1
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nat Commun 2024; 15:1426. [PMID: 38365893 PMCID: PMC10873347 DOI: 10.1038/s41467-024-45878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short, unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but specific aspects driving this conservation are unclear. Here, we screen a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and biochemical analysis of individual variants reveal distinct sequence requirements for actin binding and regulation by LIM kinase. LIM kinase recognition only partly explains sequence constraints on phosphoregulation, which are instead driven to a large extent by the capacity for phosphorylation to inactivate cofilin. We find loose sequence requirements for actin binding and phosphoinhibition, but collectively they restrict the N-terminus to sequences found in natural cofilins. Our results illustrate how a phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jeffrey P Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547189. [PMID: 37425676 PMCID: PMC10327202 DOI: 10.1101/2023.06.30.547189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but the aspects of cofilin functionality driving this conservation are not clear. Here, we screened a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and subsequent biochemical analysis of individual variants revealed distinct sequence requirements for actin binding and regulation by LIM kinase. While the presence of a serine, rather than threonine, phosphoacceptor residue was essential for phosphorylation by LIM kinase, the native cofilin N-terminus was otherwise a suboptimal LIM kinase substrate. This circumstance was not due to sequence requirements for actin binding and severing, but rather appeared primarily to maintain the capacity for phosphorylation to inactivate cofilin. Overall, the individual sequence requirements for cofilin function and regulation were remarkably loose when examined separately, but collectively restricted the N-terminus to sequences found in natural cofilins. Our results illustrate how a regulatory phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A. Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jeffrey P. Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
3
|
Shah K, Cook M. LIMK2: A Multifaceted kinase with pleiotropic roles in human physiology and pathologies. Cancer Lett 2023; 565:216207. [PMID: 37141984 PMCID: PMC10316521 DOI: 10.1016/j.canlet.2023.216207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
LIMK2, a serine-specific kinase, was discovered as an actin dynamics regulating kinase. Emerging studies have shown its pivotal role in numerous human malignancies and neurodevelopmental disorder. Inducible knockdown of LIMK2 fully reverses tumorigenesis, underscoring its potential as a clinical target. However, the molecular mechanisms leading to its upregulation and its deregulated activity in various diseases largely remain unknown. Similarly, LIMK2's peptide substrate specificity has not been analyzed. This is particularly important for LIMK2, a kinase almost three decades old, as only a handful of its substrates are known to date. As a result, most of LIMK2's physiological and pathological roles have been assigned to its regulation of actin dynamics via cofilin. This review focuses on LIMK2's unique catalytic mechanism, substrate specificity and its upstream regulators at transcriptional, post-transcriptional and post-translational stages. Moreover, emerging studies have unveiled a few tumor suppressors and oncogenes as LIMK2's direct substrates, which in turn have uncovered novel molecular mechanisms by which it plays pleiotropic roles in human physiology and pathologies independent of actin dynamics.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Mason Cook
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Nikhil K, Kamra M, Raza A, Shah K. Negative cross talk between LIMK2 and PTEN promotes castration resistant prostate cancer pathogenesis in cells and in vivo. Cancer Lett 2020; 498:1-18. [PMID: 32931887 DOI: 10.1016/j.canlet.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR) signaling inhibitors are front-line treatments for highly aggressive prostate cancer. However, prolonged inhibition of AR triggers a compensatory activation of PI3K pathway, most often due to the genomic loss of tumor suppressor PTEN, driving progression to the castration-resistant prostate cancer (CRPC) stage, which has very poor prognosis. We uncovered a novel mechanism of PTEN downregulation triggered by LIMK2, which contributes significantly to CRPC pathogenesis. LIMK2 is a CRPC-specific target. Its depletion fully reverses tumorigenesis in vivo. LIMK2 phosphorylates PTEN at five sites, degrading and inhibiting its activity, thereby driving highly aggressive oncogenic phenotypes in cells and in vivo. PTEN also degrades LIMK2 in a feedback loop, which was confirmed in prostates from PTEN-/- and PTEN+/+ mice. LIMK2 is also the missing link between hypoxia and PTEN degradation in CRPC. This is the first study to show a feedback loop between PTEN and its regulator. Uncovering the LIMK2-PTEN loop provides a powerful therapeutic opportunity to retain the activity and stability of PTEN protein by inhibiting LIMK2, thereby halting the progression to CRPC, ADT-resistance and drug-resistance.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Mohini Kamra
