3236-3253. [PMID: 34291555 PMCID: PMC8426721 DOI: 10.1002/cbic.202100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Indexed: 12/25/2022]
Abstract
In eukaryotes, mRNA is modified by the addition of the 7-methylguanosine (m7 G) 5' cap to protect mRNA from premature degradation, thereby enhancing translation and enabling differentiation between self (endogenous) and non-self RNAs (e. g., viral ones). Viruses often develop their own mRNA capping pathways to augment the expression of their proteins and escape host innate immune response. Insights into this capping system may provide new ideas for therapeutic interventions and facilitate drug discovery, e. g., against viruses that cause pandemic outbreaks, such as beta-coronaviruses SARS-CoV (2002), MARS-CoV (2012), and the most recent SARS-CoV-2. Thus, proper methods for the screening of large compound libraries are required to identify lead structures that could serve as a basis for rational antiviral drug design. This review summarizes the methods that allow the monitoring of the activity and inhibition of enzymes involved in mRNA capping.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02-097WarsawPoland
- College of Inter-Faculty Individual Studies inMathematics and Natural SciencesUniversity of WarsawBanacha 2c02-097WarsawPoland
| | - Jacek Jemielity
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02-097WarsawPoland
| |
Collapse
|
6
|
Hengphasatporn K, Kaewmalai B, Jansongsaeng S, Badavath VN, Saelee T, Chokmahasarn T, Khotavivattana T, Shigeta Y, Rungrotmongkol T, Boonyasuppayakorn S. Alkyne-Tagged Apigenin, a Chemical Tool to Navigate Potential Targets of Flavonoid Anti-Dengue Leads. Molecules 2021; 26:molecules26226967. [PMID: 34834059 PMCID: PMC8618255 DOI: 10.3390/molecules26226967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
A flavonoid is a versatile core structure with various cellular, immunological, and pharmacological effects. Recently, flavones have shown anti-dengue activities by interfering with viral translation and replication. However, the molecular target is still elusive. Here we chemically modified apigenin by adding an alkyne moiety into the B-ring hydroxyl group. The alkyne serves as a chemical tag for the alkyne-azide cycloaddition reaction for subcellular visualization. The compound located at the perinuclear region at 1 and 6 h after infection. Interestingly, the compound signal started shifting to vesicle-like structures at 6 h and accumulated at 24 and 48 h after infection. Moreover, the compound treatment in dengue-infected cells showed that the compound restricted the viral protein inside the vesicles, especially at 48 h. As a result, the dengue envelope proteins spread throughout the cells. The alkyne-tagged apigenin showed a more potent efficacy at the EC50 of 2.36 ± 0.22, and 10.55 ± 3.37 µM, respectively, while the cytotoxicities were similar to the original apigenin at the CC50 of 70.34 ± 11.79, and 82.82 ± 11.68 µM, respectively. Molecular docking confirmed the apigenin binding to the previously reported target, ribosomal protein S9, at two binding sites. The network analysis, homopharma, and molecular docking revealed that the estrogen receptor 1 and viral NS1 were potential targets at the late infection stage. The interactions could attenuate dengue productivity by interfering with viral translation and suppressing the viral proteins from trafficking to the cell surface.
Collapse
Affiliation(s)
- Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; (K.H.); (Y.S.)
| | - Benyapa Kaewmalai
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.K.); (V.N.B.); (T.S.)
- Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somruedee Jansongsaeng
- Center of Excellence for Natural Product, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; (S.J.); (T.C.); (T.K.)
| | - Vishnu Nayak Badavath
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.K.); (V.N.B.); (T.S.)
| | - Thanaphon Saelee
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.K.); (V.N.B.); (T.S.)
| | - Thamonwan Chokmahasarn
- Center of Excellence for Natural Product, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; (S.J.); (T.C.); (T.K.)
| | - Tanatorn Khotavivattana
- Center of Excellence for Natural Product, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; (S.J.); (T.C.); (T.K.)
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; (K.H.); (Y.S.)
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.K.); (V.N.B.); (T.S.)
