1
|
Rumaling MK, Fong SY, Rao PV, Gisil J, Sani MHM, Wan Saudi WS. Pharmacological properties of Hoya (Apocynaceae): a systematic review. Nat Prod Res 2025; 39:905-921. [PMID: 38389506 DOI: 10.1080/14786419.2024.2319655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
In tropical forests, Hoya, a plant with significant indigenous medicinal applications, has been underexplored in pharmacological studies. This systematic review meticulously investigates the diverse pharmacological effects exhibited by various Hoya species on human health. A comprehensive literature search, encompassing Scopus, ScienceDirect, and SpringerLink databases, employed specific keyword combinations ('Hoya' and 'pharmacological properties' OR 'pharmacology property'). The included studies exclusively focused on Hoya's impact on human health. The findings underscore Hoya's potential as a medicinal plant, demonstrating promising attributes such as anticancer, antibacterial, antioxidant, anti-inflammatory, anti-diabetic, antinociceptive, and parasympatholytic effects. Despite these promising indications, the review underscores the necessity for further in vivo investigations to fully unlock Hoya's therapeutic potential. A comprehensive understanding of its mechanisms of action, efficacy, and safety in living systems is imperative for realising its holistic therapeutic benefits.
Collapse
Affiliation(s)
| | - Siat Yee Fong
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | - Johnny Gisil
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Mohd Hijaz Mohd Sani
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Wan Salman Wan Saudi
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
2
|
Kim G, Van NTH, Nam JH, Lee W. Unraveling the Molecular Reason of Opposing Effects of α-Mangostin and Norfluoxetine on TREK-2 at the Same Binding Site. ChemMedChem 2024; 19:e202400409. [PMID: 39145995 PMCID: PMC11617644 DOI: 10.1002/cmdc.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
TWIK-related K+ channel (TREK)-2, expressed in sensory neurons, is involved in setting membrane potential, and its modulations contributes to the generation of nociceptive signals. Although acute and chronic pain is a common symptom experienced by patients with various conditions, most existing analgesics exhibit low efficacy and are associated with adverse effects. For this reason, finding the novel modulator of TREK-2 is of significance for the development of new analgesics. Recent studies have shown that α-Mangostin (α-MG) activates TREK-2, facilitating analgesic effects, yet the underlying molecular mechanisms remain elusive. Intriguingly, even though norfluoxetine (NFx) is known to inhibit TREK-2, α-MG is also observed to share a same binding site with NFx, and this implies that TREK-2 might be modulated in a highly complicated manner. Therefore, we examine the mechanism of how TREK-2 is activated by α-MG using computational methods and patch clamp experiments in the present study. Based on these results, we offer an explanation of how α-MG and NFx exhibit opposing effects at the same binding site of TREK-2. These findings will broaden our understanding of TREK-2 modulation, providing clues for designing novel analgesic drugs.
Collapse
Affiliation(s)
- Gangrae Kim
- Department of BiochemistryKangwon National UniversityCollege of Natural SciencesChuncheon24341Republic of Korea
| | - Nhung Thi Hong Van
- Department of PhysiologyDongguk UniversityCollege of MedicineGyeongju38066Republic of Korea
| | - Joo Hyun Nam
- Department of PhysiologyDongguk UniversityCollege of MedicineGyeongju38066Republic of Korea
| | - Wook Lee
- Department of BiochemistryKangwon National UniversityCollege of Natural SciencesChuncheon24341Republic of Korea
| |
Collapse
|
3
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
4
|
Kim SE, Yin MZ, Roh JW, Kim HJ, Choi SW, Wainger BJ, Kim WK, Kim SJ, Nam JH. Multi-target modulation of ion channels underlying the analgesic effects of α-mangostin in dorsal root ganglion neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154791. [PMID: 37094425 DOI: 10.1016/j.phymed.2023.154791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed. HYPOTHESIS We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons. METHODS We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively. RESULTS Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K+ conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K+ channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na+ channel (NaV) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and NaV channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier. CONCLUSION The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive NaV current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ming Zhe Yin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jae Won Roh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Brian J Wainger
- Departments Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, ts, USA
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea; Department of Internal Medicine Graduate School of Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea.