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Asif Raza
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Nikhil K, Chang L, Viccaro K, Jacobsen M, McGuire C, Satapathy SR, Tandiary M, Broman MM, Cresswell G, He YJ, Sandusky GE, Ratliff TL, Chowdhury D, Shah K. Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer. Cancer Lett 2019; 448:182-196. [PMID: 30716360 DOI: 10.1016/j.canlet.2019.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
This study identified LIMK2 kinase as a disease-specific target in castration resistant prostate cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC initiation, progression and poor prognosis. LIMK2 increases TWIST1 mRNA levels upon hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have minimal collateral toxicity, thereby improving the overall survival of CRPC patients.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Lei Chang
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Room A-128, Indianapolis, IN, 46202, USA
| | - Callista McGuire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Room A-128, Indianapolis, IN, 46202, USA
| | - Shakti R Satapathy
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Michael Tandiary
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Meaghan M Broman
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Gregory Cresswell
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Yizhou J He
- Dana Farber Cancer Institute, Harvard Institute of Medicine, Room HIM-229, 4 Blackfan Cir, Boston, MA, 02215, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Room A-128, Indianapolis, IN, 46202, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Dipanjan Chowdhury
- Dana Farber Cancer Institute, Harvard Institute of Medicine, Room HIM-229, 4 Blackfan Cir, Boston, MA, 02215, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Imamura RM, Kumagai K, Nakano H, Okabe T, Nagano T, Kojima H. Inexpensive High-Throughput Screening of Kinase Inhibitors Using One-Step Enzyme-Coupled Fluorescence Assay for ADP Detection. SLAS DISCOVERY 2018; 24:284-294. [PMID: 30418800 DOI: 10.1177/2472555218810139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases are attractive targets for both biological research and drug development. Several assay kits, especially for the detection of adenosine diphosphate (ADP), which is universally produced by kinases, are commercially available for high-throughput screening (HTS) of kinase inhibitors, but their cost is quite high for large-scale screening. Here, we report a new enzyme-coupled fluorescence assay for ADP detection, which uses just 10 inexpensive, commercially available components. The assay protocol is very simple, requiring only the mixing of test solutions with ADP detection solution and reading the fluorescence intensity of resorufin produced by coupling reaction. To validate the assay, we focused on CDC2-like kinase 1 (CLK1), a dual-specificity kinase that plays an important role in alternative splicing, and we used the optimized assay to screen an in-house chemical library of about 215,000 compounds for CLK1 inhibitors. We identified and validated 12 potent inhibitors of CLK1, including a novel inhibitory scaffold. The results demonstrate that this assay platform is not only simple and cost-effective, but also sufficiently robust, showing good reproducibility and giving similar results to those obtained with the widely used ADP-Glo bioluminescent assay.
Collapse
Affiliation(s)
| | - Kazuo Kumagai
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan.,2 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Hirofumi Nakano
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Okabe
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Nagano
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Hirotatsu Kojima
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechère L. LIM kinases: cofilin and beyond. Oncotarget 2018; 8:41749-41763. [PMID: 28445157 PMCID: PMC5522193 DOI: 10.18632/oncotarget.16978] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
LIM kinases are common downstream effectors of several signalization pathways and function as a signaling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. These last 10 years, several reports indicate that the functions of LIM kinases are more extended than initially described and, specifically, that LIM kinases also control microtubule dynamics, independently of their regulation of actin microfilament. In this review we analyze the data supporting these conclusions and the possible mechanisms that could be involved in the control of microtubules by LIM kinases. The demonstration that LIM kinases also control microtubule dynamics has pointed to new therapeutic opportunities. Consistently, several new LIM kinase inhibitors have been recently developed. We provide a comprehensive comparison of these inhibitors, of their chemical structure, their specificity, their cellular effects as well as their effects in animal models of various diseases including cancer.