- Correspondence:
| |
Collapse
|
7
|
Abstract
Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
8
|
Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J. Flavivirus: From Structure to Therapeutics Development. Life (Basel) 2021; 11:life11070615. [PMID: 34202239 PMCID: PMC8303334 DOI: 10.3390/life11070615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology. However, currently, there are no fully effective antiviral drugs or vaccines for most flaviviruses. We hope that this review may provide useful information for future development of anti-flavivirus drugs and vaccines.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Meiyue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| |
Collapse
|
9
|
Kasprzyk R, Fido M, Mamot A, Wanat P, Smietanski M, Kopcial M, Cowling VH, Kowalska J, Jemielity J. Direct High-Throughput Screening Assay for mRNA Cap Guanine-N7 Methyltransferase Activity. Chemistry 2020; 26:11266-11275. [PMID: 32259329 PMCID: PMC7262028 DOI: 10.1002/chem.202001036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Indexed: 12/16/2022]
Abstract
In eukaryotes, mature mRNA is formed through modifications of precursor mRNA, one of which is 5' cap biosynthesis, involving RNA cap guanine-N7 methyltransferase (N7-MTase). N7-MTases are also encoded by some eukaryotic viruses and facilitate their replication. N7-MTase inhibitors have therapeutic potential, but their discovery is difficult because long RNA substrates are usually required for activity. Herein, we report a universal N7-MTase activity assay based on small-molecule fluorescent probes. We synthesized 12 fluorescent substrate analogues (GpppA and GpppG derivatives) varying in the dye type, dye attachment site, and linker length. GpppA labeled with pyrene at the 3'-O position of adenosine acted as an artificial substrate with the properties of a turn-off probe for all three tested N7-MTases (human, parasite, and viral). Using this compound, a N7-MTase inhibitor assay adaptable to high-throughput screening was developed and used to screen synthetic substrate analogues and a commercial library. Several inhibitors with nanomolar activities were identified.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02097WarsawPoland
- College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesUniversity of WarsawBanacha 2c02097WarsawPoland
| | - Mateusz Fido
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | - Adam Mamot
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | - Przemyslaw Wanat
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | | | - Michal Kopcial
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02097WarsawPoland
- College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesUniversity of WarsawBanacha 2c02097WarsawPoland
| | - Victoria H. Cowling
- Centre of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDD1 5EHDundeeUK
| | - Joanna Kowalska
- Division of BiophysicsInstitute of Experimental PhysicsFaculty of PhysicsUniversity of WarsawPasteura 502093WarsawPoland
| | - Jacek Jemielity
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02097WarsawPoland
| |
Collapse
|
10
|
Orlov AA, Khvatov EV, Koruchekov AA, Nikitina AA, Zolotareva AD, Eletskaya AA, Kozlovskaya LI, Palyulin VA, Horvath D, Osolodkin DI, Varnek A. Getting to Know the Neighbours with GTM: The Case of Antiviral Compounds. Mol Inform 2019; 38:e1800166. [DOI: 10.1002/minf.201800166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/02/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Alexey A. Orlov
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Alexander A. Koruchekov
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Lomonosov Moscow State University Moscow 119991 Russia
| | - Anastasia A. Nikitina
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Lomonosov Moscow State University Moscow 119991 Russia
| | - Anastasia D. Zolotareva
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Sechenov First Moscow State Medical University Moscow 119991 Russia
| | - Anastasia A. Eletskaya
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Lomonosov Moscow State University Moscow 119991 Russia
| | - Liubov I. Kozlovskaya
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Sechenov First Moscow State Medical University Moscow 119991 Russia
| | | | - Dragos Horvath
- Laboratory of Chemoinformatics, Faculty of ChemistryUniversity of Strasbourg Strasbourg 67081 France
| | - Dmitry I. Osolodkin
- FSBSI “Chumakov FSC R&D IBP RAS” Moscow 108819 Russia
- Lomonosov Moscow State University Moscow 119991 Russia
- Sechenov First Moscow State Medical University Moscow 119991 Russia
| | - Alexandre Varnek
- Laboratory of Chemoinformatics, Faculty of ChemistryUniversity of Strasbourg Strasbourg 67081 France
| |
Collapse
|
11
|
Feibelman KM, Fuller BP, Li L, LaBarbera DV, Geiss BJ. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res 2018; 154:124-131. [PMID: 29680670 DOI: 10.1016/j.antiviral.2018.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies.
