1
|
Adiprakoso D, Katsimpokis D, Oerlemans S, Ezendam NPM, van Maaren MC, van Til JA, van der Heijden TGW, Mols F, Aben KKH, Vink GR, Koopman M, van de Poll-Franse LV, de Rooij BH. Development of a prediction model for clinically-relevant fatigue: a multi-cancer approach. Qual Life Res 2024:10.1007/s11136-024-03807-9. [PMID: 39516438 DOI: 10.1007/s11136-024-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Fatigue is the most prevalent symptom across cancer types. To support clinicians in providing fatigue-related supportive care, this study aims to develop and compare models predicting clinically relevant fatigue (CRF) occurring between two and three years after diagnosis, and to assess the validity of the best-performing model across diverse cancer populations. METHODS Patients with non-metastatic bladder, colorectal, endometrial, ovarian, or prostate cancer who completed a questionnaire within three months after diagnosis and a subsequent questionnaire between two and three years thereafter, were included. Predictor variables included clinical, socio-demographic, and patient-reported variables. The outcome was CRF (EORTC QLQC30 fatigue ≥ 39). Logistic regression using LASSO selection was compared to more advanced Machine Learning (ML) based models, including Extreme gradient boosting (XGBoost), support vector machines (SVM), and artificial neural networks (ANN). Internal-external cross-validation was conducted on the best-performing model. RESULTS 3160 patients were included. The logistic regression model had the highest C-statistic (0.77) and balanced accuracy (0.65), both indicating good discrimination between patients with and without CRF. However, sensitivity was low across all models (0.22-0.37). Following internal-external validation, performance across cancer types was consistent (C-statistics 0.73-0.82). CONCLUSION Although the models' discrimination was good, the low balanced accuracy and poor calibration in the presence of CRF indicates a relatively high likelihood of underdiagnosis of future CRF. Yet, the clinical applicability of the model remains uncertain. The logistic regression performed better than the ML-based models and was robust across cohorts, suggesting an advantage of simpler models to predict CRF.
Collapse
Affiliation(s)
- Dhirendra Adiprakoso
- Department of Health Technology and Services Research (HTSR), Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Dimitris Katsimpokis
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - Simone Oerlemans
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - Nicole P M Ezendam
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- CoRPS-Center of Research On Psychological Disorders and Somatic Diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Marissa C van Maaren
- Department of Health Technology and Services Research (HTSR), Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - Janine A van Til
- Department of Health Technology and Services Research (HTSR), Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Thijs G W van der Heijden
- Division of Psychosocial Research & Epidemiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Floortje Mols
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- CoRPS-Center of Research On Psychological Disorders and Somatic Diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Katja K H Aben
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- Department of IQ Health, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Geraldine R Vink
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lonneke V van de Poll-Franse
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- CoRPS-Center of Research On Psychological Disorders and Somatic Diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
- Division of Psychosocial Research & Epidemiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Belle H de Rooij
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands.
- CoRPS-Center of Research On Psychological Disorders and Somatic Diseases, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.
| |
Collapse
|
2
|
Sun Y, Wen B. Machine-learning diagnostic models for ovarian tumors. Heliyon 2024; 10:e36994. [PMID: 39381112 PMCID: PMC11456824 DOI: 10.1016/j.heliyon.2024.e36994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose To create a diagnostic framework for clinical behavior and pathological tissue prognosis in ovarian cancer by using machine-learning (ML) methods based on multiple biomarkers. Experimental design Overall, 713 patients with ovarian tumors at Sun Yat Sen Memorial Hospital were randomized into training and test cohorts. Four supervised ML classifiers, namely Support Vector Machine, Random Forest, k-nearest neighbor, and logistic regression were used to derive diagnostic and prognostic information from 10 parameters commonly available from pretreatment peripheral blood tests and age. The best prediction model was selected and validated by comparing the accuracy and the area under the ROC curve of each prediction model and by applying the external data of Guangdong Maternal and Child Health Center. Results ML techniques were superior to conventional regression-based analyses in predicting multiple clinical parameters pertaining to ovarian tumor. Ensemble methods combining weak decision trees and RF showed the best reference in diagnosis, especially for malignant ovarian cancer. The values for the highest accuracy and area under the ROC curve for malignant ovarian cancer from benign or borderline ovarian tumors with RF were 99.82 % and 0.86 (micro-average ROC curve), respectively. The greatest accuracy and AUC for the diagnosis of pathological tissue with logistic regression curve were 78.0 % and 0.95 (micro-average ROC curve), respectively. In external validation, the random forest prediction model had an accuracy of 0.789 for applying data from external centers to verify tumor benignity and malignancy, and the logistic regression model had an accuracy of 0.719 for predicting the nature of the tumor. Conclusions An ovarian tumor can be diagnosed and characterized before initial treatment via ML systems to provide critical diagnostic and prognostic information. The use of predictive algorithms can facilitate customized treatment options with patient preprocessing stratification.
Collapse
Affiliation(s)
| | - Bin Wen
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou City, Guangdong Province, China
| |
Collapse
|
3
|
Yang CH, Wu CH, Luo KH, Chang HC, Wu SC, Chuang HY. Use of machine learning algorithms to determine the relationship between air pollution and cognitive impairment in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116885. [PMID: 39151371 DOI: 10.1016/j.ecoenv.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Air pollution has become a major global threat to human health. Urbanization and industrialization over the past few decades have increased the air pollution. Plausible connections have been made between air pollutants and dementia. This study used machine learning algorithms (k-nearest neighbors, random forest, gradient-boosted decision trees, eXtreme gradient boosting, and CatBoost) to investigate the association between cognitive impairment and air pollution. Data from the Taiwan Biobank and 75 air-pollution-monitoring stations in Taiwan were analyzed to determine individual levels of exposure to air pollutants. The pollutants examined were particulate matter with a diameter of ≤ 2.5 μm (PM2.5), nitrogen dioxide, nitric oxide, carbon monoxide, and ozone. The results revealed that the most strongly correlated with cognitive impairment were ozone, PM2.5, and carbon monoxide levels with adjustment of educational level, age, and household income. The model based on these factors achieved accuracy as high as 0.97 for detecting cognitive impairment, indicating a positive association between air pollutions and cognitive impairment.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan; Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Ph. D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chih-Hsien Wu
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Kuei-Hau Luo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung 80708, Taiwan.
| | - Huang-Chih Chang
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83341, Taiwan; Ph.D Program in Environmental and Occupational Medicine, and Research Center for Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Sz-Chiao Wu
- Epidemiology in the Public Health Program, College of Health, Oregon State University, Oregon 97331, USA.
| | - Hung-Yi Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung 80708, Taiwan; Ph.D Program in Environmental and Occupational Medicine, and Research Center for Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Occupational and Environmental Medicine, Kaohsiung Medicine University Hospital, Kaohsiung Medicine University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Turrisi R, Verri A, Barla A. Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices. Front Comput Neurosci 2024; 18:1360095. [PMID: 39371524 PMCID: PMC11451303 DOI: 10.3389/fncom.2024.1360095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Machine Learning (ML) has emerged as a promising approach in healthcare, outperforming traditional statistical techniques. However, to establish ML as a reliable tool in clinical practice, adherence to best practices in data handling, and modeling design and assessment is crucial. In this work, we summarize and strictly adhere to such practices to ensure reproducible and reliable ML. Specifically, we focus on Alzheimer's Disease (AD) detection, a challenging problem in healthcare. Additionally, we investigate the impact of modeling choices, including different data augmentation techniques and model complexity, on overall performance. Methods We utilize Magnetic Resonance Imaging (MRI) data from the ADNI corpus to address a binary classification problem using 3D Convolutional Neural Networks (CNNs). Data processing and modeling are specifically tailored to address data scarcity and minimize computational overhead. Within this framework, we train 15 predictive models, considering three different data augmentation strategies and five distinct 3D CNN architectures with varying convolutional layers counts. The augmentation strategies involve affine transformations, such as zoom, shift, and rotation, applied either concurrently or separately. Results The combined effect of data augmentation and model complexity results in up to 10% variation in prediction accuracy. Notably, when affine transformation are applied separately, the model achieves higher accuracy, regardless the chosen architecture. Across all strategies, the model accuracy exhibits a concave behavior as the number of convolutional layers increases, peaking at an intermediate value. The best model reaches excellent performance both on the internal and additional external testing set. Discussions Our work underscores the critical importance of adhering to rigorous experimental practices in the field of ML applied to healthcare. The results clearly demonstrate how data augmentation and model depth-often overlooked factors- can dramatically impact final performance if not thoroughly investigated. This highlights both the necessity of exploring neglected modeling aspects and the need to comprehensively report all modeling choices to ensure reproducibility and facilitate meaningful comparisons across studies.
