1
|
Zhan S, Cao Z, Li J, Chen F, Lai X, Yang W, Teng Y, Li Z, Zhang W, Xie J. Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death. Bioconjug Chem 2024. [PMID: 39680043 DOI: 10.1021/acs.bioconjchem.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses. To this end, we tested three inorganic particles, namely, iron oxide nanoparticles (ION), aluminum oxide nanoparticles (AON), and zinc oxide nanoparticles (ZON), in vitro with bone marrow-derived dendritic cells (BMDCs) and then in vivo in syngeneic tumor models. Our results showed that ION was the most effective of the three nanoparticles in promoting the secretion of ATP and HMGB1 from macrophages without negatively affecting macrophage survival. Secretions from ION-loaded macrophages can activate BMDCs. Intratumoral injection of ION-loaded macrophages significantly enhanced tumor infiltration and activation of dendritic cells and cytotoxic T cells. Moreover, exogenous ION macrophages can enhance the efficacy of radiotherapy. In addition, direct injection of ION can also enhance the efficacy of radiotherapy, which is attributed to ION uptake by and stimulation of endogenous macrophages. Instead of directly targeting cancer cells, our strategy targets macrophages and uses them as a secretory source of ATP and HMGB1 to enhance radiation-induced ICD. Our research introduces a new nanoparticle-based immunomodulatory approach that may have applications in radiotherapy and beyond.
Collapse
Affiliation(s)
- Shuyue Zhan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jianwen Li
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Fanghui Chen
- Department of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xinning Lai
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Wei Yang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yong Teng
- Department of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Demir AY, Karadayi M, Isaoglu M, Karadayi G, Gulluce M. In vitro genotoxicity assessment of biosynthesized zinc oxide nanoparticles. Toxicol Ind Health 2023:7482337231173727. [PMID: 37156264 DOI: 10.1177/07482337231173727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There are various studies on the toxicological potentials of conventionally synthesized zinc oxide (ZnO) nanoparticles, which are useful tools for many medical applications. However, knowledge about the biologically synthesized ones is still limited. In this study, the potential of producing ZnO nanoparticles via a green synthesis method, which enables safer, environmentally, economical and controlled production by using the Symphoricarpos albus L. plant, was investigated. For this purpose, aqueous extract was obtained from the fruits of the plant and reacted with zinc nitrate precursor. Characterization of the synthesized product was carried out by SEM and EDAX analyzes. In addition, the biosafety of the product was also investigated by using the Ames/Salmonella, E. coli WP2, Yeast DEL, seed germination, and RAPD test systems. The results obtained from SEM studies showed that spherical nanoparticles with an average diameter of 30 nm were synthesized as a result of the reaction. EDAX findings confirmed that these nanoparticles were composed of Zn and O elements. On the other hand, according to the findings of the biocompatibility tests, the synthesized nanoparticle did not show any toxic and genotoxic effects up to a concentration of 640 μg/ml in any of the test systems. Accordingly, considering the findings of our study, it was concluded that the aqueous extract of S. albus fruits can be used for the green synthesis of ZnO nanoparticles, the products obtained successfully passed the biocompatibility tests in our study, and additionally, more comprehensive biocompatibility tests should be performed before industrial scale production.
Collapse
Affiliation(s)
- Abdussamed Yasin Demir
- Department of Medical Genetics, Medical Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mehmet Karadayi
- Biology Department, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mine Isaoglu
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Gokce Karadayi
- Molecular Biology and Genetics Department, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Medine Gulluce
- Biology Department, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Tamura K, Oshima Y, Fuse Y, Nagaoka N, Kunoh T, Nakanishi M, Fujii T, Nanba T, Takada J. Eco-Benign Orange-Hued Pigment Derived from Aluminum-Enriched Biogenous Iron Oxide Sheaths. ACS OMEGA 2022; 7:12795-12802. [PMID: 35474768 PMCID: PMC9026029 DOI: 10.1021/acsomega.1c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Inorganic pigments have been widely used due to their low cost of production, strong hiding power, and chemical resistance; nevertheless, they have limited hue width and chromaticity. To eliminate these disadvantages, we herein propose the use of an ingenious biotemplate technique to produce Al-enriched biogenic iron oxide (BIOX) materials. Spectrophotometric color analysis showed that high levels of Al inclusion on heat-treated BIOX samples produced heightened yellowish hues and lightness. The Al-enriched BIOX sheaths exhibited a stable tubular structure and excellent thermal stability of color tones after heating at high temperatures and repetitive heat treatments. Ultrastructural analysis and mechanical destruction experiments revealed that the highly chromatic orange-hue of these pigments are ascribed probably to an ingenious cylindrical nanocomposite architecture composed of putative Fe-included low crystalline Al oxide regions and hematite particles embedded therein. The present work therefore demonstrates that the bioengineered material can serve as an epochal orange-hued inorganic pigment with low toxicity and marked thermostability that should meet large industrial demand.
