1
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024:10.1007/s40259-024-00682-1. [PMID: 39453540 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
2
|
Puszkarska AM, Taddese B, Revell J, Davies G, Field J, Hornigold DC, Buchanan A, Vaughan TJ, Colwell LJ. Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency. Nat Chem 2024; 16:1436-1444. [PMID: 38755312 PMCID: PMC11374683 DOI: 10.1038/s41557-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Several peptide dual agonists of the human glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R) are in development for the treatment of type 2 diabetes, obesity and their associated complications. Candidates must have high potency at both receptors, but it is unclear whether the limited experimental data available can be used to train models that accurately predict the activity at both receptors of new peptide variants. Here we use peptide sequence data labelled with in vitro potency at human GCGR and GLP-1R to train several models, including a deep multi-task neural-network model using multiple loss optimization. Model-guided sequence optimization was used to design three groups of peptide variants, with distinct ranges of predicted dual activity. We found that three of the model-designed sequences are potent dual agonists with superior biological activity. With our designs we were able to achieve up to sevenfold potency improvement at both receptors simultaneously compared to the best dual-agonist in the training set.
Collapse
Affiliation(s)
- Anna M Puszkarska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Bruck Taddese
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Biologics Center (NBC) at the Novartis Institute for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Graeme Davies
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joss Field
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David C Hornigold
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Buchanan
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tristan J Vaughan
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
- Immunocore Ltd., Abingdon, UK
| | - Lucy J Colwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Google DeepMind, Cambridge, MA, USA.
| |
Collapse
|
3
|
Boland BB, Laker RC, O'Brien S, Sitaula S, Sermadiras I, Nielsen JC, Barkholt P, Roostalu U, Hecksher-Sørensen J, Sejthen SR, Thorbek DD, Suckow A, Burmeister N, Oldham S, Will S, Howard VG, Gill BM, Newton P, Naylor J, Hornigold DC, Austin J, Lantier L, McGuinness OP, Trevaskis JL, Grimsby JS, Rhodes CJ. Peptide-YY 3-36/glucagon-like peptide-1 combination treatment of obese diabetic mice improves insulin sensitivity associated with recovered pancreatic β-cell function and synergistic activation of discrete hypothalamic and brainstem neuronal circuitries. Mol Metab 2021; 55:101392. [PMID: 34781035 PMCID: PMC8717237 DOI: 10.1016/j.molmet.2021.101392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (Fc-GLP-1) and peptide YY3-36 (Fc-PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous β-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous β-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.
Collapse
Affiliation(s)
- Brandon B Boland
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Gubra ApS, Horsholm, Denmark; PRECISIONscientia, Yardley, PA, USA
| | - Rhianna C Laker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Siobhan O'Brien
- Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sadichha Sitaula
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Isabelle Sermadiras
- Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | - Arthur Suckow
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; DTX Pharma, San Diego, CA, USA
| | - Nicole Burmeister
- Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Roche, Penzberg, Germany
| | - Stephanie Oldham
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Will
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Victor G Howard
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benji M Gill
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Philip Newton
- Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Antibody and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jacqueline Naylor
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David C Hornigold
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jotham Austin
- University of Chicago Advanced Electron Microscopy Core Facility, Chicago, IL, USA
| | - Louise Lantier
- Vanderbilt University Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Owen P McGuinness
- Vanderbilt University Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - James L Trevaskis
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Gilead Sciences, Foster City, CA, USA
| | - Joseph S Grimsby
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
4
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
5
|
Hutchings CJ. A review of antibody-based therapeutics targeting G protein-coupled receptors: an update. Expert Opin Biol Ther 2020; 20:925-935. [PMID: 32264722 DOI: 10.1080/14712598.2020.1745770] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) play key roles in many biological functions and are linked to many diseases across all therapeutic areas. As such, GPCRs represent a significant opportunity for antibody-based therapeutics. AREAS COVERED The structure of the major GPCR families is summarized in the context of choice of antigen source employed in the drug discovery process and receptor biology considerations which may impact on targeting strategies. An overview of the therapeutic GPCR-antibody target landscape and the diversity of current therapeutic programs is provided along with summary case studies for marketed antibody drugs or those in advanced clinical studies. Antibodies in early clinical studies and the emergence of next-generation modalities are also highlighted. EXPERT OPINION The GPCR-antibody pipeline has progressed significantly with a number of technical developments enabling the successful resolution of some of the challenges previously encountered and this has contributed to the growing interest in antibody-based therapeutics addressing this target class.