Collapse
Affiliation(s)
- Rosanna Turrisi
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
- Machine Learning Genoa (MaLGa) Center, University of Genoa, Genoa, Italy
| | - Alessandro Verri
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
- Machine Learning Genoa (MaLGa) Center, University of Genoa, Genoa, Italy
| | - Annalisa Barla
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
- Machine Learning Genoa (MaLGa) Center, University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Mehrbakhsh Z, Hassanzadeh R, Behnampour N, Tapak L, Zarrin Z, Khazaei S, Dinu I. Machine learning-based evaluation of prognostic factors for mortality and relapse in patients with acute lymphoblastic leukemia: a comparative simulation study. BMC Med Inform Decis Mak 2024; 24:261. [PMID: 39285373 PMCID: PMC11404043 DOI: 10.1186/s12911-024-02645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Predicting mortality and relapse in children with acute lymphoblastic leukemia (ALL) is crucial for effective treatment and follow-up management. ALL is a common and deadly childhood cancer that often relapses after remission. In this study, we aimed to apply and evaluate machine learning-based models for predicting mortality and relapse in pediatric ALL patients. METHODS This retrospective cohort study was conducted on 161 children aged less than 16 years with ALL. Survival status (dead/alive) and patient experience of relapse (yes/no) were considered as the outcome variables. Ten machine learning (ML) algorithms were used to predict mortality and relapse. The performance of the algorithms was evaluated by cross-validation and reported as mean sensitivity, specificity, accuracy and area under the curve (AUC). Finally, prognostic factors were identified based on the best algorithms. RESULTS The mean accuracy of the ML algorithms for prediction of patient mortality ranged from 64 to 74% and for prediction of relapse, it varied from 64 to 84% on test data sets. The mean AUC of the ML algorithms for mortality and relapse was above 64%. The most important prognostic factors for predicting both mortality and relapse were identified as age at diagnosis, hemoglobin and platelets. In addition, significant prognostic factors for predicting mortality included clinical side effects such as splenomegaly, hepatomegaly and lymphadenopathy. CONCLUSIONS Our results showed that artificial neural networks and bagging algorithms outperformed other algorithms in predicting mortality, while boosting and random forest algorithms excelled in predicting relapse in ALL patients across all criteria. These results offer significant clinical insights into the prognostic factors for children with ALL, which can inform treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Zahra Mehrbakhsh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayyeh Hassanzadeh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasser Behnampour
- Department of Biostatistics and Epidemiology, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ziba Zarrin
- Department of Photogrammetry and Remote Sensing, K.N. Toosi University of Technology, Tehran, Iran
| | - Salman Khazaei
- Health Sciences Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Science, Hamadan, Iran
| | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Liu L, He Y, Kao C, Fan Y, Yang F, Wang F, Yu L, Zhou F, Xiang Y, Huang S, Zheng C, Cai H, Bao H, Fang L, Wang L, Chen Z, Yu Z. An advanced machine learning method for simultaneous breast cancer risk prediction and risk ranking in Chinese population: A prospective cohort and modeling study. Chin Med J (Engl) 2024; 137:2084-2091. [PMID: 38403898 PMCID: PMC11374254 DOI: 10.1097/cm9.0000000000002891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Breast cancer (BC) risk-stratification tools for Asian women that are highly accurate and can provide improved interpretation ability are lacking. We aimed to develop risk-stratification models to predict long- and short-term BC risk among Chinese women and to simultaneously rank potential non-experimental risk factors. METHODS The Breast Cancer Cohort Study in Chinese Women, a large ongoing prospective dynamic cohort study, includes 122,058 women aged 25-70 years old from the eastern part of China. We developed multiple machine-learning risk prediction models using parametric models (penalized logistic regression, bootstrap, and ensemble learning), which were the short-term ensemble penalized logistic regression (EPLR) risk prediction model and the ensemble penalized long-term (EPLT) risk prediction model to estimate BC risk. The models were assessed based on calibration and discrimination, and following this assessment, they were externally validated in new study participants from 2017 to 2020. RESULTS The AUC values of the short-term EPLR risk prediction model were 0.800 for the internal validation and 0.751 for the external validation set. For the long-term EPLT risk prediction model, the area under the receiver operating characteristic curve was 0.692 and 0.760 in internal and external validations, respectively. The net reclassification improvement index of the EPLT relative to the Gail and the Han Chinese Breast Cancer Prediction Model (HCBCP) models for external validation was 0.193 and 0.233, respectively, indicating that the EPLT model has higher classification accuracy. CONCLUSIONS We developed the EPLR and EPLT models to screen populations with a high risk of developing BC. These can serve as useful tools to aid in risk-stratified screening and BC prevention.
Collapse
Affiliation(s)
- Liyuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Yong He
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
- Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, Shandong 250100, China
| | - Chunyu Kao
- Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, Shandong 250100, China
| | - Yeye Fan
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Fu Yang
- Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, Shandong 250100, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Han Cai
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Heling Bao
- Department of Maternal and Child Health, School of Public Health, Peking University, Haidian District, Beijing 100191, China
| | - Liwen Fang
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Linhong Wang
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zengjing Chen
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
7
|
Nopour R. Development of Prediction Model for 5-year Survival of Colorectal Cancer. Cancer Inform 2024; 23:11769351241275889. [PMID: 39238654 PMCID: PMC11375664 DOI: 10.1177/11769351241275889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Objectives This study aims to introduce a prediction model based on a machine learning approach as an efficient solution for prediction purposes to better prognosis and increase CRC survival. Methods In the current retrospective study, we used the data of 1062 CRC cases to analyse and establish a prediction model for the 5-year CRC survival. The machine learning algorithms were used to develop prediction models, including random Forest, XG-Boost, bagging, logistic regression, support vector machine, artificial neural network, decision tree, and K-nearest neighbours. Results The current study revealed that the XG-Boost with AU-ROC of 0.906 and 0.813 for internal and external conditions gave us better insight into predictability and generalizability than other algorithms. Conclusion XG-Boost can be utilised as a knowledge source for implementing intelligent systems as an assistive tool for clinical decision-making in healthcare settings to improve prognosis and increase CRC survival through various clinical solutions that doctors can achieve.
Collapse
Affiliation(s)
- Raoof Nopour
- Department of Health Information Management, Student Research Committee, School of Health Management and Information Sciences Branch, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Choudhary A, Anand A, Singh A, Roy P, Singh N, Kumar V, Sharma S, Baranwal M. Machine learning-based ensemble approach in prediction of lung cancer predisposition using XRCC1 gene polymorphism. J Biomol Struct Dyn 2024; 42:7828-7837. [PMID: 37545160 DOI: 10.1080/07391102.2023.2242492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
The employment of machine learning approaches has shown promising results in predicting cancer. In the current study, polymorphisms data of five single nucleotide polymorphisms (SNPs) of DNA repair gene XRCC1 (XRCC1 399, XRCC1 194, XRCC1 206, XRCC1 632, XRCC1 280) of the north Indian population along with four smoking status data is considered as an input to the proposed ensemble model to predict the risk of individual susceptibility to the lung cancer. The prediction accuracy of the proposed ensemble model for cancer predisposition was found to be 85%. The model performance is also evaluated using sensitivity, specificity, precision and the Gini index, which is found in the range of 0.83-0.87. The proposed model also outperformed in all evaluation parameters when compared with the individual Model (LM, SVM, RF, KNN and baseline neural net). Collectively, current results suggest the potential of the proposed ensemble model in predicting the risk of cancer based on XRCC1 SNPs data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Choudhary
- Department of Computer Science, Thapar Institute of Engineering & Technology, India
| | - Adarsh Anand
- Department of Electronics & Communication Engineering, Thapar Institute of Engineering & Technology, India
| | - Amrita Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Pratima Roy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Education and Medical Research (PGIMER), Chandigarh, India
| | - Vinay Kumar
- Department of Electronics & Communication Engineering, Thapar Institute of Engineering & Technology, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
9
|
Alkhanbouli R, Al-Aamri A, Maalouf M, Taha K, Henschel A, Homouz D. Analysis of Cancer-Associated Mutations of POLB Using Machine Learning and Bioinformatics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1436-1444. [PMID: 38691429 DOI: 10.1109/tcbb.2024.3395777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
DNA damage is a critical factor in the onset and progression of cancer. When DNA is damaged, the number of genetic mutations increases, making it necessary to activate DNA repair mechanisms. A crucial factor in the base excision repair process, which helps maintain the stability of the genome, is an enzyme called DNA polymerase β (Pol β) encoded by the POLB gene. It plays a vital role in the repair of damaged DNA. Additionally, variations known as Single Nucleotide Polymorphisms (SNPs) in the POLB gene can potentially affect the ability to repair DNA. This study uses bioinformatics tools that extract important features from SNPs to construct a feature matrix, which is then used in combination with machine learning algorithms to predict the likelihood of developing cancer associated with a specific mutation. Eight different machine learning algorithms were used to investigate the relationship between POLB gene variations and their potential role in cancer onset. This study not only highlights the complex link between POLB gene SNPs and cancer, but also underscores the effectiveness of machine learning approaches in genomic studies, paving the way for advanced predictive models in genetic and cancer research.
Collapse
|
10
|
Valencia-Moreno JM, Gonzalez-Fraga JA, Gutierrez-Lopez E, Estrada-Senti V, Cantero-Ronquillo HA, Kober V. Breast cancer risk estimation with intelligent algorithms and risk factors for Cuban women. Comput Biol Med 2024; 179:108818. [PMID: 38991318 DOI: 10.1016/j.compbiomed.2024.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer is the most common malignant neoplasm and the leading cause of cancer mortality among women globally. Current prediction models based on risk factors are inefficient in specific populations, so an appropriate and calibrated breast cancer prediction model for Cuban women is essential. This article proposes a conceptual model for breast cancer risk estimation for Cuban women using machine learning algorithms and risk factors. The model has three main components: knowledge representation, risk estimation modeling, and risk predictor evaluation. Nine of the most common machine learning algorithms were used to generate risk predictors using the proposed model. Two data sources served as case studies: the first comprised data collected from Cuban women, and the second included data from US Hispanic women obtained from the Breast Cancer Surveillance Consortium dataset. The results show that the model effectively estimates breast cancer risk and could be a valuable tool for early detection of breast cancer and identification of patients at risk. According to the first experiment results, the best predictor of breast cancer risk for the Cuban female population corresponds to the Random Forest algorithm with a weighted score of 5.981, a training accuracy of 0.996 and a training AUC of 0.997. In a second experiment, it was demonstrated that the risk predictors generated by the proposed model using data from Cuban women obtained better AUC and accuracy values compared to the predictors generated by using the US Hispanic population, potentially generalizable to other Hispanic populations. Implementing this model could be an economically viable alternative to reduce the mortality rate of this type of cancer in Latin American countries such as Cuba.