Collapse
Affiliation(s)
- Kristen M Feibelman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Benjamin P Fuller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
12
|
Glutathionylation of dengue and Zika NS5 proteins affects guanylyltransferase and RNA dependent RNA polymerase activities. PLoS One 2018; 13:e0193133. [PMID: 29470500 PMCID: PMC5823458 DOI: 10.1371/journal.pone.0193133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 12/23/2022] Open
Abstract
It has been estimated for dengue infection that the global population at risk is 3.5 billion people, which makes dengue an important public health problem. The causative agents of dengue are dengue viruses. For dengue virus replication, the dengue virus NS5 protein is of special importance as it has several enzyme activities important for viral replication. Previous reports of phosphorylation and SUMOylation of dengue NS5 have shown these protein modifications have important consequences for NS5 functions. In this report we identify glutathionylation, another reversible post translation modification that impacts on NS5 enzyme activity. Using dengue virus infected cells we employed specific antibodies and mass spectrometry to identify 3 cysteine residues of NS5 protein as being glutathionylated. Glutathionylation is a post translational protein modification where glutathione is covalently attached to a cysteine residue. We showed glutathionylation occurs on 3 conserved cysteine residues of dengue NS5. Then we generated two flavivirus recombinant full length proteins, dengue NS5 and Zika NS5, to characterize two of the NS5 enzyme activities, namely, guanylyltransferase and RNA-dependent RNA polymerase activities. We show glutathionylation of dengue and Zika NS5 affects enzyme activities of the two flavivirus proteins. The data suggests that glutathionylation is a general feature of the flavivirus NS5 protein and the modification has the potential to modulate several of the NS5 enzyme functions.
Collapse
|
13
|
Abstract
The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased understanding of biology and pathogenesis of WNV together with recent technological advancements have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid progress in the structural and functional characterization of WNV and other flaviviral proteins have provided a solid base for the design and development of several classes of inhibitors as potential WNV therapeutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent efficacy against WNV in animal models and represent a promising class of WNV therapeutics. However, there are some challenges as to the design and development of a safe and efficient WNV vaccine or therapeutic. In this chapter, we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, therapeutic antibodies, and antiviral drugs.
Collapse
|
14
|
A Sensitive and Robust High-Throughput Screening Assay for Inhibitors of the Chikungunya Virus nsP1 Capping Enzyme. PLoS One 2016; 11:e0158923. [PMID: 27427769 PMCID: PMC4948833 DOI: 10.1371/journal.pone.0158923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus that causes severe and debilitating disease symptoms. Alarmingly, transmission rates of CHIKV have increased dramatically over the last decade resulting in 1.7 million suspected cases in the Western hemisphere alone. There are currently no antivirals for treatment of CHIKV infection and novel anti-alphaviral compounds are badly needed. nsP1 is the alphavirus protein responsible for the methyltransferase and guanylyltransferase activities necessary for formation of the 5’ type 0 cap structure added to newly formed viral RNA. Formation of this cap depends on nsP1 binding GTP and transferring a methylated GMP to nascent viral RNA. We have developed a fluorescence polarization-based assay that monitors displacement of a fluorescently-labeled GTP analog in real time. Determining the relative affinities of 15 GTP analogs for nsP1 GTP revealed important structural aspects of GTP that will inform identification of inhibitors able to outcompete GTP for the nsP1 binding site. Validation of the assay for HTS was completed and a secondary orthogonal assay that measures guanylation activity was developed in order to evaluate hits from future drug screens. This platform provides an avenue for identification of potent nsP1 inhibitors, which would potentially provide compounds capable of treating disease caused by CHIKV infection.
Collapse
|
15
|
Abstract
INTRODUCTION Flaviviruses are major causes of infectious disease. The vast global, social and economic impact due to morbidity and mortality associated with diseases caused by these viruses urgently demands effective therapeutic interventions. There is currently no specific antiviral therapy available for the effective clinical treatment of infections by any of the flaviviridae. Development of more effective vaccines and antiviral agents for the prevention and treatment of most flavivirus infections remains a clear public health priority in the 21st century. AREAS COVERED This review describes some of the recent discoveries in the field of flavivirus inhibitor development, with a particular focus on targeting viral proteins. Emphasis is placed on the advances published during the 2012-2015 period. EXPERT OPINION The field of drug discovery targeting viral proteins has progressed slowly in recent years. New information, particularly on structures, location and mechanisms of action of established protein targets have been reported. There have also been studies on repurposing known drugs as templates for targeting flavivirus proteins and these hits could be promising templates for developing new more potent inhibitors. Further research should be conducted to improve in vitro assays that better reflect the conditions found in cellular environments.