Collapse
Affiliation(s)
- Katsunori Tamura
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Bengala
Techno-Lab, 216-0007 Kawasaki-shi, Kanagawa, Japan
| | - Yuri Oshima
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Yuta Fuse
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Noriyuki Nagaoka
- Advanced
Research Center for Oral and Craniofacial Sciences, Okayama University, 700-8530 Okayama, Japan
| | - Tatsuki Kunoh
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Makoto Nakanishi
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Tatsuo Fujii
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| | - Tokuro Nanba
- Graduate
School of Environmental and Life Science, Okayama University, 700-8530 Okayama, Japan
| | - Jun Takada
- Graduate
School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
| |
Collapse
|
5
|
Genotoxicity of aluminium oxide, iron oxide, and copper nanoparticles in mouse bone marrow cells. Arh Hig Rada Toksikol 2021; 72:315-325. [PMID: 34985838 PMCID: PMC8785108 DOI: 10.2478/aiht-2021-72-3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the genotoxic effects of Al2O3, Fe2O3, and Cu nanoparticles with chromosomal aberration (CA), micronucleus (MN), and comet assays on the bone marrow of male BALB/c mice. Three doses of Al2O3, Fe2O3 (75, 150, and 300 mg/kg), or Cu (5, 10, and 15 mg/kg) nanoparticles were administered to mice through intraperitoneal injection once a day for 14 days and compared with negative control (distilled water) and positive control (mitomycin C and methyl methanesulphonate). Al2O3 and Fe2O3 did not show genotoxic effects, but Cu nanoparticles induced significant (P<0.05) genotoxicity at the highest concentration compared to negative control. Our findings add to the health risk information of Al2O3, Fe2O3, and Cu nanoparticles regarding human exposure (occupational and/or through consumer products or medical treatment), and may provide regulatory reference for safe use of these nanoparticles. However, before they can be used safely and released into the environment further chronic in vivo studies are essential.
Collapse
|
6
|
Jalili P, Huet S, Burel A, Krause BC, Fontana C, Chevance S, Gauffre F, Guichard Y, Lampen A, Laux P, Luch A, Hogeveen K, Fessard V. Genotoxic impact of aluminum-containing nanomaterials in human intestinal and hepatic cells. Toxicol In Vitro 2021; 78:105257. [PMID: 34688838 DOI: 10.1016/j.tiv.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 μg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.
Collapse
Affiliation(s)
- Pégah Jalili
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Agnès Burel
- MRic Cell Imaging Platform, BIOSIT, University of Rennes 1, campus Santé de Villejean, 2 avenue du Pr Léon Bernard - CS, 34317, 35043 Rennes, France
| | - Benjamin-Christoph Krause
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Caroline Fontana
- INRS, 1, rue du Morvan - CS 60027, 54519 Vandoeuvre les Nancy, France
| | - Soizic Chevance
- Université de Rennes 1, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000 Rennes, France
| | - Fabienne Gauffre
- Université de Rennes 1, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000 Rennes, France
| | - Yves Guichard
- INRS, 1, rue du Morvan - CS 60027, 54519 Vandoeuvre les Nancy, France
| | - Alfonso Lampen
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France.
| |
Collapse
|
7
|
Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124915. [PMID: 33422758 DOI: 10.1016/j.jhazmat.2020.124915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.
Collapse
Affiliation(s)
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul 06252, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, South Korea.