Collapse
Affiliation(s)
- Jose Manuel Valencia-Moreno
- Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico; Universidad de las Ciencias Informáticas, La Habana, Cuba
| | - Jose Angel Gonzalez-Fraga
- Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico; Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico.
| | | | | | | | - Vitaly Kober
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico; Department of Mathematics, Chelyabinsk State University, Russian Federation
| |
Collapse
|
11
|
Han J, Yoon SY, Seok J, Lee JY, Lee JS, Ye JB, Sul Y, Kim SH, Kim HR. Predicting 30-day mortality in severely injured elderly patients with trauma in Korea using machine learning algorithms: a retrospective study. JOURNAL OF TRAUMA AND INJURY 2024; 37:201-208. [PMID: 39428729 PMCID: PMC11495929 DOI: 10.20408/jti.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE The number of elderly patients with trauma is increasing; therefore, precise models are necessary to estimate the mortality risk of elderly patients with trauma for informed clinical decision-making. This study aimed to develop machine learning based predictive models that predict 30-day mortality in severely injured elderly patients with trauma and to compare the predictive performance of various machine learning models. METHODS This study targeted patients aged ≥65 years with an Injury Severity Score of ≥15 who visited the regional trauma center at Chungbuk National University Hospital between 2016 and 2022. Four machine learning models-logistic regression, decision tree, random forest, and eXtreme Gradient Boosting (XGBoost)-were developed to predict 30-day mortality. The models' performance was compared using metrics such as area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, specificity, F1 score, as well as Shapley Additive Explanations (SHAP) values and learning curves. RESULTS The performance evaluation of the machine learning models for predicting mortality in severely injured elderly patients with trauma showed AUC values for logistic regression, decision tree, random forest, and XGBoost of 0.938, 0.863, 0.919, and 0.934, respectively. Among the four models, XGBoost demonstrated superior accuracy, precision, recall, specificity, and F1 score of 0.91, 0.72, 0.86, 0.92, and 0.78, respectively. Analysis of important features of XGBoost using SHAP revealed associations such as a high Glasgow Coma Scale negatively impacting mortality probability, while higher counts of transfused red blood cells were positively correlated with mortality probability. The learning curves indicated increased generalization and robustness as training examples increased. CONCLUSIONS We showed that machine learning models, especially XGBoost, can be used to predict 30-day mortality in severely injured elderly patients with trauma. Prognostic tools utilizing these models are helpful for physicians to evaluate the risk of mortality in elderly patients with severe trauma.
Collapse
Affiliation(s)
- Jonghee Han
- Department of Cardiovascular and Thoracic Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Su Young Yoon
- Department of Cardiovascular and Thoracic Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Junepill Seok
- Department of Cardiovascular and Thoracic Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Jin Young Lee
- Department of Trauma Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Jin Suk Lee
- Department of Trauma Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Jin Bong Ye
- Department of Trauma Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Younghoon Sul
- Department of Trauma Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
- Department of Trauma Surgery, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Se Heon Kim
- Department of Trauma Surgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Hong Rye Kim
- Department of Neurosurgery, Trauma Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
12
|
Matondo-Mvula N, Elleithy K. Breast Cancer Detection with Quanvolutional Neural Networks. ENTROPY (BASEL, SWITZERLAND) 2024; 26:630. [PMID: 39202100 PMCID: PMC11353681 DOI: 10.3390/e26080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Quantum machine learning holds the potential to revolutionize cancer treatment and diagnostic imaging by uncovering complex patterns beyond the reach of classical methods. This study explores the effectiveness of quantum convolutional layers in classifying ultrasound breast images for cancer detection. By encoding classical data into quantum states through angle embedding and employing a robustly entangled 9-qubit circuit design with an SU(4) gate, we developed a Quantum Convolutional Neural Network (QCNN) and compared it to a classical CNN of similar architecture. Our QCNN model, leveraging two quantum circuits as convolutional layers, achieved an impressive peak training accuracy of 76.66% and a validation accuracy of 87.17% at a learning rate of 1 × 10-2. In contrast, the classical CNN model attained a training accuracy of 77.52% and a validation accuracy of 83.33%. These compelling results highlight the potential of quantum circuits to serve as effective convolutional layers for feature extraction in image classification, especially with small datasets.
Collapse
Affiliation(s)
- Nadine Matondo-Mvula
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA;
| | | |
Collapse
|
13
|
Xiong G, Ji H, Chen Y, Liu B, Wang Y, Long P, Zeng J, Tao J, Deng C. Preparation of Thermochromic Vanadium Dioxide Films Assisted by Machine Learning. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1153. [PMID: 38998758 PMCID: PMC11242931 DOI: 10.3390/nano14131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
In recent years, smart windows have attracted widespread attention due to their ability to respond to external stimuli such as light, heat, and electricity, thereby intelligently adjusting the ultraviolet, visible, and near-infrared light in solar radiation. VO2(M) undergoes a reversible phase transition from an insulating phase (monoclinic, M) to a metallic phase (rutile, R) at a critical temperature of 68 °C, resulting in a significant difference in near-infrared transmittance, which is particularly suitable for use in energy-saving smart windows. However, due to the multiple valence states of vanadium ions and the multiphase characteristics of VO2, there are still challenges in preparing pure-phase VO2(M). Machine learning (ML) can learn and generate models capable of predicting unknown data from vast datasets, thereby avoiding the wastage of experimental resources and reducing time costs associated with material preparation optimization. Hence, in this paper, four ML algorithms, namely multi-layer perceptron (MLP), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB), were employed to explore the parameters for the successful preparation of VO2(M) films via magnetron sputtering. A comprehensive performance evaluation was conducted on these four models. The results indicated that XGB was the top-performing model, achieving a prediction accuracy of up to 88.52%. A feature importance analysis using the SHAP method revealed that substrate temperature had an essential impact on the preparation of VO2(M). Furthermore, characteristic parameters such as sputtering power, substrate temperature, and substrate type were optimized to obtain pure-phase VO2(M) films. Finally, it was experimentally verified that VO2(M) films can be successfully prepared using optimized parameters. These findings suggest that ML-assisted material preparation is highly feasible, substantially reducing resource wastage resulting from experimental trial and error, thereby promoting research on material preparation optimization.
Collapse
Affiliation(s)
- Gaoyang Xiong
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Haining Ji
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Yongxing Chen
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Bin Liu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Yi Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Peng Long
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Jinfang Zeng
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Jundong Tao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Cong Deng
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
14
|
Ding Y. Machine Learning Model Construction and Testing: Anticipating Cancer Incidence and Mortality. Diseases 2024; 12:139. [PMID: 39057110 PMCID: PMC11275333 DOI: 10.3390/diseases12070139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, the escalating environmental challenges have contributed to a rising incidence of cancer. The precise anticipation of cancer incidence and mortality rates has emerged as a pivotal focus in scientific inquiry, exerting a profound impact on the formulation of public health policies. This investigation adopts a pioneering machine learning framework to address this critical issue, utilizing a dataset encompassing 72,591 comprehensive records that include essential variables such as age, case count, population size, race, gender, site, and year of diagnosis. Diverse machine learning algorithms, including decision trees, random forests, logistic regression, support vector machines, and neural networks, were employed in this study. The ensuing analysis revealed testing accuracies of 62.17%, 61.92%, 54.53%, 55.72%, and 62.30% for the respective models. This state-of-the-art model not only enhances our understanding of cancer dynamics but also equips researchers and policymakers with the capability of making meticulous projections concerning forthcoming cancer incidence and mortality rates. Considering sustainability, the application of this advanced machine learning framework emphasizes the importance of judiciously utilizing extensive and intricate databases. By doing so, it facilitates a more sustainable approach to healthcare planning, allowing for informed decision-making that takes into account the long-term ecological and societal impacts of cancer-related policies. This integrative perspective underscores the broader commitment to sustainable practices in both health research and public policy formulation.
Collapse
Affiliation(s)
- Yuanzhao Ding
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
15
|
Boseley RE, Sylvain NJ, Peeling L, Kelly ME, Pushie MJ. A review of concepts and methods for FTIR imaging of biomarker changes in the post-stroke brain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184287. [PMID: 38266967 DOI: 10.1016/j.bbamem.2024.184287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.
Collapse
Affiliation(s)
- Rhiannon E Boseley
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Nicole J Sylvain
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Lissa Peeling
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Michael E Kelly
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
16
|
El Badisy I, BenBrahim Z, Khalis M, Elansari S, ElHitmi Y, Abbass F, Mellas N, El Rhazi K. Risk factors affecting patients survival with colorectal cancer in Morocco: survival analysis using an interpretable machine learning approach. Sci Rep 2024; 14:3556. [PMID: 38346963 PMCID: PMC10861582 DOI: 10.1038/s41598-024-51304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
The aim of our study was to assess the overall survival rates for colorectal cancer at 3 years and to identify associated strong prognostic factors among patients in Morocco through an interpretable machine learning approach. This approach is based on a fully non-parametric survival random forest (RSF), incorporating variable importance and partial dependence effects. The data was povided from a retrospective study of 343 patients diagnosed and followed at Hassan II University Hospital. Covariate selection was performed using the variable importance based on permutation and partial dependence plots were displayed to explore in depth the relationship between the estimated partial effect of a given predictor and survival rates. The predictive performance was measured by two metrics, the Concordance Index (C-index) and the Brier Score (BS). Overall survival rates at 1, 2 and 3 years were, respectively, 87% (SE = 0.02; CI-95% 0.84-0.91), 77% (SE = 0.02; CI-95% 0.73-0.82) and 60% (SE = 0.03; CI-95% 0.54-0.66). In the Cox model after adjustment for all covariates, sex, tumor differentiation had no significant effect on prognosis, but rather tumor site had a significant effect. The variable importance obtained from RSF strengthens that surgery, stage, insurance, residency, and age were the most important prognostic factors. The discriminative capacity of the Cox PH and RSF was, respectively, 0.771 and 0.798 for the C-index while the accuracy of the Cox PH and RSF was, respectively, 0.257 and 0.207 for the BS. This shows that RSF had both better discriminative capacity and predictive accuracy. Our results show that patients who are older than 70, living in rural areas, without health insurance, at a distant stage and who have not had surgery constitute a subgroup of patients with poor prognosis.