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Departments Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, ts, USA; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
5
|
Yang L, Xu Z, Wang W. Garcinone-E exhibits anticancer effects in HeLa human cervical carcinoma cells mediated via programmed cell death, cell cycle arrest and suppression of cell migration and invasion. AMB Express 2020; 10:126. [PMID: 32676834 PMCID: PMC7364682 DOI: 10.1186/s13568-020-01060-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Xanthones are an important class of natural compounds bearing huge bioactivity profiles. Garcinone-E is one among most active xanthones showing potential anticancer activity against various human cancer cell lines. Therefore, the current study was performed to explore the anticancer potency of naturally occurring garcinone-E xanthone against human HeLa cervical cancer cells. The underlying mechanism of action was also tried to be explored via testifying its induction of programmed cell death, arrest of cell cycle, suppression of cell migration, cell invasion and cell adhesion. MTT assay was implemented to estimate the viability of HeLa cells after garcinone-E exposure and clonogenic assay was used to analyze the effect on clonogenic potential. Acridine orange/ethidium bromine (AO/EB) staining assay was performed for monitoring of programmed cell death along with western blotting. Flow cytometric studies were carried out to analyze cell cycle check points. Transwell chambers assays were carried out for studying the impact of garcinone-E on migration and invasion potency of HeLa cells. Western blotting was used to study the expressions of apoptosis linked proteins in HeLa cells. Results indicated that garcinone-E remarkably decreased the viability to minimum in HeLa cells in both dose and time-reliant manner. The clonogenic capacity of HeLa cells was efficiently reduced by garcinone exposure. AO/EB staining showed that the anti-viability action of garcinone-E was apoptosis allied which was supported by western blotting as well. The cell cycle check points study indicated cell cycle arrest at G2/M-phase. HeLa cell migration and invasion were reduced efficiently after being subjected to garcinone-E treatment in a dose reliant fashion. In conclusion, garcinone-E has a remarkable potential to act as anti-cervical cancer chemopreventive provided further in vivo studies are required.
Collapse
|
6
|
Oberholzer I, Möller M, Holland B, Dean OM, Berk M, Harvey BH. Garcinia mangostana Linn displays antidepressant-like and pro-cognitive effects in a genetic animal model of depression: a bio-behavioral study in the Flinders Sensitive Line rat. Metab Brain Dis 2018; 33:467-480. [PMID: 29101602 DOI: 10.1007/s11011-017-0144-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
There is abundant evidence for both disorganized redox balance and cognitive deficits in major depressive disorder (MDD). Garcinia mangostana Linn (GM) has anti-oxidant activity. We studied the antidepressant-like and pro-cognitive effects of raw GM rind in Flinders Sensitive Line (FSL) rats, a genetic model of depression, following acute and chronic treatment compared to a reference antidepressant, imipramine (IMI). The chemical composition of the GM extract was analysed for levels of α- and γ-mangostin. The acute dose-dependent effects of GM (50, 150 and 200 mg/kg po), IMI (20 mg/kg po) and vehicle were determined in the forced swim test (FST) in FSL rats, versus Flinders Resistant Line (FRL) control rats. Locomotor testing was conducted using the open field test (OFT). Using the most effective dose above coupled with behavioral testing in the FST and cognitive assessment in the novel object recognition test (nORT), a fixed dose 14-day treatment study of GM was performed and compared to IMI- (20 mg/kg/day) and vehicle-treated animals. Chronic treated animals were also assessed with respect to frontal cortex and hippocampal monoamine levels and accumulation of malondialdehyde. FSL rats showed significant cognitive deficits and depressive-like behavior, with disordered cortico-hippocampal 5-hydroxyindole acetic acid (5-HIAA) and noradrenaline (NA), as well as elevated hippocampal lipid peroxidation. Acute and chronic IMI treatment evoked pronounced antidepressant-like effects. Raw GM extract contained 117 mg/g and 11 mg/g α- and γ-mangostin, respectively, with acute GM demonstrating antidepressant-like effects at 50 mg/kg/day. Chronic GM (50 mg/kg/d) displayed significant antidepressant- and pro-cognitive effects, while demonstrating parity with IMI. Both behavioral and monoamine assessments suggest a more prominent serotonergic action for GM as opposed to a noradrenergic action for IMI, while both IMI and GM reversed hippocampal lipid peroxidation in FSL animals. Concluding, FSL rats present with cognitive deficits and depressive-like behaviors that are reversed by acute and chronic GM treatment, similar to that of IMI.
Collapse
Affiliation(s)
- Inge Oberholzer
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Marisa Möller
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Brendan Holland
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, 3220, Australia
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, 3052, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, 3052, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa.
| |
Collapse
|
7
|
Xu XH, Liu QY, Li T, Liu JL, Chen X, Huang L, Qiang WA, Chen X, Wang Y, Lin LG, Lu JJ. Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Sci Rep 2017; 7:10718. [PMID: 28878295 PMCID: PMC5587559 DOI: 10.1038/s41598-017-11417-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignant tumor. In this study, 24 xanthones were isolated and identified from the pericarps of mangosteen (Garcinia mangostana), and their anti-proliferative activities were tested in ovarian cancer cells. Garcinone E (GE) was found to exhibit excellent anti-proliferative effects among the tested xanthones. It significantly inhibited the proliferation in HEY, A2780, and A2780/Taxol cells as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, Hoechst 33342 staining, annexin V/PI staining, and JC-1 staining. It induced endoplasmic reticulum (ER) stress and activated the protective inositol-requiring kinase (IRE)-1α pathway. Knocking down IRE-1α further activated the caspase cascade and caused an increase in cell death. Moreover, GE eliminated the migratory ability of HEY cells by reducing the expression of RhoA and Rac. It also blocked the invasion, which might be related to downregulation of matrix metalloproteinases (MMPs), i.e., MMP-9 and MMP-2, and upregulation of tissue inhibitors of metalloproteinase (TIMP) -1 and TIMP-2. In summary, GE exerts anticancer activities by inducing apoptosis and suppressing migration and invasion in ovarian cancer cells, which indicates its therapeutic potential for ovarian cancer.