Collapse
|
6
|
Thomas-Fowlkes B, Cifelli S, Souza S, Visconti R, Struck A, Weinglass A, Wildey MJ. Cell-Based In Vitro Assay Automation: Balancing Technology and Data Reproducibility/Predictability. SLAS Technol 2020; 25:276-285. [PMID: 32003291 DOI: 10.1177/2472630320902095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
G-protein-coupled receptors (GPCRs) are modulated by many marketed drugs, and as such, they continue to be key targets for drug discovery and development. Many GPCR targets at Merck Research Laboratories (MRL) are profiled using homogenous time-resolved fluorescence (HTRF) inositol monophosphate (IP-1) cell-based functional assays using adherent cells in 384-well microplates. Due to discrepancies observed across several in vitro assays supporting lead optimization structure-activity relationship (SAR) efforts, different assay paradigms were evaluated for removing growth medium from the assay plates prior to compound addition and determination of IP-1 accumulation. Remarkably, employing the noncontact centrifugation BlueWasher method leads to left-shifted potencies across multiple structural classes and rescues "false negatives" relative to the traditional manual evacuation method. Further, assay performance is improved, with the minimum significant ratio of challenging chemotypes dropping from ~5-6 to <3. While the impact of BlueWasher on a broad range of our GPCR targets remains to be determined, for highly protein-bound small molecules, it provides a path toward improving assay reproducibility across scientists and sites as well as reducing replicates in SAR assay support.
Collapse
Affiliation(s)
- Brande Thomas-Fowlkes
- Screening, Target and Compound Profiling, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA.,Global Clinical Trials Operations, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steven Cifelli
- Screening, Target and Compound Profiling, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Sarah Souza
- In Vitro Pharmacology, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA.,Evotec AG, Princeton Junction, NJ, USA
| | - Richard Visconti
- In Vitro Pharmacology, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA.,Celgene Corporation, Summit, NJ, USA
| | - Alice Struck
- Screening, Target and Compound Profiling, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Adam Weinglass
- Screening, Target and Compound Profiling, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mary Jo Wildey
- Screening, Target and Compound Profiling, Merck Research Labs, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
7
|
Britton ZT, London TB, Carrell J, Dosanjh B, Wilkinson T, Bowen MA, Wu H, Dall’Acqua WF, Marelli M, Mazor Y. Tag-on-Demand: exploiting amber codon suppression technology for the enrichment of high-expressing membrane protein cell lines. Protein Eng Des Sel 2019; 31:389-398. [DOI: 10.1093/protein/gzy032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zachary T Britton
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - Timothy B London
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
- Current affiliation: TC BioPharm Limited, Glasgow, UK
| | - Jeffrey Carrell
- Respiratory, Inflammation and Autoimmune, MedImmune, Gaithersburg, MD, USA
| | - Bhupinder Dosanjh
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Trevor Wilkinson
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | | | - Marcello Marelli
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - Yariv Mazor
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| |
Collapse
|
8
|
Hornigold DC, Roth E, Howard V, Will S, Oldham S, Coghlan MP, Blouet C, Trevaskis JL. A GLP-1:CCK fusion peptide harnesses the synergistic effects on metabolism of CCK-1 and GLP-1 receptor agonism in mice. Appetite 2018; 127:334-340. [PMID: 29782892 PMCID: PMC6026274 DOI: 10.1016/j.appet.2018.05.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Combination approaches for the treatment of metabolic diseases such as obesity and diabetes are becoming increasingly relevant. Co-administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist with a cholecystokinin receptor-1 (CCKR1) agonist exert synergistic effects on weight loss in obese rodents. Here, we report on the effects of a novel fusion peptide (C2816) comprised of a stabilized GLP-1R agonist, AC3174, and a CCKR1-selective agonist, AC170222. C2816 was constructed such that AC3174 was linked to the N-terminus of AC170222, thus preserving the C-terminal amide of the CCK moiety. In functional in vitro assays C2816 retained full agonism at GLP-1R and CCKR1 at lower potency compared to parent molecules, whereas a previously reported fusion peptide in the opposite orientation, (pGlu-Gln)-CCK-8/exendin-4, exhibited no activity at either receptor. Acutely, in vivo, C2816 increased cFos in key central nuclei relevant to feeding behavior, and reduced food intake in wildtype (WT), but less so in GLP-1R-deficient (GLP-1RKO), mice. In sub-chronic studies in diet-induced obese (DIO) mice, C2816 exerted superior reduction in body weight compared to co-administration of AC3174 and AC170222 albeit at a higher molar dose. These data suggest that the synergistic pharmacological effects of GLP-1 and CCK pathways can be harnessed in a single therapeutic peptide.