Collapse
Affiliation(s)
- Imad El Badisy
- Mohammed VI Center for Research and Innovation, Rabat, Morocco.
- International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Morocco.
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Aix Marseille Univ, Marseille, France.
| | - Zineb BenBrahim
- Faculty of Medicine, Pharmacy & Dental Medicine, Sidi Mohamed Ben Abdillah University, Fez, Morocco
| | - Mohamed Khalis
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Higher Institute of Nursing Professions and Technical Health, Rabat, Morocco
- Laboratory of Biostatistics, Clinical, and Epidemiological Research, Faculty of Medicine and Pharmacy, Department of Public Health, Mohamed V University, Rabat, Morocco
| | - Soukaina Elansari
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Youssef ElHitmi
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fouad Abbass
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine of Fez, Sidi Mohamed Ben Abdillah University, Fez, Morocco
| | - Nawfal Mellas
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Karima El Rhazi
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine of Fez, Sidi Mohamed Ben Abdillah University, Fez, Morocco
| |
Collapse
|
17
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
18
|
Rokhshad R, Mohammad-Rahimi H, Price JB, Shoorgashti R, Abbasiparashkouh Z, Esmaeili M, Sarfaraz B, Rokhshad A, Motamedian SR, Soltani P, Schwendicke F. Artificial intelligence for classification and detection of oral mucosa lesions on photographs: a systematic review and meta-analysis. Clin Oral Investig 2024; 28:88. [PMID: 38217733 DOI: 10.1007/s00784-023-05475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE This study aimed to review and synthesize studies using artificial intelligence (AI) for classifying, detecting, or segmenting oral mucosal lesions on photographs. MATERIALS AND METHOD Inclusion criteria were (1) studies employing AI to (2) classify, detect, or segment oral mucosa lesions, (3) on oral photographs of human subjects. Included studies were assessed for risk of bias using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A PubMed, Scopus, Embase, Web of Science, IEEE, arXiv, medRxiv, and grey literature (Google Scholar) search was conducted until June 2023, without language limitation. RESULTS After initial searching, 36 eligible studies (from 8734 identified records) were included. Based on QUADAS-2, only 7% of studies were at low risk of bias for all domains. Studies employed different AI models and reported a wide range of outcomes and metrics. The accuracy of AI for detecting oral mucosal lesions ranged from 74 to 100%, while that for clinicians un-aided by AI ranged from 61 to 98%. Pooled diagnostic odds ratio for studies which evaluated AI for diagnosing or discriminating potentially malignant lesions was 155 (95% confidence interval 23-1019), while that for cancerous lesions was 114 (59-221). CONCLUSIONS AI may assist in oral mucosa lesion screening while the expected accuracy gains or further health benefits remain unclear so far. CLINICAL RELEVANCE Artificial intelligence assists oral mucosa lesion screening and may foster more targeted testing and referral in the hands of non-specialist providers, for example. So far, it remains unclear if accuracy gains compared with specialized can be realized.
Collapse
Affiliation(s)
- Rata Rokhshad
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI On Health, Berlin, Germany
| | - Hossein Mohammad-Rahimi
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI On Health, Berlin, Germany
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, Postal Code: 1983963113, Iran
| | - Jeffery B Price
- Department of Oncology and Diagnostic Sciences, University of Maryland, School of Dentistry, Baltimore, Maryland 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Reyhaneh Shoorgashti
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, 9Th Neyestan, Pasdaran, Tehran, Iran
| | | | - Mahdieh Esmaeili
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, 9Th Neyestan, Pasdaran, Tehran, Iran
| | - Bita Sarfaraz
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, Postal Code: 1983963113, Iran
| | - Arad Rokhshad
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, 9Th Neyestan, Pasdaran, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences & Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, Postal Code: 1983963113, Iran.
| | - Parisa Soltani
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Salamat Blv, Isfahan Dental School, Isfahan, Iran
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Nepales, Italy
| | - Falk Schwendicke
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI On Health, Berlin, Germany
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany
| |
Collapse
|
19
|
Amin A, Cardoso SA, Suyambu J, Abdus Saboor H, Cardoso RP, Husnain A, Isaac NV, Backing H, Mehmood D, Mehmood M, Maslamani ANJ. Future of Artificial Intelligence in Surgery: A Narrative Review. Cureus 2024; 16:e51631. [PMID: 38318552 PMCID: PMC10839429 DOI: 10.7759/cureus.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Artificial intelligence (AI) is the capability of a machine to execute cognitive processes that are typically considered to be functions of the human brain. It is the study of algorithms that enable machines to reason and perform mental tasks, including problem-solving, object and word recognition, and decision-making. Once considered science fiction, AI today is a fact and an increasingly prevalent subject in both academic and popular literature. It is expected to reshape medicine, benefiting both healthcare professionals and patients. Machine learning (ML) is a subset of AI that allows machines to learn and make predictions by recognizing patterns, thus empowering the medical team to deliver better care to patients through accurate diagnosis and treatment. ML is expanding its footprint in a variety of surgical specialties, including general surgery, ophthalmology, cardiothoracic surgery, and vascular surgery, to name a few. In recent years, we have seen AI make its way into the operating theatres. Though it has not yet been able to replace the surgeon, it has the potential to become a highly valuable surgical tool. Rest assured that the day is not far off when AI shall play a significant intraoperative role, a projection that is currently marred by safety concerns. This review aims to explore the present application of AI in various surgical disciplines and how it benefits both patients and physicians, as well as the current obstacles and limitations facing its seemingly unstoppable rise.
Collapse
Affiliation(s)
- Aamir Amin
- Cardiothoracic Surgery, Harefield Hospital, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Swizel Ann Cardoso
- Major Trauma Services, University Hospital Birmingham NHS Foundation Trust DC, Birmingham, GBR
| | - Jenisha Suyambu
- Medicine, University of Perpetual Help System Data - Jonelta Foundation School of Medicine, Las Piñas, PHL
| | | | - Rayner P Cardoso
- Medicine and Surgery, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Ali Husnain
- Radiology, Northwestern University, Lahore, PAK
| | - Natasha Varghese Isaac
- Medicine and Surgery, St John's Medical College Hospital, Rajiv Gandhi University of Health Sciences, Bengaluru, IND
| | - Haydee Backing
- Medicine, Universidad de San Martin de Porres, Lima, PER
| | - Dalia Mehmood
- Community Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Maria Mehmood
- Internal Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | | |
Collapse
|
20
|
Forestieri M, Napolitano A, Tomà P, Bascetta S, Cirillo M, Tagliente E, Fracassi D, D’Angelo P, Casazza I. Machine Learning Algorithm: Texture Analysis in CNO and Application in Distinguishing CNO and Bone Marrow Growth-Related Changes on Whole-Body MRI. Diagnostics (Basel) 2023; 14:61. [PMID: 38201370 PMCID: PMC10804385 DOI: 10.3390/diagnostics14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE The purpose of this study is to analyze the texture characteristics of chronic non-bacterial osteomyelitis (CNO) bone lesions, identified as areas of altered signal intensity on short tau inversion recovery (STIR) sequences, and to distinguish them from bone marrow growth-related changes through Machine Learning (ML) and Deep Learning (DL) analysis. MATERIALS AND METHODS We included a group of 66 patients with confirmed diagnosis of CNO and a group of 28 patients with suspected extra-skeletal systemic disease. All examinations were performed on a 1.5 T MRI scanner. Using the opensource 3D Slicer software version 4.10.2, the ROIs on CNO lesions and on the red bone marrow were sampled. Texture analysis (TA) was carried out using Pyradiomics. We applied an optimization search grid algorithm on nine classic ML classifiers and a Deep Learning (DL) Neural Network (NN). The model's performance was evaluated using Accuracy (ACC), AUC-ROC curves, F1-score, Positive Predictive Value (PPV), Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE). Furthermore, we used Shapley additive explanations to gain insight into the behavior of the prediction model. RESULTS Most predictive characteristics were selected by Boruta algorithm for each combination of ROI sequences for the characterization and classification of the two types of signal hyperintensity. The overall best classification result was obtained by the NN with ACC = 0.91, AUC = 0.93 with 95% CI 0.91-0.94, F1-score = 0.94 and PPV = 93.8%. Between classic ML methods, ensemble learners showed high model performance; specifically, the best-performing classifier was the Stack (ST) with ACC = 0.85, AUC = 0.81 with 95% CI 0.8-0.84, F1-score = 0.9, PPV = 90%. CONCLUSIONS Our results show the potential of ML methods in discerning edema-like lesions, in particular by distinguishing CNO lesions from hematopoietic bone marrow changes in a pediatric population. The Neural Network showed the overall best results, while a Stacking classifier, based on Gradient Boosting and Random Forest as principal estimators and Logistic Regressor as final estimator, achieved the best results between the other ML methods.
Collapse
Affiliation(s)
- Marta Forestieri
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.T.); (S.B.); (P.D.); (I.C.)
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.N.); (E.T.); (D.F.)
| | - Paolo Tomà
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.T.); (S.B.); (P.D.); (I.C.)
| | - Stefano Bascetta
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.T.); (S.B.); (P.D.); (I.C.)
| | - Marco Cirillo
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.T.); (S.B.); (P.D.); (I.C.)