Collapse
Affiliation(s)
- Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qian-Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Guangdong Medical Device Quality Surveillance and Test Institute, Guangzhou, Guangdong, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Lin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
8
|
Romain C, Freitas TT, Martínez-Noguera FJ, Laurent C, Gaillet S, Chung LH, Alcaraz PE, Cases J. Supplementation with a Polyphenol-Rich Extract, TensLess ® , Attenuates Delayed Onset Muscle Soreness and Improves Muscle Recovery from Damages After Eccentric Exercise. Phytother Res 2017; 31:1739-1746. [PMID: 28856749 DOI: 10.1002/ptr.5902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 11/05/2022]
Abstract
High-intensity exercises are known to provoke delayed onset muscle soreness (DOMS). Delayed onset muscle soreness typically occurs within the first 24 h, peaks between 24 and 72 h, and can last as long as 5-7 days post-exercise. Delayed onset muscle soreness is a multifactorial process involving both mechanical and biochemical components, associated with clinical features that may limit range of motion, and athletes seek for effective recovery strategies to optimize future training sessions. TensLess® is a food supplement developed to help manage post-exercise recovery. The supplement has been investigated on 13 recreationally active athletes of both sex, during a randomized, double-blind, and crossover clinical investigation, including a 3-week washout period. The clinical investigation was based on the study of TensLess® effects for DOMS management and on the reduction of associated muscle damages following an eccentric exercise protocol. Supplementation with TensLess® induced significant decrease in DOMS perception (-33%; p = 0.008) as of the first 24 h; this was significantly correlated with a lowered release of muscle damage-associated biomarkers, namely myoglobin, creatinine, and creatine kinase, for the whole length of the recovery period. Taken together, these positive results clearly indicate that post-exercise supplementation with TensLess® may preserve myocytes and reduce soreness following eccentric exercise-induced damages, and, accordingly, significantly shorten muscle recovery. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cindy Romain
- Innovation and Scientific Affairs, Fytexia, 34350, Vendres, France
| | - Tomás T Freitas
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | | | - Caroline Laurent
- UMR 204 Nutripass, Institut de Recherche pour le Développement, Université de Montpellier, 34095, Montpellier, France
| | - Sylvie Gaillet
- UMR 204 Nutripass, Institut de Recherche pour le Développement, Université de Montpellier, 34095, Montpellier, France
| | - Linda H Chung
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Innovation and Scientific Affairs, Fytexia, 34350, Vendres, France
| |
Collapse
|
9
|
Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem Toxicol 2017; 109:102-122. [PMID: 28842267 DOI: 10.1016/j.fct.2017.08.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Garcinia mangostana L. (Clusiaceae) is a tropical tree native to Southeast Asia known as mangosteen which fruits possess a distinctive and pleasant taste that has granted them the epithet of "queen of the fruits". The seeds and pericarps of the fruit have a long history of use in the traditional medicinal practices of the region, and beverages containing mangosteen pulp and pericarps are sold worldwide as nutritional supplements. The main phytochemicals present in the species are isoprenylated xanthones, a class of secondary metabolites with multiple reports of biological effects, such as antioxidant, pro-apoptotic, anti-proliferative, antinociceptive, anti-inflammatory, neuroprotective, hypoglycemic and anti-obesity. The diversity of actions displayed by mangosteen xanthones shows that these compounds target multiple signaling pathways involved in different pathologies, and place them as valuable sources for developing new drugs to treat chronic and degenerative diseases. This review article presents a comprehensive update of the toxicological findings on animal models, and the preclinical anticancer, analgesic, neuroprotective, antidiabetic and hypolipidemic effects of G. mangostana L. extracts and its main isolates. Pharmacokinetics, drug delivery systems and reports on dose-finding human trials are also examined.
Collapse
Affiliation(s)
- Berenice Ovalle-Magallanes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Dianelena Eugenio-Pérez
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
10
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Zakaria ZA, Mohd Sani MH, Abdul Kadir A, Teh LK, Salleh MZ. Antinociceptive effect of semi-purified petroleum ether partition of Muntingia calabura leaves. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Fonsêca DV, Salgado PRR, de Carvalho FL, Salvadori MGSS, Penha ARS, Leite FC, Borges CJS, Piuvezam MR, Pordeus LCDM, Sousa DP, Almeida RN. Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol 2015; 30:14-22. [DOI: 10.1111/fcp.12166] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/24/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Diogo V. Fonsêca
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Paula R. R. Salgado
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Fabíola L. de Carvalho
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Mirian Graciela S. S. Salvadori
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Antônia Rosângela S. Penha
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Fagner C. Leite
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Immunology; University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Clóvis José S. Borges
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Marcia R. Piuvezam
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Immunology; University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Liana Clébia de Morais Pordeus
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Damião P. Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| | - Reinaldo N. Almeida
- Postgraduate Program in Natural Products and Bioactive Synthetics (PgPNSB); Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
- Laboratory of Psychopharmacology; Federal University of Paraíba (UFPB); Caixa Postal 5009 CEP 58051-900 João Pessoa PB Brazil
| |
Collapse
|