Collapse
Affiliation(s)
- Chloé Prunier
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France.,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karin Sadoul
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Nguyen BCQ, Yoshimura K, Kumazawa S, Tawata S, Maruta H. Frondoside A from sea cucumber and nymphaeols from Okinawa propolis: Natural anti-cancer agents that selectively inhibit PAK1 in vitro. Drug Discov Ther 2017; 11:110-114. [PMID: 28442678 DOI: 10.5582/ddt.2017.01011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A sulfated saponin called "Frondoside A" (FRA) from sea cucumber and ingredients from Okinawa propolis (OP) have been previously shown to suppress the PAK1-dependent growth of A549 lung cancer as well as pancreatic cancer cells. However, the precise molecular mechanism underlying their anti-cancer action still remains to be clarified. In this study, for the first time, we found that both FRA and OP directly inhibit PAK1 in vitro in a selective manner (far more effectively than two other oncogenic kinases, LIMK and AKT). Furthermore, at least two major anti-cancer ingredients of OP, nymphaeols A and C, also directly inhibit PAK1 in vitro in a selective manner. To the best of our knowledge, FRA is the first marine compound that selectively inhibits PAK1. Likewise, these nymphaeols are the first propolis ingredients that selectively inhibit PAK1.
Collapse
Affiliation(s)
| | - Kazuki Yoshimura
- Department of Food and Nutritional Sciences, University of Shizuoka
| | | | | | | |
Collapse
|
9
|
Hamill S, Lou HJ, Turk BE, Boggon TJ. Structural Basis for Noncanonical Substrate Recognition of Cofilin/ADF Proteins by LIM Kinases. Mol Cell 2016; 62:397-408. [PMID: 27153537 PMCID: PMC4860616 DOI: 10.1016/j.molcel.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/07/2023]
Abstract
Cofilin/actin-depolymerizing factor (ADF) proteins are critical nodes that relay signals from protein kinase cascades to the actin cytoskeleton, in particular through site-specific phosphorylation at residue Ser3. This is important for regulation of the roles of cofilin in severing and stabilizing actin filaments. Consequently, cofilin/ADF Ser3 phosphorylation is tightly controlled as an almost exclusive substrate for LIM kinases. Here we determine the LIMK1:cofilin-1 co-crystal structure. We find an interface that is distinct from canonical kinase-substrate interactions. We validate this previously unobserved mechanism for high-fidelity kinase-substrate recognition by in vitro kinase assays, examination of cofilin phosphorylation in mammalian cells, and functional analysis in S. cerevisiae. The interface is conserved across all LIM kinases. Remarkably, we also observe both pre- and postphosphotransfer states in the same crystal lattice. This study therefore provides a molecular understanding of how kinase-substrate recognition acts as a gatekeeper to regulate actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Stephanie Hamill
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520,Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520,Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520,To who correspondence should be addressed:
| |
Collapse
|
10
|
Cui J, Ding M, Deng W, Yin Y, Wang Z, Zhou H, Sun G, Jiang Y, Feng Y. Discovery of bis-aryl urea derivatives as potent and selective Limk inhibitors: Exploring Limk1 activity and Limk1/ROCK2 selectivity through a combined computational study. Bioorg Med Chem 2015; 23:7464-77. [DOI: 10.1016/j.bmc.2015.10.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/14/2023]
|
11
|
Mardilovich K, Baugh M, Crighton D, Kowalczyk D, Gabrielsen M, Munro J, Croft DR, Lourenco F, James D, Kalna G, McGarry L, Rath O, Shanks E, Garnett MJ, McDermott U, Brookfield J, Charles M, Hammonds T, Olson MF. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation. Oncotarget 2015; 6:38469-86. [PMID: 26540348 PMCID: PMC4770715 DOI: 10.18632/oncotarget.6288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy.