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.N.); (E.T.); (D.F.)
| | - Donatella Fracassi
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.N.); (E.T.); (D.F.)
| | - Paola D’Angelo
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.T.); (S.B.); (P.D.); (I.C.)
| | - Ines Casazza
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.T.); (S.B.); (P.D.); (I.C.)
| |
Collapse
|
21
|
Kamp M, Achilonu O, Kisiangani I, Nderitu DM, Mpangase PT, Tadesse GA, Adetunji K, Iddi S, Speakman S, Hazelhurst S, Asiki G, Ramsay M. Multimorbidity in African ancestry populations: a scoping review. BMJ Glob Health 2023; 8:e013509. [PMID: 38084495 PMCID: PMC10711865 DOI: 10.1136/bmjgh-2023-013509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVES Multimorbidity (MM) is a growing concern linked to poor outcomes and higher healthcare costs. While most MM research targets European ancestry populations, the prevalence and patterns in African ancestry groups remain underexplored. This study aimed to identify and summarise the available literature on MM in populations with African ancestry, on the continent, and in the diaspora. DESIGN A scoping review was conducted in five databases (PubMed, Web of Science, Scopus, Science Direct and JSTOR) in July 2022. Studies were selected based on predefined criteria, with data extraction focusing on methodology and findings. Descriptive statistics summarised the data, and a narrative synthesis highlighted key themes. RESULTS Of the 232 publications on MM in African-ancestry groups from 2010 to June 2022-113 examined continental African populations, 100 the diaspora and 19 both. Findings revealed diverse MM patterns within and beyond continental Africa. Cardiovascular and metabolic diseases are predominant in both groups (80% continental and 70% diaspora). Infectious diseases featured more in continental studies (58% continental and 16% diaspora). Although many papers did not specifically address these features, as in previous studies, older age, being women and having a lower socioeconomic status were associated with a higher prevalence of MM, with important exceptions. Research gaps identified included limited data on African-ancestry individuals, inadequate representation, under-represented disease groups, non-standardised methodologies, the need for innovative data strategies, and insufficient translational research. CONCLUSION The growing global MM prevalence is mirrored in African-ancestry populations. Recognising the unique contexts of African-ancestry populations is essential when addressing the burden of MM. This review emphasises the need for additional research to guide and enhance healthcare approaches for African-ancestry populations, regardless of their geographic location.
Collapse
Affiliation(s)
- Michelle Kamp
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Okechinyere Achilonu
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Isaac Kisiangani
- African Population and Health Research Center (APHRC), APHRC Campus, Nairobi, Kenya
| | - Daniel Maina Nderitu
- African Population and Health Research Center (APHRC), APHRC Campus, Nairobi, Kenya
| | - Phelelani Thokozani Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Kayode Adetunji
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samuel Iddi
- African Population and Health Research Center (APHRC), APHRC Campus, Nairobi, Kenya
| | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
| | - Gershim Asiki
- African Population and Health Research Center (APHRC), APHRC Campus, Nairobi, Kenya
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Michèle Ramsay
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Bezbochina A, Stavinova E, Kovantsev A, Chunaev P. Enhancing Predictability Assessment: An Overview and Analysis of Predictability Measures for Time Series and Network Links. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1542. [PMID: 37998234 PMCID: PMC10670407 DOI: 10.3390/e25111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Driven by the variety of available measures intended to estimate predictability of diverse objects such as time series and network links, this paper presents a comprehensive overview of the existing literature in this domain. Our overview delves into predictability from two distinct perspectives: the intrinsic predictability, which represents a data property independent of the chosen forecasting model and serves as the highest achievable forecasting quality level, and the realized predictability, which represents a chosen quality metric for a specific pair of data and model. The reviewed measures are used to assess predictability across different objects, starting from time series (univariate, multivariate, and categorical) to network links. Through experiments, we establish a noticeable relationship between measures of realized and intrinsic predictability in both generated and real-world time series data (with the correlation coefficient being statistically significant at a 5% significance level). The discovered correlation in this research holds significant value for tasks related to evaluating time series complexity and their potential to be accurately predicted.
Collapse
Affiliation(s)
| | - Elizaveta Stavinova
- National Center for Cognitive Research, ITMO University, 16 Birzhevaya Lane, Saint Petersburg 199034, Russia; (A.B.); (A.K.); (P.C.)
| | | | | |
Collapse
|
23
|
Lee TF, Lee SH, Tseng CD, Lin CH, Chiu CM, Lin GZ, Yang J, Chang L, Chiu YH, Su CT, Yeh SA. Using machine learning algorithm to analyse the hypothyroidism complications caused by radiotherapy in patients with head and neck cancer. Sci Rep 2023; 13:19185. [PMID: 37932394 PMCID: PMC10628223 DOI: 10.1038/s41598-023-46509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Machine learning algorithms were used to analyze the odds and predictors of complications of thyroid damage after radiation therapy in patients with head and neck cancer. This study used decision tree (DT), random forest (RF), and support vector machine (SVM) algorithms to evaluate predictors for the data of 137 head and neck cancer patients. Candidate factors included gender, age, thyroid volume, minimum dose, average dose, maximum dose, number of treatments, and relative volume of the organ receiving X dose (X: 10, 20, 30, 40, 50, 60 Gy). The algorithm was optimized according to these factors and tenfold cross-validation to analyze the state of thyroid damage and select the predictors of thyroid dysfunction. The importance of the predictors identified by the three machine learning algorithms was ranked: the top five predictors were age, thyroid volume, average dose, V50 and V60. Of these, age and volume were negatively correlated with thyroid damage, indicating that the greater the age and thyroid volume, the lower the risk of thyroid damage; the average dose, V50 and V60 were positively correlated with thyroid damage, indicating that the larger the average dose, V50 and V60, the higher the risk of thyroid damage. The RF algorithm was most accurate in predicting the probability of thyroid damage among the three algorithms optimized using the above factors. The Area under the receiver operating characteristic curve (AUC) was 0.827 and the accuracy (ACC) was 0.824. This study found that five predictors (age, thyroid volume, mean dose, V50 and V60) are important factors affecting the chance that patients with head and neck cancer who received radiation therapy will develop hypothyroidism. Using these factors as the prediction basis of the algorithm and using RF to predict the occurrence of hypothyroidism had the highest ACC, which was 82.4%. This algorithm is quite helpful in predicting the probability of radiotherapy complications. It also provides references for assisting medical decision-making in the future.
Collapse
Affiliation(s)
- Tsair-Fwu Lee
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shen-Hao Lee
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Chin-Dar Tseng
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
| | - Chih-Hsueh Lin
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Min Chiu
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Guang-Zhi Lin
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Tactical Control Air Traffic Control & Meteorology, Air Force Institute of Technology, Kaohsiung, 82047, Taiwan
| | - Jack Yang
- Department of Radiation Oncology, RWJ Medical School, Long Branch, NJ, USA
- Department of Radiation Oncology, Monmouth Medical Center, RWJBH Medical School, Long Branch, NJ, USA
| | - Liyun Chang
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yu-Hao Chiu
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Chun-Ting Su
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Radiation Oncology, E-DA Hospital, Kaohsiung, 82445, Taiwan
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, 82445, Taiwan.
- Department of Radiation Oncology, E-DA Hospital, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
24
|
Ma X, Pierce E, Anand H, Aviles N, Kunk P, Alemazkoor N. Early prediction of response to palliative chemotherapy in patients with stage-IV gastric and esophageal cancer. BMC Cancer 2023; 23:910. [PMID: 37759332 PMCID: PMC10536729 DOI: 10.1186/s12885-023-11422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The goal of therapy for many patients with advanced stage malignancies, including those with metastatic gastric and esophageal cancers, is to extend overall survival while also maintaining quality of life. After weighing the risks and benefits of treatment with palliative chemotherapy (PC) with non-curative intent, many patients decide to pursue treatment. It is known that a subset of patients who are treated with PC experience significant side effects without clinically significant survival benefits from PC. METHODS We use data from 150 patients with stage-IV gastric and esophageal cancers to train machine learning models that predict whether a patient with stage-IV gastric or esophageal cancers would benefit from PC, in terms of increased survival duration, at very early stages of the treatment. RESULTS Our findings show that machine learning can predict with high accuracy whether a patient will benefit from PC at the time of diagnosis. More accurate predictions can be obtained after only two cycles of PC (i.e., about 4 weeks after diagnosis). The results from this study are promising with regard to potential improvements in quality of life for patients near the end of life and a potential overall survival benefit by optimizing systemic therapy earlier in the treatment course of patients.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- Department of Statistics, University of Virginia, Charlottesville, USA
| | - Eric Pierce
- School of Medicine, University of Virginia, Charlottesville, USA
| | - Harsh Anand
- System and Information Engineering, University of Virginia, Charlottesville, USA
| | - Natalie Aviles
- Department of Sociology, University of Virginia, Charlottesville, USA
| | - Paul Kunk
- School of Medicine, University of Virginia, Charlottesville, USA
| | - Negin Alemazkoor
- System and Information Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
25
|
Zhang S, Li X, Zheng Y, Liu J, Hu H, Zhang S, Kuang W. Single cell and bulk transcriptome analysis identified oxidative stress response-related features of Hepatocellular Carcinoma. Front Cell Dev Biol 2023; 11:1191074. [PMID: 37842089 PMCID: PMC10568628 DOI: 10.3389/fcell.2023.1191074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Hepatocellular Carcinoma (HCC) is a common lethal digestive system tumor. The oxidative stress mechanism is crucial in the HCC genesis and progression. Methods: Our study analyzed single-cell and bulk sequencing data to compare the microenvironment of non-tumor liver tissues and HCC tissues. Through these analyses, we aimed to investigate the effect of oxidative stress on cells in the HCC microenvironment and identify critical oxidative stress response-related genes that impact the survival of HCC patients. Results: Our results showed increased oxidative stress in HCC tissue compared to non-tumor tissue. Immune cells in the HCC microenvironment exhibited higher oxidative detoxification capacity, and oxidative stress-induced cell death of dendritic cells was attenuated. HCC cells demonstrated enhanced communication with immune cells through the MIF pathway in a highly oxidative hepatoma microenvironment. Meanwhile, using machine learning and Cox regression screening, we identified PRDX1 as a predictor of early occurrence and prognosis in patients with HCC. The expression level of PRDX1 in HCC was related to dysregulated ribosome biogenesis and positively correlated with the expression of immunological checkpoints (PDCD1LG2, CTLA4, TIGIT, LAIR1). High PRDX1 expression in HCC patients correlated with better sensitivity to immunotherapy agents such as sorafenib, IGF-1R inhibitor, and JAK inhibitor. Conclusion: In conclusion, our study unveiled variations in oxidative stress levels between non-tumor liver and HCC tissues. And we identified oxidative stress gene markers associated with hepatocarcinogenesis development, offering novel insights into the oxidative stress response mechanism in HCC.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yilu Zheng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Hu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Chronic Inflammatory Diseases, School of Pharmacy, The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
26
|
Hakimjavadi R, Lu J, Yam Y, Dwivedi G, Small GR, Chow BJW. Pre-screening for non-diagnostic coronary computed tomography angiography. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2023; 1:qyad026. [PMID: 39045062 PMCID: PMC11195707 DOI: 10.1093/ehjimp/qyad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 07/25/2024]
Abstract
Aims Indiscriminate coronary computed tomography angiography (CCTA) referrals for suspected coronary artery disease could result in a higher rate of equivocal and non-diagnostic studies, leading to inappropriate downstream resource utilization or delayed time to diagnosis. We sought to develop a simple clinical tool for predicting the likelihood of a non-diagnostic CCTA to help identify patients who might be better served with a different test. Methods and results We developed a clinical scoring system from a cohort of 21 492 consecutive patients who underwent CCTA between February 2006 and May 2021. Coronary computed tomography angiography study results were categorized as normal, abnormal, or non-diagnostic. Multivariable logistic regression analysis was conducted to produce a model that predicted the likelihood of a non-diagnostic test. Machine learning (ML) models were utilized to validate the predictor selection and prediction performance. Both logistic regression and ML models achieved fair discriminate ability with an area under the curve of 0.630 [95% confidence interval (CI) 0.618-0.641] and 0.634 (95% CI 0.612-0.656), respectively. The presence of a cardiac implant and weight >100 kg were among the most influential predictors of a non-diagnostic study. Conclusion We developed a model that could be implemented at the 'point-of-scheduling' to identify patients who would be best served by another non-invasive diagnostic test.