Collapse
Affiliation(s)
- David C Hornigold
- Cardiovascular and Metabolic Diseases, MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Emma Roth
- University of Cambridge, Department of Clinical Biochemistry, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Victor Howard
- Cardiovascular and Metabolic Diseases, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Sarah Will
- Cardiovascular and Metabolic Diseases, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Stephanie Oldham
- Cardiovascular and Metabolic Diseases, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Matthew P Coghlan
- Cardiovascular and Metabolic Diseases, MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Clemence Blouet
- University of Cambridge, Department of Clinical Biochemistry, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - James L Trevaskis
- Cardiovascular and Metabolic Diseases, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
9
|
Biggs EK, Liang L, Naylor J, Madalli S, Collier R, Coghlan MP, Baker DJ, Hornigold DC, Ravn P, Reimann F, Gribble FM. Development and characterisation of a novel glucagon like peptide-1 receptor antibody. Diabetologia 2018; 61:711-721. [PMID: 29119245 PMCID: PMC5890879 DOI: 10.1007/s00125-017-4491-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Glucagon like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion by binding to GLP-1 receptors (GLP1Rs) on pancreatic beta cells. GLP-1 mimetics are used in the clinic for the treatment of type 2 diabetes, but despite their therapeutic success, several clinical effects of GLP-1 remain unexplained at a mechanistic level, particularly in extrapancreatic tissues. The aim of this study was to generate and characterise a monoclonal antagonistic antibody for the GLP1R for use in vivo. METHODS A naive phage display selection strategy was used to isolate single-chain variable fragments (ScFvs) that bound to GLP1R. The ScFv with the highest affinity, Glp1R0017, was converted into a human IgG1 and characterised further. In vitro antagonistic activity was assessed in a number of assays: a cAMP-based homogenous time-resolved fluorescence assay in GLP1R-overexpressing cell lines, a live cell cAMP imaging assay and an insulin secretion assay in INS-1 832/3 cells. Glp1R0017 was further tested in immunostaining of mouse pancreas, and the ability of Glp1R0017 to block GLP1R in vivo was assessed by both IPGTT and OGTT in C57/Bl6 mice. RESULTS Antibodies to GLP1R were selected from naive antibody phage display libraries. The monoclonal antibody Glp1R0017 antagonised mouse, human, rat, cynomolgus monkey and dog GLP1R. This antagonistic activity was specific to GLP1R; no antagonistic activity was found in cells overexpressing the glucose-dependent insulinotropic peptide receptor (GIPR), glucagon like peptide-2 receptor or glucagon receptor. GLP-1-stimulated cAMP and insulin secretion was attenuated in INS-1 832/3 cells by Glp1R0017 incubation. Immunostaining of mouse pancreas tissue with Glp1R0017 showed specific staining in the islets of Langerhans, which was absent in Glp1r knockout tissue. In vivo, Glp1R0017 reversed the glucose-lowering effect of liraglutide during IPGTTs, and reduced glucose tolerance by blocking endogenous GLP-1 action in OGTTs. CONCLUSIONS/INTERPRETATION Glp1R0017 is a monoclonal antagonistic antibody to the GLP1R that binds to GLP1R on pancreatic beta cells and blocks the actions of GLP-1 in vivo. This antibody holds the potential to be used in investigating the physiological importance of GLP1R signalling in extrapancreatic tissues where cellular targets and signalling pathways activated by GLP-1 are poorly understood.
Collapse
Affiliation(s)
- Emma K Biggs
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lihuan Liang
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
| | - Jacqueline Naylor
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
| | - Shimona Madalli
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
| | - Rachel Collier
- In Vivo Sciences - UK, AstraZeneca, The Babraham Institute, Cambridge, UK
| | - Matthew P Coghlan
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
| | - David J Baker
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
| | - David C Hornigold
- Department of Cardiovascular and Metabolic Disease, MedImmune Ltd, Granta Park, Cambridge, UK
| | - Peter Ravn
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK.
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
10
|
Damavandi N, Raigani M, Joudaki A, Davami F, Zeinali S. Rapid characterization of the CHO platform cell line and identification of pseudo attP sites for PhiC31 integrase. Protein Expr Purif 2017; 140:60-64. [DOI: 10.1016/j.pep.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
|
11
|
Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat Commun 2017; 8:1026. [PMID: 29044101 PMCID: PMC5647335 DOI: 10.1038/s41467-017-01114-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023] Open
Abstract
The use of peptides as therapeutic agents is undergoing a renaissance with the expectation of new drugs with enhanced levels of efficacy and safety. Their clinical potential will be only fully realised once their physicochemical and pharmacokinetic properties have been precisely controlled. Here we demonstrate a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo. We show that oxyntomodulin, a peptide with potential to treat obesity and diabetes, self-assembles into a stable nanofibril formulation which subsequently dissociates to release active peptide and produces a pharmacological effect in vivo. The subcutaneous administration of the nanofibrils in rats results in greatly prolonged exposure, with a constant oxyntomodulin bioactivity detectable in serum for at least 5 days as compared to free oxyntomodulin which is undetectable after only 4 h. Such an approach is simple, cost-efficient and generic in addressing the limitations of peptide therapeutics. The clinical potential of peptide therapeutic agents can only be fully realised once their physicochemical and pharmacokinetic properties are precisely controlled. Here the authors show a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo.