Collapse
Affiliation(s)
| | - Mark Baugh
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Diane Crighton
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Daniel R. Croft
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Filipe Lourenco
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Daniel James
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Gabriella Kalna
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Oliver Rath
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Emma Shanks
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joanna Brookfield
- Cancer Research Technology Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Mark Charles
- Cancer Research Technology Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Tim Hammonds
- Cancer Research Technology Discovery Laboratories, London Bioscience Innovation Centre, London, UK
| | - Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
12
|
Nguyen BCQ, Taira N, Maruta H, Tawata S. Artepillin C and Other Herbal PAK1-blockers: Effects on Hair Cell Proliferation and Related PAK1-dependent Biological Function in Cell Culture. Phytother Res 2015; 30:120-7. [PMID: 26537230 DOI: 10.1002/ptr.5510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022]
Abstract
PAK1 (RAC/CDC42-activated kinase 1) is the major oncogenic kinase, and a number of herbal PAK1-blockers such as propolis and curcumin have been shown to be anti-oncogenic and anti-melanogenic as well as anti-alopecia (promoting hair growth). Previously, we found several distinct PAK1-inhibitors in Okinawa plants including Alpinia zerumbet (alpinia). Thus, here, we tested the effects of these herbal compounds and their derivatives on the growth of cancer or normal hair cells, and melanogenesis in cell culture of A549 lung cancer, hair follicle dermal papilla cell, and B16F10 melanoma. Among these herbal PAK1-inhibitors, cucurbitacin I from bitter melon (Goya) turned out to be the most potent to inhibit the growth of human lung cancer cells with the IC50 around 140 nM and to promote the growth of hair cells with the effective dose around 10 nM. Hispidin, a metabolite of 5,6-dehydrokawain from alpinia, inhibited the growth of cancer cells with the IC50 of 25 μM as does artepillin C, the major anti-cancer ingredient in Brazilian green propolis. Mimosine tetrapeptides (MFWY, MFYY, and MFFY) and hispidin derivatives (H1-3) also exhibited a strong anti-cancer activity with the IC50 ranging from 16 to 30 μM. Mimosine tetrapeptides and hispidin derivatives strongly suppressed the melanogenesis in melanoma cells.
Collapse
Affiliation(s)
- Binh Cao Quan Nguyen
- Department of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-8580, Japan
| | - Nozomi Taira
- Department of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-8580, Japan
| | | | - Shinkichi Tawata
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa, 903-0213, Japan
| |
Collapse
|
13
|
Charles MD, Brookfield JL, Ekwuru TC, Stockley M, Dunn J, Riddick M, Hammonds T, Trivier E, Greenland G, Wong AC, Cheasty A, Boyd S, Crighton D, Olson MF. Discovery, Development, and SAR of Aminothiazoles as LIMK Inhibitors with Cellular Anti-Invasive Properties. J Med Chem 2015; 58:8309-13. [PMID: 26356364 DOI: 10.1021/acs.jmedchem.5b01242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As part of a program to develop a small molecule inhibitor of LIMK, a series of aminothiazole inhibitors were discovered by high throughput screening. Scaffold hopping and subsequent SAR directed development led to a series of low nanomolar inhibitors of LIMK1 and LIMK2 that also inhibited the direct biomarker p-cofilin in cells and inhibited the invasion of MDA MB-231-luc cells in a matrigel inverse invasion assay.