Collapse
Affiliation(s)
- Ramtin Hakimjavadi
- Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| | - Juan Lu
- Department of Medicine, The University of Western Australia, 35 Stirling Highway, CRAWLEY Western Australia 6009, Australia
- Department of Computer Science and Software Engineering, The University of Western Australia, 35 Stirling Highway, CRAWLEY Western Australia 6009, Australia
- Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands Western Australia 6009, Australia
| | - Yeung Yam
- Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| | - Girish Dwivedi
- Department of Medicine, The University of Western Australia, 35 Stirling Highway, CRAWLEY Western Australia 6009, Australia
- Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands Western Australia 6009, Australia
- Department of Medicine, Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Western Australia 6150, Australia
| | - Gary R Small
- Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| | - Benjamin J W Chow
- Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
- Department of Radiology, University of Ottawa, 451 Smyth Rd, Ottawa ON K1H 8M5, Canada
| |
Collapse
|
27
|
Ruiz-Fresneda MA, Gijón A, Morales-Álvarez P. Bibliometric analysis of the global scientific production on machine learning applied to different cancer types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96125-96137. [PMID: 37566331 PMCID: PMC10482761 DOI: 10.1007/s11356-023-28576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cancer disease is one of the main causes of death in the world, with million annual cases in the last decades. The need to find a cure has stimulated the search for efficient treatments and diagnostic procedures. One of the most promising tools that has emerged against cancer in recent years is machine learning (ML), which has raised a huge number of scientific papers published in a relatively short period of time. The present study analyzes global scientific production on ML applied to the most relevant cancer types through various bibliometric indicators. We find that over 30,000 studies have been published so far and observe that cancers with the highest number of published studies using ML (breast, lung, and colon cancer) are those with the highest incidence, being the USA and China the main scientific producers on the subject. Interestingly, the role of China and Japan in stomach cancer is correlated with the number of cases of this cancer type in Asia (78% of the worldwide cases). Knowing the countries and institutions that most study each area can be of great help for improving international collaborations between research groups and countries. Our analysis shows that medical and computer science journals lead the number of publications on the subject and could be useful for researchers in the field. Finally, keyword co-occurrence analysis suggests that ML-cancer research trends are focused not only on the use of ML as an effective diagnostic method, but also for the improvement of radiotherapy- and chemotherapy-based treatments.
Collapse
Affiliation(s)
| | - Alfonso Gijón
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Pablo Morales-Álvarez
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Pham TD. Prediction of Five-Year Survival Rate for Rectal Cancer Using Markov Models of Convolutional Features of RhoB Expression on Tissue Microarray. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3195-3204. [PMID: 37155403 DOI: 10.1109/tcbb.2023.3274211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The ability to predict survival in cancer is clinically important because the finding can help patients and physicians make optimal treatment decisions. Artificial intelligence in the context of deep learning has been increasingly realized by the informatics-oriented medical community as a powerful machine-learning technology for cancer research, diagnosis, prediction, and treatment. This paper presents the combination of deep learning, data coding, and probabilistic modeling for predicting five-year survival in a cohort of patients with rectal cancer using images of RhoB expression on biopsies. Using about one-third of the patients' data for testing, the proposed approach achieved 90% prediction accuracy, which is much higher than the direct use of the best pretrained convolutional neural network (70%) and the best coupling of a pretrained model and support vector machines (70%).
Collapse
|
29
|
Ogundokun RO, Li A, Babatunde RS, Umezuruike C, Sadiku PO, Abdulahi AT, Babatunde AN. Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models. Bioengineering (Basel) 2023; 10:979. [PMID: 37627864 PMCID: PMC10451641 DOI: 10.3390/bioengineering10080979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most promising research initiatives in the healthcare field is focused on the rising incidence of skin cancer worldwide and improving early discovery methods for the disease. The most significant factor in the fatalities caused by skin cancer is the late identification of the disease. The likelihood of human survival may be significantly improved by performing an early diagnosis followed by appropriate therapy. It is not a simple process to extract the elements from the photographs of the tumors that may be used for the prospective identification of skin cancer. Several deep learning models are widely used to extract efficient features for a skin cancer diagnosis; nevertheless, the literature demonstrates that there is still room for additional improvements in various performance metrics. This study proposes a hybrid deep convolutional neural network architecture for identifying skin cancer by adding two main heuristics. These include Xception and MobileNetV2 models. Data augmentation was introduced to balance the dataset, and the transfer learning technique was utilized to resolve the challenges of the absence of labeled datasets. It has been detected that the suggested method of employing Xception in conjunction with MobileNetV2 attains the most excellent performance, particularly concerning the dataset that was evaluated: specifically, it produced 97.56% accuracy, 97.00% area under the curve, 100% sensitivity, 93.33% precision, 96.55% F1 score, and 0.0370 false favorable rates. This research has implications for clinical practice and public health, offering a valuable tool for dermatologists and healthcare professionals in their fight against skin cancer.
Collapse
Affiliation(s)
- Roseline Oluwaseun Ogundokun
- Department of Computer Science, Landmark University, Omu Aran 251103, Nigeria
- Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Aiman Li
- School of Marxism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | | | | | - Peter O. Sadiku
- Department of Computer Science, University of Ilorin, Ilorin 240003, Nigeria
| | | | | |
Collapse
|
30
|
Pan X, Feng T, Liu C, Savjani RR, Chin RK, Sharon Qi X. A survival prediction model via interpretable machine learning for patients with oropharyngeal cancer following radiotherapy. J Cancer Res Clin Oncol 2023; 149:6813-6825. [PMID: 36807760 DOI: 10.1007/s00432-023-04644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE To explore interpretable machine learning (ML) methods, with the hope of adding more prognosis value, for predicting survival for patients with Oropharyngeal-Cancer (OPC). METHODS A cohort of 427 OPC patients (Training 341, Test 86) from TCIA database was analyzed. Radiomic features of gross-tumor-volume (GTV) extracted from planning CT using Pyradiomics, and HPV p16 status, etc. patient characteristics were considered as potential predictors. A multi-level dimension reduction algorithm consisting of Least-Absolute-Selection-Operator (Lasso) and Sequential-Floating-Backward-Selection (SFBS) was proposed to effectively remove redundant/irrelevant features. The interpretable model was constructed by quantifying the contribution of each feature to the Extreme-Gradient-Boosting (XGBoost) decision by Shapley-Additive-exPlanations (SHAP) algorithm. RESULTS The Lasso-SFBS algorithm proposed in this study finally selected 14 features, and our prediction model achieved an area-under-ROC-curve (AUC) of 0.85 on the test dataset based on this feature set. The ranking of the contribution values calculated by SHAP shows that the top predictors that were most correlated with survival were ECOG performance status, wavelet-LLH_firstorder_Mean, chemotherapy, wavelet-LHL_glcm_InverseVariance, tumor size. Those patients who had chemotherapy, with positive HPV p16 status, and lower ECOG performance status, tended to have higher SHAP scores and longer survival; who had an older age at diagnosis, heavy drinking and smoking pack year history, tended to lower SHAP scores and shorter survival. CONCLUSION We demonstrated predictive values of combined patient characteristics and imaging features for the overall survival of OPC patients. The multi-level dimension reduction algorithm can reliably identify the most plausible predictors that are mostly associated with overall survival. The interpretable patient-specific survival prediction model, capturing correlations of each predictor and clinical outcome, was developed to facilitate clinical decision-making for personalized treatment.