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
8
|
Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells. TOXICS 2021; 9:toxics9050096. [PMID: 33925422 PMCID: PMC8146923 DOI: 10.3390/toxics9050096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 µmol/L and 1229 µmol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application.
Collapse
|
9
|
Arslan K, Akbaba GB. In vitro genotoxicity assessment and comparison of cerium (IV) oxide micro- and nanoparticles. Toxicol Ind Health 2021; 36:76-83. [PMID: 32279649 DOI: 10.1177/0748233720913349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerium (IV) oxide (CeO2), which is used as a biomaterial, has wide application in areas such as the biomedical, glass polishing, electronic, automotive, and pharmacology industries. Comparing with the literature, in this study, the genotoxic effects of cerium (IV) oxide microparticles (COMPs) and cerium (IV) oxide nanoparticles (CONPs) were investigated for the first time in human peripheral blood cultures at concentrations of 0.78, 1.56, 3.125, 6.25, 12.5, 25, and 50 ppm for 72 h under in vitro conditions. Particle sizes of COMPs and CONPs were determined using scanning electron microscopic analysis. Micronucleus and chromosome aberration tests were used to determine the genotoxicity of COMPs and CONPs. The average particle sizes of COMPs and CONPs were approximately 148.25 and 25.30 nm, respectively. It was determined that CeO2 particles in both micro and nano sizes were toxic at all concentrations compared to the negative control group (distilled water). Importantly, COMPs and CONPs were genotoxic even at the lowest concentration (0.78 ppm). Comparing particle sizes, the data indicated that COMPs were more toxic than CONPs. The results suggest that genotoxicity of COMPs and CONPs may be a function of applied concentrations and particle sizes.
Collapse
Affiliation(s)
- Kader Arslan
- Faculty of Engineering and Architecture, Department of Bioengineering, Kafkas University, Kars, Turkey
| | - Giray Buğra Akbaba
- Faculty of Engineering and Architecture, Department of Bioengineering, Kafkas University, Kars, Turkey
| |
Collapse
|
10
|
Ogunsuyi O, Ogunsuyi O, Akanni O, Alabi O, Alimba C, Adaramoye O, Cambier S, Eswara S, Gutleb AC, Bakare A. Physiological and histopathological alterations in male Swiss mice after exposure to titanium dioxide (anatase) and zinc oxide nanoparticles and their binary mixture. Drug Chem Toxicol 2020; 45:1188-1213. [PMID: 32865034 DOI: 10.1080/01480545.2020.1811720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Existing studies have shown the systemic damage of titanium dioxide (TiO2) or zinc oxide (ZnO) nanoparticles (NPs), but there is little or no existing knowledge on the potential adverse toxic effects of the mixture of the two. In order to investigate the in vivo toxic effect of the mixture of TiO2 NPs and ZnO NPs, the acute toxicities of TiO2 NPs, ZnO NPs by themselves, and their mixture (1:1) were determined. The systemic toxicities of the individual NPs and mixture were evaluated in mice using hematological indices, hepatic, renal, and lipid profile parameters, and histopathology as endpoints. NPs were intraperitoneally administered at doses of 9.38, 18.75, 37.50, 75.00, and 150.00 mg/kg bw each. Individual NPs and their mixture were administered daily for 5 and 10 d, respectively. The LD50 of ZnO NPs was 299.9 mg/kg while TiO2 NPs by themselves or TiO2 NPs + ZnO NPs were indeterminate due to the absence of mortality of the male mice treated. TiO2 NPs, ZnO NPs by themselves and TiO2 NPs + ZnO NPs induced significant alterations in the hematological and biochemical parameters, with higher toxicity at 10 d. Histopathological lesions were observed in the liver, kidneys, spleen, heart, and brain of mice treated with the individual NPs and their mixture. TiO2 NPs + ZnO NPs were able to induce a higher systemic toxicity than TiO2 NPs or ZnO NPs individually. Our data suggest that more comprehensive risk assessments should be carried out on the mixture of NPs before utilization in consumer products.