Collapse
|
12
|
Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fritsch Fredin M, Jansson‐Löfmark R, Naylor J, Rossi A, Bednarek MA, Bhagroo N, Salari H, Will S, Oldham S, Hansen G, Feigh M, Klein T, Grimsby J, Maguire S, Jermutus L, Rondinone CM, Coghlan MP. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab 2016; 18:1176-1190. [PMID: 27377054 PMCID: PMC5129521 DOI: 10.1111/dom.12735] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 01/11/2023]
Abstract
AIMS To characterize the pharmacology of MEDI0382, a peptide dual agonist of glucagon-like peptide-1 (GLP-1) and glucagon receptors. MATERIALS AND METHODS MEDI0382 was evaluated in vitro for its ability to stimulate cAMP accumulation in cell lines expressing transfected recombinant or endogenous GLP-1 or glucagon receptors, to potentiate glucose-stimulated insulin secretion (GSIS) in pancreatic β-cell lines and stimulate hepatic glucose output (HGO) by primary hepatocytes. The ability of MEDI0382 to reduce body weight and improve energy balance (i.e. food intake and energy expenditure), as well as control blood glucose, was evaluated in mouse models of obesity and healthy cynomolgus monkeys following single and repeated daily subcutaneous administration for up to 2 months. RESULTS MEDI0382 potently activated rodent, cynomolgus and human GLP-1 and glucagon receptors and exhibited a fivefold bias for activation of GLP-1 receptor versus the glucagon receptor. MEDI0382 produced superior weight loss and comparable glucose lowering to the GLP-1 peptide analogue liraglutide when administered daily at comparable doses in DIO mice. The additional fat mass reduction elicited by MEDI0382 probably results from a glucagon receptor-mediated increase in energy expenditure, whereas food intake suppression results from activation of the GLP-1 receptor. Notably, the significant weight loss elicited by MEDI0382 in DIO mice was recapitulated in cynomolgus monkeys. CONCLUSIONS Repeated administration of MEDI0382 elicits profound weight loss in DIO mice and non-human primates, produces robust glucose control and reduces hepatic fat content and fasting insulin and glucose levels. The balance of activities at the GLP-1 and glucagon receptors is considered to be optimal for achieving weight and glucose control in overweight or obese Type 2 diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - S. Will
- MedImmune LLCGaithersburgMDUSA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Naylor J, Rossi A, Brankin C, Hornigold DC. Automated Acoustic Dispensing for the Serial Dilution of Peptide Agonists in Potency Determination Assays. J Vis Exp 2016. [PMID: 27911362 DOI: 10.3791/54542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As with small molecule drug discovery, screening for peptide agonists requires the serial dilution of peptides to produce concentration-response curves. Screening peptides affords an additional layer of complexity as conventional tip-based sample handling methods expose peptides to a large surface area of plasticware, providing an increased opportunity for peptide loss via adsorption. Preventing excessive exposure to plasticware reduces peptide loss via adherence to plastics and thus minimizes inaccuracies in potency prediction, and we have previously described the benefits of non-contact acoustic dispensing for in vitro high-throughput screening of peptide agonists1. Here we discuss a fully integrated automation solution for non-contact acoustic preparation of peptide serial dilutions in microtiter plates utilizing the example of screening for peptide agonists at the mouse glucagon-like peptide-1 receptor (GLP-1R). Our methods allow for high-throughput cell-based assays to screen for agonists and are easily scalable to support increased sample throughput, or to allow for increased numbers of assay plate copies (e.g., for a panel of more target cell lines).
Collapse
|
14
|
McGivern JG, Howes R. JBS special issue on therapeutic antibody discovery and development: biologics come of age. ACTA ACUST UNITED AC 2016; 20:433-6. [PMID: 25805607 DOI: 10.1177/1087057115572999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this special issue of the Journal of biomolecular screening, we have assembled a series of articles that exemplify and discuss various aspects and challenges associated with the discovery, development, and manufacture of biologics with an emphasis on those topics that we feel will appeal to readers of this journal. We hope you enjoy them!
Collapse
|