Collapse
Affiliation(s)
- Xiaoying Pan
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Tianhao Feng
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Chen Liu
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Ricky R Savjani
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert K Chin
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - X Sharon Qi
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
31
|
Al-Zahrani FA, Abdulrazak LF, Ali MM, Islam MN, Ahmed K. StackDPP: Stacking-Based Explainable Classifier for Depression Prediction and Finding the Risk Factors among Clinicians. Bioengineering (Basel) 2023; 10:858. [PMID: 37508885 PMCID: PMC10376085 DOI: 10.3390/bioengineering10070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Mental health is a major concern for all classes of people, but especially physicians in the present world. A challenging task is to identify the significant risk factors that are responsible for depression among physicians. To address this issue, the study aimed to build a machine learning-based predictive model that will be capable of predicting depression levels and finding associated risk factors. A raw dataset was collected to conduct this study and preprocessed as necessary. Then, the dataset was divided into 10 sub-datasets to determine the best possible set of attributes to predict depression. Seven different classification algorithms, KNN, DT, LGBM, GB, RF, ETC, and StackDPP, were applied to all the sub-datasets. StackDPP is a stacking-based ensemble classifier, which is proposed in this study. It was found that StackDPP outperformed on all the datasets. The findings indicate that the StackDPP with the sub-dataset with all the attributes gained the highest accuracy (0.962581), and the top 20 attributes were enough to gain 0.96129 accuracy by StackDPP, which was close to the performance of the dataset with all the attributes. In addition, risk factors were analyzed in this study to reveal the most significant risk factors that are responsible for depression among physicians. The findings of the study indicate that the proposed model is highly capable of predicting the level of depression, along with finding the most significant risk factors. The study will enable mental health professionals and psychiatrists to decide on treatment and therapy for physicians by analyzing the depression level and finding the most significant risk factors.
Collapse
Affiliation(s)
| | | | - Md Mamun Ali
- Department of Software Engineering (SWE), Daffodil International University (DIU), Sukrabad, Dhaka 1207, Bangladesh
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Md Nazrul Islam
- Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Group of Biophotomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| |
Collapse
|
32
|
Duan M, Wang Y, Zhao D, Liu H, Zhang G, Li K, Zhang H, Huang L, Zhang R, Zhou F. Orchestrating information across tissues via a novel multitask GAT framework to improve quantitative gene regulation relation modeling for survival analysis. Brief Bioinform 2023; 24:bbad238. [PMID: 37427963 DOI: 10.1093/bib/bbad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Survival analysis is critical to cancer prognosis estimation. High-throughput technologies facilitate the increase in the dimension of genic features, but the number of clinical samples in cohorts is relatively small due to various reasons, including difficulties in participant recruitment and high data-generation costs. Transcriptome is one of the most abundantly available OMIC (referring to the high-throughput data, including genomic, transcriptomic, proteomic and epigenomic) data types. This study introduced a multitask graph attention network (GAT) framework DQSurv for the survival analysis task. We first used a large dataset of healthy tissue samples to pretrain the GAT-based HealthModel for the quantitative measurement of the gene regulatory relations. The multitask survival analysis framework DQSurv used the idea of transfer learning to initiate the GAT model with the pretrained HealthModel and further fine-tuned this model using two tasks i.e. the main task of survival analysis and the auxiliary task of gene expression prediction. This refined GAT was denoted as DiseaseModel. We fused the original transcriptomic features with the difference vector between the latent features encoded by the HealthModel and DiseaseModel for the final task of survival analysis. The proposed DQSurv model stably outperformed the existing models for the survival analysis of 10 benchmark cancer types and an independent dataset. The ablation study also supported the necessity of the main modules. We released the codes and the pretrained HealthModel to facilitate the feature encodings and survival analysis of transcriptome-based future studies, especially on small datasets. The model and the code are available at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Meiyu Duan
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 130012
| | - Yueying Wang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 130012
| | - Dong Zhao
- School of Biology and Engineering, and Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hongmei Liu
- School of Biology and Engineering, and Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| | - Gongyou Zhang
- School of Biology and Engineering, and Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Kewei Li
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 130012
| | - Haotian Zhang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 130012
| | - Lan Huang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 130012
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| | - Ruochi Zhang
- School of Artificial Intelligence, Jilin University, Changchun, China, 130012
| | - Fengfeng Zhou
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 130012
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
33
|
Sinnarasan VSP, Paul D, Das R, Venkatesan A. Gastric Cancer Biomarker Candidates Identified by Machine Learning and Integrative Bioinformatics: Toward Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37229622 DOI: 10.1089/omi.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gastric cancer (GC) is among the leading causes of cancer-related deaths worldwide. The discovery of robust diagnostic biomarkers for GC remains a challenge. This study sought to identify biomarker candidates for GC by integrating machine learning (ML) and bioinformatics approaches. Transcriptome profiles of patients with GC were analyzed to identify differentially expressed genes between the tumor and adjacent normal tissues. Subsequently, we constructed protein-protein interaction networks so as to find the significant hub genes. Along with the bioinformatics integration of ML methods such as support vector machine, the recursive feature elimination was used to select the most informative genes. The analysis unraveled 160 significant genes, with 88 upregulated and 72 downregulated, 10 hub genes, and 12 features from the variable selection method. The integrated analyses found that EXO1, DTL, KIF14, and TRIP13 genes are significant and poised as potential diagnostic biomarkers in relation to GC. The receiver operating characteristic curve analysis found KIF14 and TRIP13 are strongly associated with diagnosis of GC. We suggest KIF14 and TRIP13 are considered as biomarker candidates that might potentially inform future research on diagnosis, prognosis, or therapeutic targets for GC. These findings collectively offer new future possibilities for precision/personalized medicine research and development for patients with GC.
Collapse
Affiliation(s)
| | - Dahrii Paul
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajesh Das
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Amouda Venkatesan
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
34
|
Jha AK, Mithun S, Sherkhane UB, Jaiswar V, Osong B, Purandare N, Kannan S, Prabhash K, Gupta S, Vanneste B, Rangarajan V, Dekker A, Wee L. Systematic review and meta-analysis of prediction models used in cervical cancer. Artif Intell Med 2023; 139:102549. [PMID: 37100501 DOI: 10.1016/j.artmed.2023.102549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 11/18/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Cervical cancer is one of the most common cancers in women with an incidence of around 6.5 % of all the cancer in women worldwide. Early detection and adequate treatment according to staging improve the patient's life expectancy. Outcome prediction models might aid treatment decisions, but a systematic review on prediction models for cervical cancer patients is not available. DESIGN We performed a systematic review for prediction models in cervical cancer following PRISMA guidelines. Key features that were used for model training and validation, the endpoints were extracted from the article and data were analyzed. Selected articles were grouped based on prediction endpoints i.e. Group1: Overall survival, Group2: progression-free survival; Group3: recurrence or distant metastasis; Group4: treatment response; Group5: toxicity or quality of life. We developed a scoring system to evaluate the manuscript. As per our criteria, studies were divided into four groups based on scores obtained in our scoring system, the Most significant study (Score > 60 %); Significant study (60 % > Score > 50 %); Moderately Significant study (50 % > Score > 40 %); least significant study (score < 40 %). A meta-analysis was performed for all the groups separately. RESULTS The first line of search selected 1358 articles and finally 39 articles were selected as eligible for inclusion in the review. As per our assessment criteria, 16, 13 and 10 studies were found to be the most significant, significant and moderately significant respectively. The intra-group pooled correlation coefficient for Group1, Group2, Group3, Group4, and Group5 were 0.76 [0.72, 0.79], 0.80 [0.73, 0.86], 0.87 [0.83, 0.90], 0.85 [0.77, 0.90], 0.88 [0.85, 0.90] respectively. All the models were found to be good (prediction accuracy [c-index/AUC/R2] >0.7) in endpoint prediction. CONCLUSIONS Prediction models of cervical cancer toxicity, local or distant recurrence and survival prediction show promising results with reasonable prediction accuracy [c-index/AUC/R2 > 0.7]. These models should also be validated on external data and evaluated in prospective clinical studies.