Collapse
Affiliation(s)
- Opeoluwa Ogunsuyi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olusegun Ogunsuyi
- Department of Biological Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Olubukola Akanni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Okunola Alabi
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Chibuisi Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwatosin Adaramoye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Santhana Eswara
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Adekunle Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
11
|
Ogunsuyi OM, Ogunsuyi OI, Akanni O, Alabi OA, Alimba CG, Adaramoye OA, Cambier S, Eswara S, Gutleb AC, Bakare AA. Alteration of sperm parameters and reproductive hormones in Swiss mice via oxidative stress after co-exposure to titanium dioxide and zinc oxide nanoparticles. Andrologia 2020; 52:e13758. [PMID: 32671885 DOI: 10.1111/and.13758] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, Swiss male mice were intraperitoneally administered with titanium dioxide (TiO2 ) and zinc oxide (ZnO) nanoparticles (NPs) and their mixture (1:1) at doses between 9.38 and 75 mg/kg for 5 weeks to evaluate reproductive toxicity. Both NPs and their mixture significantly (p < .001) altered sperm motility, reduced sperm numbers and increased abnormalities, while their mixture induced more sperm abnormalities than either TiO2 NPs or ZnO NPs. Both NPs and their mixture significantly (p < .05) reduced the LH level, while ZnO NPs alone and their mixture (p < .001) increased the testosterone levels at tested doses. The testes of exposed mice showed pathological changes and altered histomorphometrics. TiO2 NPs and ZnO NPs individually induced a significant (p < .01) reduction in SOD and CAT activities, while the mixture significantly (p < .001) decreased CAT activity and increased SOD activity. TiO2 NPs alone at 9.38 mg/kg induced a significant (p < .001) reduction in the GSH level, while both NPs and their mixture increased the MDA level significantly (p < .05). The data showed that the mixture had a synergistic interaction to induce testicular damage. Overall, oxidative stress may be involved in the NP-mediated testicular damage observed.
Collapse
Affiliation(s)
- Opeoluwa M Ogunsuyi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olusegun I Ogunsuyi
- Department of Biological Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Olubukola Akanni
- Drug Metabolism and Toxicology Research Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Okunola A Alabi
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Chibuisi G Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwatosin A Adaramoye
- Drug Metabolism and Toxicology Research Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Santhana Eswara
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Adekunle A Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
12
|
ÜNAL F, DEMIRTAŞ KORKMAZ F, SULUDERE Z, EROL Ö, YÜZBAŞIOĞLU D. Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.826911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A. Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Jalili P, Huet S, Lanceleur R, Jarry G, Hegarat LL, Nesslany F, Hogeveen K, Fessard V. Genotoxicity of Aluminum and Aluminum Oxide Nanomaterials in Rats Following Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E305. [PMID: 32053952 PMCID: PMC7075173 DOI: 10.3390/nano10020305] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Due to several gaps remaining in the toxicological evaluation of nanomaterials (NMs), consumers and public health agencies have shown increasing concern for human health protection. In addition to aluminum (Al) microparticles, Al-containing nanomaterials (Al NMs) have been applied by food industry as additives and contact materials. Due to the limited amount of literature on the toxicity of Al NMs, this study aimed to evaluate the in vivo genotoxic potential of Al0 and Al2O3 NMs after acute oral exposure. Male Sprague-Dawley rats were administered three successive gavages at 6, 12.5 and 25 mg/kg bw. A comparison with AlCl3 was done in order to assess the potential effect of dissolution into Al ions. Both DNA strand breaks and oxidative DNA damage were investigated in six organs/tissues (duodenum, liver, kidney, spleen, blood and bone marrow) with the alkaline and the Fpg-modified comet assays. Concomitantly, chromosomal damage was investigated in bone marrow and colon with the micronucleus assay. The comet assay only showed DNA damage with Al2O3 NMs in bone marrow (BM), while AlCl3 induced slight but non-significant oxidative DNA damage in blood. No increase of chromosomal mutations was observed after treatment with the two Al MNs either in the BM or in the colons of rats.
Collapse
Affiliation(s)
- Pégah Jalili
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Sylvie Huet
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Rachelle Lanceleur
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Gérard Jarry
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Ludovic Le Hegarat
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Fabrice Nesslany
- Institut Pasteur de Lille, Laboratoire de toxicologie génétique, 1 Rue du Professeur Calmette, 59019 Lille CEDEX, France;
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Valérie Fessard
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| |
Collapse
|