Collapse
Affiliation(s)
- W Mei Kok
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| |
Collapse
|
16
|
Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 2015; 119:57-67. [DOI: 10.1016/j.antiviral.2015.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/19/2015] [Accepted: 04/11/2015] [Indexed: 12/25/2022]
|
17
|
Bullard KM, Gullberg RC, Soltani E, Steel JJ, Geiss BJ, Keenan SM. Murine Efficacy and Pharmacokinetic Evaluation of the Flaviviral NS5 Capping Enzyme 2-Thioxothiazolidin-4-One Inhibitor BG-323. PLoS One 2015; 10:e0130083. [PMID: 26075394 PMCID: PMC4468182 DOI: 10.1371/journal.pone.0130083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/15/2015] [Indexed: 12/25/2022] Open
Abstract
Arthropod-borne flavivirus infection continues to cause significant morbidity and mortality worldwide. Identification of drug targets and novel antiflaviviral compounds to treat these diseases has become a global health imperative. A previous screen of 235,456 commercially available small molecules identified the 2-thioxothiazolidin-4-one family of compounds as inhibitors of the flaviviral NS5 capping enzyme, a promising target for antiviral drug development. Rational drug design methodologies enabled identification of lead compound BG-323 from this series. We have shown previously that BG-323 potently inhibits NS5 capping enzyme activity, displays antiviral effects in dengue virus replicon assays and inhibits growth of West Nile and yellow fever viruses with low cytotoxicity in vitro. In this study we further characterized BG-323’s antiviral activity in vitro and in vivo. We found that BG-323 was able to reduce replication of WNV (NY99) and Powassan viruses in culture, and we were unable to force resistance into WNV (Kunjin) in long-term culture experiments. We then evaluated the antiviral activity of BG-323 in a murine model. Mice were challenged with WNV NY99 and administered BG-323 or mock by IP inoculation immediately post challenge and twice daily thereafter. Mice were bled and viremia was quantified on day three. No significant differences in viremia were observed between BG-323-treated and control groups and clinical scores indicated both BG-323-treated and control mice developed signs of illness on approximately the same day post challenge. To determine whether differences in in vitro and in vivo efficacy were due to unfavorable pharmacokinetic properties of BG-323, we conducted a pharmacokinetic evaluation of this small molecule. Insights from pharmacokinetic studies indicate that BG-323 is cell permeable, has a low efflux ratio and does not significantly inhibit two common cytochrome P450 (CYP P450) isoforms thus suggesting this molecule may be less likely to cause adverse drug interactions. However, the T1/2 of BG-323 was suboptimal and the percent of drug bound to plasma binding proteins was high. Future studies with BG-323 will be aimed at increasing the T1/2 and determining strategies for mitigating the effects of high plasma protein binding, which likely contribute to low in vivo efficacy.
Collapse
Affiliation(s)
- Kristen M. Bullard
- University of Northern Colorado, School of Biological Sciences, Greeley, CO, United States of America
| | - Rebekah C. Gullberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elnaz Soltani
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - J. Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (SMK); (BJG)
| | - Susan M. Keenan
- University of Northern Colorado, School of Biological Sciences, Greeley, CO, United States of America
- * E-mail: (SMK); (BJG)
| |
Collapse
|
18
|
Gullberg RC, Jordan Steel J, Moon SL, Soltani E, Geiss BJ. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 2014; 475:219-29. [PMID: 25514423 PMCID: PMC4332586 DOI: 10.1016/j.virol.2014.10.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
Flaviviruses are 5′ capped positive-stranded RNA viruses that replicate their genomes within endoplasmic reticulum-derived vesicles. Flaviviruses are well known to induce oxidative stress late in infection but it is unknown if oxidative stress plays a positive role in the viral RNA replication cycle. We therefore examined how oxidation affects flavivirus RNA replication. We found that antioxidant treatment reduced virus production, reduced the viral positive-to-negative strand RNA ratio, and resulted in the accumulation of uncapped positive-sense viral RNAs. Treatment of the NS5 RNA capping enzyme in vitro with oxidizing agents enhanced guanylyltransferase activity, indicating that the guanylyltransferase function of the flavivirus NS5 RNA capping enzyme is activated by oxidative conditions. Antioxidant treatment also reduced alphavirus RNA replication and protein expression while enhancing nsP1 capping activity. These findings suggest that RNA viruses may utilize oxidative stress induced during infection to help temporally control genome RNA capping and genome replication.