Collapse
Affiliation(s)
- Mark D Charles
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Joanna L Brookfield
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Tennyson C Ekwuru
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Martin Stockley
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - John Dunn
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Michelle Riddick
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Tim Hammonds
- Cancer Research Technology Discovery Laboratories, London Bioscience Innovation Centre , Royal College Street, London NW1 0NH, U.K
| | - Elisabeth Trivier
- Cancer Research Technology Discovery Laboratories, London Bioscience Innovation Centre , Royal College Street, London NW1 0NH, U.K
| | - Gavin Greenland
- Cancer Research Technology Discovery Laboratories, London Bioscience Innovation Centre , Royal College Street, London NW1 0NH, U.K
| | - Ai Ching Wong
- Cancer Research Technology Discovery Laboratories, London Bioscience Innovation Centre , Royal College Street, London NW1 0NH, U.K
| | - Anne Cheasty
- Cancer Research Technology Discovery Laboratories , Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Susan Boyd
- CompChem Solutions Ltd, St John's Innovation Centre , Cambridge CB4 0WS, U.K
| | - Diane Crighton
- Beatson Institute, Cancer Research U.K. , Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
| | - Michael F Olson
- Beatson Institute, Cancer Research U.K. , Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
| |
Collapse
|
14
|
Klejnot M, Gabrielsen M, Cameron J, Mleczak A, Talapatra SK, Kozielski F, Pannifer A, Olson MF. Analysis of the human cofilin 1 structure reveals conformational changes required for actin binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1780-8. [PMID: 23999301 DOI: 10.1107/s0907444913014418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/24/2013] [Indexed: 11/10/2022]
Abstract
The actin cytoskeleton is the chassis that gives a cell its shape and structure, and supplies the power for numerous dynamic processes including motility, endocytosis, intracellular transport and division. To perform these activities, the cytoskeleton undergoes constant remodelling and reorganization. One of the major actin-remodelling families are the cofilin proteins, made up of cofilin 1, cofilin 2 and actin-depolymerizing factor (ADF), which sever aged ADP-associated actin filaments to reduce filament length and provide new potential nucleation sites. Despite the significant interest in cofilin as a central node in actin-cytoskeleton dynamics, to date the only forms of cofilin for which crystal structures have been solved are from the yeast, Chromalveolata and plant kingdoms; none have previously been reported for an animal cofilin protein. Two distinct regions in animal cofilin are significantly larger than in the forms previously crystallized, suggesting that they would be uniquely organized. Therefore, it was sought to determine the structure of human cofilin 1 by X-ray crystallography to elucidate how it could interact with and regulate dynamic actin-cytoskeletal structures. Although wild-type human cofilin 1 proved to be recalcitrant, a C147A point mutant yielded crystals that diffracted to 2.8 Å resolution. These studies revealed how the actin-binding helix undergoes a conformational change that increases the number of potential hydrogen bonds available for substrate binding.
Collapse
Affiliation(s)
- Marta Klejnot
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cerejo M, Andrade G, Roca C, Sousa J, Rodrigues C, Pinheiro R, Chatterjee S, Vieira H, Calado P. A Powerful Yeast-Based Screening Assay for the Identification of Inhibitors of Indoleamine 2,3-Dioxygenase. ACTA ACUST UNITED AC 2012; 17:1362-71. [DOI: 10.1177/1087057112452595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) underlies the course of several human pathological conditions and, to date, no efficacious therapeutic IDO inhibitors are available. We proposed to develop a robust screening system based on the use of yeast cells to identify new lead compounds for the pharmacological inhibition of IDO—the BLOCKADE platform. Yeast combines the advantages of a relevant surrogate model for eukaryotic cell processes with the amenity to miniaturization and automation. We brought added value to the system by increasing the stringency of our assay, as the BLOCKADE strain was not deleted for any efflux pump, thus creating additional challenges for test compounds to be identified as hits. Screening of a library of 50 080 small molecules led to the identification of 101 potential IDO inhibitors, a low hit rate of 0.2%, reflecting the stringent assay conditions imposed. Most important, secondary pharmacology assays in mammalian cells confirmed activity for 76% of the hits, whereas hepatotoxicity testing indicated that 87% of them displayed a safe profile. The high predictivity rates obtained using the BLOCKADE platform clearly validate our system as a powerful tool for drug discovery.
Collapse
Affiliation(s)
- Marta Cerejo
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- MIT-PT BioE PhD Program, Faculty of Sciences and Technology, New University of Lisbon, Monte da Caparica, Portugal
| | - Gonçalo Andrade
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Christophe Roca
- REQUIMTE, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| | - José Sousa
- INTERFACE—Equipamento e Técnica, Lda, Portugal
| | - Cátia Rodrigues
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Ricardo Pinheiro
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Sukalyan Chatterjee
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Helena Vieira
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Portugal
| | - Patrícia Calado
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| |
Collapse
|