1
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
2
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
3
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
4
|
Pandelides Z, Sturgis MC, Thornton C, Aluru N, Willett KL. Benzo[a]pyrene-induced multigenerational changes in gene expression, behavior, and DNA methylation are primarily influenced by paternal exposure. Toxicol Appl Pharmacol 2023; 469:116545. [PMID: 37146889 PMCID: PMC11589888 DOI: 10.1016/j.taap.2023.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is implicated in many developmental and behavioral adverse outcomes in offspring of exposed parents. The objective of this study was to investigate sex-dependent multigenerational effects of preconceptional effects of BaP exposure. Adult wild-type (5D) zebrafish were fed 708 μg BaP/g diet (measured) at a rate of 1% body weight twice/day (14 μg BaP/g fish/day) for 21 days. Fish were spawned using a crossover design, and parental (F0) behavior and reproductive indexes were measured. In offspring, behavioral effects were measured at 96 h post fertilization (hpf) in F1 & F2 larvae, and again when F1s were adults. Compared to controls, there was no significant effect on F0 adult behavior immediately following exposure, but locomotor activity was significantly increased in F1 adults of both sexes. Larval behavior (96 hpf, photomotor response assay) was significantly altered in both the F1 and F2 generations. To assess molecular changes associated with BaP exposure, we conducted transcriptome and DNA methylation profiling in F0 gametes (sperm and eggs) and F1 embryos (10 hpf) from all four crosses. Embryos resulting from the BaP male and control female cross had the most differentially expressed genes (DEGs) and differentially methylated regions (DMRs). Some DMRs were associated with genes encoding chromatin modifying enzymes suggesting regulation of chromatin conformation by DNA methylation. Overall, these results suggest that parental dietary BaP exposure significantly contributes to the multigenerational adverse outcomes.
Collapse
Affiliation(s)
- Z Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - M C Sturgis
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - C Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - N Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, United States of America
| | - K L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
5
|
Desaulniers D, Cummings-Lorbetskie C, Leingartner K, Meier MJ, Pickles JC, Yauk CL. DNA methylation changes from primary cultures through senescence-bypass in Syrian hamster fetal cells initially exposed to benzo[a]pyrene. Toxicology 2023; 487:153451. [PMID: 36754249 DOI: 10.1016/j.tox.2023.153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Current chemical testing strategies are limited in their ability to detect non-genotoxic carcinogens (NGTxC). Epigenetic anomalies develop during carcinogenesis regardless of whether the molecular initiating event is associated with genotoxic (GTxC) or NGTxC events; therefore, epigenetic markers may be harnessed to develop new approach methodologies that improve the detection of both types of carcinogens. This study used Syrian hamster fetal cells to establish the chronology of carcinogen-induced DNA methylation changes from primary cells until senescence-bypass as an essential carcinogenic step. Cells exposed to solvent control for 7 days were compared to naïve primary cultures, to cells exposed for 7 days to benzo[a]pyrene, and to cells at the subsequent transformation stages: normal colonies, morphologically transformed colonies, senescence, senescence-bypass, and sustained proliferation in vitro. DNA methylation changes identified by reduced representation bisulphite sequencing were minimal at day-7. Profound DNA methylation changes arose during cellular senescence and some of these early differentially methylated regions (DMRs) were preserved through the final sustained proliferation stage. A set of these DMRs (e.g., Pou4f1, Aifm3, B3galnt2, Bhlhe22, Gja8, Klf17, and L1l) were validated by pyrosequencing and their reproducibility was confirmed across multiple clones obtained from a different laboratory. These DNA methylation changes could serve as biomarkers to enhance objectivity and mechanistic understanding of cell transformation and could be used to predict senescence-bypass and chemical carcinogenicity.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Karen Leingartner
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
6
|
Bukowska B, Mokra K, Michałowicz J. Benzo[ a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int J Mol Sci 2022; 23:6348. [PMID: 35683027 PMCID: PMC9181839 DOI: 10.3390/ijms23116348] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[a]P is therefore common. Research shows growing evidence concerning toxic effects induced by this substance. This xenobiotic is metabolized by cytochrome P450 (CYP P450) to carcinogenic metabolite: 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts, causing mutations and malignant transformations. Moreover, B[a]P is epigenotoxic, neurotoxic, and teratogenic, and exhibits pro-oxidative potential and causes impairment of animals' fertility. CYP P450 is strongly involved in B[a]P metabolism, and it is simultaneously expressed as a result of the association of B[a]P with aromatic hydrocarbon receptor (AhR), playing an essential role in the cancerogenic potential of various xenobiotics. In turn, polymorphism of CYP P450 genes determines the sensitivity of the organism to B[a]P. It was also observed that B[a]P facilitates the multiplication of viruses, which may be an additional problem with the widespread COVID-19 pandemic. Based on publications mainly from 2017 to 2022, this paper presents the occurrence of B[a]P in various environmental compartments and human surroundings, shows the exposure of humans to this substance, and describes the mechanisms of its toxicity.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (K.M.); (J.M.)
| | | | | |
Collapse
|
7
|
The effect of benzo[alpha]pyrene on DNA methylation and telomerase activity in human normal and cancer cells. Toxicol In Vitro 2022; 80:105331. [DOI: 10.1016/j.tiv.2022.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
|
8
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Bukowska B, Sicińska P. Influence of Benzo(a)pyrene on Different Epigenetic Processes. Int J Mol Sci 2021; 22:ijms222413453. [PMID: 34948252 PMCID: PMC8707600 DOI: 10.3390/ijms222413453] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP-BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.
Collapse
|
10
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
11
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|