Collapse
Affiliation(s)
- Rebekah C Gullberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Stephanie L Moon
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elnaz Soltani
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
19
|
Falk SP, Weisblum B. Aptamer Displacement Screen for Flaviviral RNA Methyltransferase Inhibitors. ACTA ACUST UNITED AC 2014; 19:1147-53. [PMID: 24793430 DOI: 10.1177/1087057114533147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023]
Abstract
RNA-protein interactions are vital to the replication of the flaviviral genome. Discovery focused on small molecules that disrupt these interactions represent a viable path for identification of new inhibitors. The viral RNA (vRNA) cap methyltransferase (MTase) of the flaviviruses has been validated as a suitable drug target. Here we report the development of a high-throughput screen for the discovery of compounds that target the RNA binding site of flaviviral protein NS5A. The assay described here is based on displacement of an MT-bound polynucleotide aptamer, decathymidylate derivatized at its 5' end with fluorescein (FL-dT10). Based on the measurement of fluorescence polarization, FL-dT10 bound to yellow fever virus (YFV) MTase in a saturable manner with a Kd= 231 nM. The binding was reversed by a 250-nucleotide YFV messenger RNA (mRNA) transcript and by the triphenylmethane dye aurintricarboxylic acid (ATA). The EC50for ATA displacement was 1.54 µM. The MTase cofactors guanosine-5'-triphosphate and S-adenosyl-methionine failed to displace FL-dT10. Analysis by electrophoretic mobility shift assay (EMSA) suggests that ATA binds YFV MTase so as to displace the vRNA. The assay was determined to have a Z' of 0.83 and was successfully used to screen a library of known bioactives.
Collapse
Affiliation(s)
- Shaun P Falk
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bernard Weisblum
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
20
|
Dong H, Fink K, Züst R, Lim SP, Qin CF, Shi PY. Flavivirus RNA methylation. J Gen Virol 2014; 95:763-778. [PMID: 24486628 DOI: 10.1099/vir.0.062208-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 5' end of eukaryotic mRNA contains the type-1 (m7GpppNm) or type-2 (m7GpppNmNm) cap structure. Many viruses have evolved various mechanisms to develop their own capping enzymes (e.g. flavivirus and coronavirus) or to 'steal' caps from host mRNAs (e.g. influenza virus). Other viruses have developed 'cap-mimicking' mechanisms by attaching a peptide to the 5' end of viral RNA (e.g. picornavirus and calicivirus) or by having a complex 5' RNA structure (internal ribosome entry site) for translation initiation (e.g. picornavirus, pestivirus and hepacivirus). Here we review the diverse viral RNA capping mechanisms. Using flavivirus as a model, we summarize how a single methyltransferase catalyses two distinct N-7 and 2'-O methylations of viral RNA cap in a sequential manner. For antiviral development, a structural feature unique to the flavivirus methyltransferase was successfully used to design selective inhibitors that block viral methyltransferase without affecting host methyltransferases. Functionally, capping is essential for prevention of triphosphate-triggered innate immune activation; N-7 methylation is critical for enhancement of viral translation; and 2'-O methylation is important for subversion of innate immune response during viral infection. Flaviviruses defective in 2'-O methyltransferase are replicative, but their viral RNAs lack 2'-O methylation and are recognized and eliminated by the host immune response. Such mutant viruses could be rationally designed as live attenuated vaccines. This concept has recently been proved with Japanese encephalitis virus and dengue virus. The findings obtained with flavivirus should be applicable to other RNA viruses.
Collapse
Affiliation(s)
- Hongping Dong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Roland Züst
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Siew Pheng Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670, Singapore
| | - Cheng-Feng Qin
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670, Singapore
| |
Collapse
|
21
|
Guo Z, Zhong X, Lin L, Wu S, Wang T, Chen Y, Zhai X, Wang Y, Wu H, Tong L, Han Y, Pan B, Peng Y, Si X, Zhang F, Zhao W, Zhong Z. A 3C(pro)-dependent bioluminescence imaging assay for in vivo evaluation of anti-enterovirus 71 agents. Antiviral Res 2014; 101:82-92. [PMID: 24263113 DOI: 10.1016/j.antiviral.2013.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
Enterovirus 71 (EV71), a member of Picornaviridae, is one of the major pathogens of human hand, foot and mouth disease. EV71 mainly infects children and causes severe neurological complications and even death. The pathogenesis of EV71 infection is largely unknown, and no clinically approved vaccine or effective treatment is available to date. Here we described a novel bioluminescence imaging approach for EV71 detection. In this approach, a plasmid-based reporter was constructed to express the fusion protein AmN(Q/G)BC, a split firefly luciferase mutant, which can be specifically cleaved by EV71 protease 3C(pro). Upon cleavage, the splitting fusion protein restores luciferase activity. Our test confirmed that AmN(Q/G)BC was specifically cleaved by 3C(pro) and EV71 and restored the luciferase activity to a degree that corresponds to the 3C(pro) and virus doses in cells and mice. The anti-EV71 effect of GW5074 and U0126, two mitogen-activated protein kinase (MAPK) inhibitors, was evaluated using this approach to validate its application of screening anti-EV71 agents. We found that the AmN(Q/G)BC reporter efficiently monitored the inhibitory effect of GW5074 and U0126 on EV71 infection under in vitro and in vivo conditions. The data from AmN(Q/G)BC reporter were consistent with Western blotting and histopathology examination. Taken together, this real-time imaging approach can quantitatively monitor the efficacy of anti-EV71 agents and is valuable for anti-EV71 drug screening and evaluation, especially, under in vivo conditions.
Collapse
Affiliation(s)
- Zhiwei Guo
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yelu Han
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Bo Pan
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yihong Peng
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
22
|
Lim SP, Shi PY. West Nile virus drug discovery. Viruses 2013; 5:2977-3006. [PMID: 24300672 PMCID: PMC3967157 DOI: 10.3390/v5122977] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023] Open
Abstract
The outbreak of West Nile virus (WNV) in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos 05-01, Singapore 138670, Singapore.
| | | |
Collapse
|
23
|
Structural biology of dengue virus enzymes: towards rational design of therapeutics. Antiviral Res 2012; 96:115-26. [PMID: 22995600 DOI: 10.1016/j.antiviral.2012.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 02/07/2023]
Abstract
Development of anti-dengue therapy represents an urgent un-met medical need. Towards antiviral therapy, recent advances in crystal structures of DENV enzymes have led to the possibility of structure-based rational design of inhibitors for anti-dengue therapy. These include (i) the structure of the 'active' form of the DENV protease in complex with a peptide substrate; (ii) the structure of DENV methyltransferase bound to an inhibitor that selectively suppresses viral methyltransferase, but not human methyltransferases; (iii) the structure of DENV RNA-dependent RNA polymerase in complex with a small-molecule compound. This review summarizes the structural biology of these three key enzymes (protease, methyltransferase, and polymerase) that are essential for DENV replication. The new structural information has provided new avenues for development of anti-dengue therapy.
Collapse
|
24
|
Ferron F, Decroly E, Selisko B, Canard B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012; 96:21-31. [PMID: 22841701 PMCID: PMC7114304 DOI: 10.1016/j.antiviral.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
Most viruses modify their genomic and mRNA 5′-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5′–3′ exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5′-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique and Aix-Marseille Université, UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
25
|
Identification of a novel antiviral inhibitor of the flavivirus guanylyltransferase enzyme. J Virol 2012; 86:8730-9. [PMID: 22674988 DOI: 10.1128/jvi.00384-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Arthropod-borne flavivirus infection causes serious morbidity and mortality worldwide, but there are currently no effective antiflaviviral chemotherapeutics available for human use. Therefore, it is critical that new therapeutics against virus-specific targets be developed. To identify new compounds that may be used as broadly active flavivirus therapeutics, we have performed a high-throughput screening of 235,456 commercially available compounds for small-molecule inhibitors of the dengue virus NS5 RNA capping enzyme. We identified a family of compounds, the 2-thioxothiazolidin-4-ones, that show potent biochemical inhibition of capping enzyme GTP binding and guanylyltransferase function. During the course of structure-activity relationship analysis, a molecule within this family, (E)-{3-[5-(4-tert-butylbenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid} (BG-323), was found to possess significant antiviral activity in a dengue virus subgenomic replicon assay. Further testing of BG-323 demonstrated that this molecule is able to reduce the replication of infectious West Nile virus and yellow fever virus in cell culture with low toxicity. The results of this study describe the first inhibitor that targets the GTP-binding/guanylyltransferase activity of the flavivirus RNA capping enzyme.
Collapse
|