Collapse
Affiliation(s)
- Ashish Kumar Jha
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Sneha Mithun
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Umeshkumar B Sherkhane
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Vinay Jaiswar
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Biche Osong
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Nilendu Purandare
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sadhana Kannan
- Homi Bhabha National Institute, Mumbai, Maharashtra, India; Advance Centre for Treatment, Research, Education in Cancer, Mumbai, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India; Advance Centre for Treatment, Research, Education in Cancer, Mumbai, Maharashtra, India
| | - Ben Vanneste
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai, Maharashtra, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
35
|
Liu Y, Lyu X, Yang B, Fang Z, Hu D, Shi L, Wu B, Tian Y, Zhang E, Yang Y. Early Triage of Critically Ill Adult Patients With Mushroom Poisoning: Machine Learning Approach. JMIR Form Res 2023; 7:e44666. [PMID: 36943366 PMCID: PMC10131621 DOI: 10.2196/44666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data. OBJECTIVE The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies. METHODS In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations. RESULTS Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73). CONCLUSIONS The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Xiaoguang Lyu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Internal Medicine, Renmin Hospital of Xianfeng, Enshi, China
| | - Zhixiang Fang
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Dejun Hu
- Department of Internal Medicine, Renmin Hospital of Xianfeng, Enshi, China
| | - Lei Shi
- Department of Nephrology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Bisheng Wu
- Department of General Surgery, Renmin Hospital of Xianfeng, Enshi, China
| | - Yong Tian
- Department of Internal Medicine, Renmin Hospital of Laifeng, Enshi, China
| | - Enli Zhang
- Department of General Surgery, Central Hospital of Hefeng, Enshi, China
| | - YuanChao Yang
- Department of Gastroenterology, Renmin Hospital of Xuanen, Enshi, China
| |
Collapse
|
36
|
Xu C, Subbiah IM, Lu SC, Pfob A, Sidey-Gibbons C. Machine learning models for 180-day mortality prediction of patients with advanced cancer using patient-reported symptom data. Qual Life Res 2023; 32:713-727. [PMID: 36308591 PMCID: PMC9992030 DOI: 10.1007/s11136-022-03284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The objective of the current study was to develop and test the performances of different ML algorithms which were trained using patient-reported symptom severity data to predict mortality within 180 days for patients with advanced cancer. METHODS We randomly selected 630 of 689 patients with advanced cancer at our institution who completed symptom PRO measures as part of routine care between 2009 and 2020. Using clinical, demographic, and PRO data, we trained and tested four ML algorithms: generalized regression with elastic net regularization (GLM), extreme gradient boosting (XGBoost) trees, support vector machines (SVM), and a single hidden layer neural network (NNET). We assessed the performance of algorithms individually as well as part of an unweighted voting ensemble on the hold-out testing sample. Performance was assessed using area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS The starting cohort of 630 patients was randomly partitioned into training (n = 504) and testing (n = 126) samples. Of the four ML models, the XGBoost algorithm demonstrated the best performance for 180-day mortality prediction in testing data (AUROC = 0.69, sensitivity = 0.68, specificity = 0.62, PPV = 0.66, NPV = 0.64). Ensemble of all algorithms performed worst (AUROC = 0.65, sensitivity = 0.65, specificity = 0.62, PPV = 0.65, NPV = 0.62). Of individual PRO symptoms, shortness of breath emerged as the variable of highest impact on the XGBoost 180-mortality prediction (1-AUROC = 0.30). CONCLUSION Our findings support ML models driven by patient-reported symptom severity as accurate predictors of short-term mortality in patients with advanced cancer, highlighting the opportunity to integrate these models prospectively into future studies of goal-concordant care.
Collapse
Affiliation(s)
- Cai Xu
- MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Patient-Centered Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ishwaria M Subbiah
- Department of Palliative, Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheng-Chieh Lu
- MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Patient-Centered Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - André Pfob
- MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Obstetrics and Gynecology, University Breast Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Chris Sidey-Gibbons
- MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Division of Patient-Centered Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Symptom Research CAO, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1055, Houston, TX, 77030-4009, USA.
| |
Collapse
|
37
|
Kokabi M, Sui J, Gandotra N, Pournadali Khamseh A, Scharfe C, Javanmard M. Nucleic Acid Quantification by Multi-Frequency Impedance Cytometry and Machine Learning. BIOSENSORS 2023; 13:bios13030316. [PMID: 36979528 PMCID: PMC10046493 DOI: 10.3390/bios13030316] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/10/2023]
Abstract
Determining nucleic acid concentrations in a sample is an important step prior to proceeding with downstream analysis in molecular diagnostics. Given the need for testing DNA amounts and its purity in many samples, including in samples with very small input DNA, there is utility of novel machine learning approaches for accurate and high-throughput DNA quantification. Here, we demonstrated the ability of a neural network to predict DNA amounts coupled to paramagnetic beads. To this end, a custom-made microfluidic chip is applied to detect DNA molecules bound to beads by measuring the impedance peak response (IPR) at multiple frequencies. We leveraged electrical measurements including the frequency and imaginary and real parts of the peak intensity within a microfluidic channel as the input of deep learning models to predict DNA concentration. Specifically, 10 different deep learning architectures are examined. The results of the proposed regression model indicate that an R_Squared of 97% with a slope of 0.68 is achievable. Consequently, machine learning models can be a suitable, fast, and accurate method to measure nucleic acid concentration in a sample. The results presented in this study demonstrate the ability of the proposed neural network to use the information embedded in raw impedance data to predict the amount of DNA concentration.
Collapse
Affiliation(s)
- Mahtab Kokabi
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Neeru Gandotra
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | - Curt Scharfe
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
38
|
Liu Z, Zhang T, Lin L, Long F, Guo H, Han L. Applications of radiomics-based analysis pipeline for predicting epidermal growth factor receptor mutation status. Biomed Eng Online 2023; 22:17. [PMID: 36810090 PMCID: PMC9945395 DOI: 10.1186/s12938-022-01049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/04/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND This study aimed to develop a pipeline for selecting the best feature engineering-based radiomic path to predict epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma in 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). METHODS The study enrolled 115 lung adenocarcinoma patients with EGFR mutation status from June 2016 and September 2017. We extracted radiomics features by delineating regions-of-interest around the entire tumor in 18F-FDG PET/CT images. The feature engineering-based radiomic paths were built by combining various methods of data scaling, feature selection, and many methods for predictive model-building. Next, a pipeline was developed to select the best path. RESULTS In the paths from CT images, the highest accuracy was 0.907 (95% confidence interval [CI]: 0.849, 0.966), the highest area under curve (AUC) was 0.917 (95% CI: 0.853, 0.981), and the highest F1 score was 0.908 (95% CI: 0.842, 0.974). In the paths based on PET images, the highest accuracy was 0.913 (95% CI: 0.863, 0.963), the highest AUC was 0.960 (95% CI: 0.926, 0.995), and the highest F1 score was 0.878 (95% CI: 0.815, 0.941). Additionally, a novel evaluation metric was developed to evaluate the comprehensive level of the models. Some feature engineering-based radiomic paths obtained promising results. CONCLUSIONS The pipeline is capable of selecting the best feature engineering-based radiomic path. Combining various feature engineering-based radiomic paths could compare their performances and identify paths built with the most appropriate methods to predict EGFR-mutant lung adenocarcinoma in 18FDG PET/CT. The pipeline proposed in this work can select the best feature engineering-based radiomic path.
Collapse
Affiliation(s)
- Zefeng Liu
- grid.412645.00000 0004 1757 9434Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052 People’s Republic of China
| | - Tianyou Zhang
- grid.412645.00000 0004 1757 9434Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052 People’s Republic of China
| | - Liying Lin
- grid.265021.20000 0000 9792 1228First Central Clinical College, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070 People’s Republic of China
| | - Fenghua Long
- grid.506261.60000 0001 0706 7839Department of Radiology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300041 People’s Republic of China
| | - Hongyu Guo
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Li Han
- School of Medical Imaging, Tianjin Medical University, 9-307, Guangdong Rd. #1, Hexi, Tianjin, 300203, People's Republic of China. .,Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
39
|
Wu Y, Zhu D, Wang X. Tree enhanced deep adaptive network for cancer prediction with high dimension low sample size microarray data. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Karger E, Kureljusic M. Artificial Intelligence for Cancer Detection-A Bibliometric Analysis and Avenues for Future Research. Curr Oncol 2023; 30:1626-1647. [PMID: 36826086 PMCID: PMC9954989 DOI: 10.3390/curroncol30020125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
After cardiovascular diseases, cancer is responsible for the most deaths worldwide. Detecting a cancer disease early improves the chances for healing significantly. One group of technologies that is increasingly applied for detecting cancer is artificial intelligence. Artificial intelligence has great potential to support clinicians and medical practitioners as it allows for the early detection of carcinomas. During recent years, research on artificial intelligence for cancer detection grew a lot. Within this article, we conducted a bibliometric study of the existing research dealing with the application of artificial intelligence in cancer detection. We analyzed 6450 articles on that topic that were published between 1986 and 2022. By doing so, we were able to give an overview of this research field, including its key topics, relevant outlets, institutions, and articles. Based on our findings, we developed a future research agenda that can help to advance research on artificial intelligence for cancer detection. In summary, our study is intended to serve as a platform and foundation for researchers that are interested in the potential of artificial intelligence for detecting cancer.
Collapse
Affiliation(s)
- Erik Karger
- Information Systems and Strategic IT Management, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marko Kureljusic
- International Accounting, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
41
|
Burnett B, Zhou SM, Brophy S, Davies P, Ellis P, Kennedy J, Bandyopadhyay A, Parker M, Lyons RA. Machine Learning in Colorectal Cancer Risk Prediction from Routinely Collected Data: A Review. Diagnostics (Basel) 2023; 13:301. [PMID: 36673111 PMCID: PMC9858109 DOI: 10.3390/diagnostics13020301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The inclusion of machine-learning-derived models in systematic reviews of risk prediction models for colorectal cancer is rare. Whilst such reviews have highlighted methodological issues and limited performance of the models included, it is unclear why machine-learning-derived models are absent and whether such models suffer similar methodological problems. This scoping review aims to identify machine-learning models, assess their methodology, and compare their performance with that found in previous reviews. A literature search of four databases was performed for colorectal cancer prediction and prognosis model publications that included at least one machine-learning model. A total of 14 publications were identified for inclusion in the scoping review. Data was extracted using an adapted CHARM checklist against which the models were benchmarked. The review found similar methodological problems with machine-learning models to that observed in systematic reviews for non-machine-learning models, although model performance was better. The inclusion of machine-learning models in systematic reviews is required, as they offer improved performance despite similar methodological omissions; however, to achieve this the methodological issues that affect many prediction models need to be addressed.
Collapse
Affiliation(s)
- Bruce Burnett
- Swansea University Medical School, Swansea SA2 8PP, UK
| | - Shang-Ming Zhou
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Sinead Brophy
- Swansea University Medical School, Swansea SA2 8PP, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Valderrama A, Valle C, Allende H, Ibarra M, Vásquez C. Machine Learning Applications for Urban Photovoltaic Potential Estimation: A Survey. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Sorayaie Azar A, Babaei Rikan S, Naemi A, Bagherzadeh Mohasefi J, Pirnejad H, Bagherzadeh Mohasefi M, Wiil UK. Application of machine learning techniques for predicting survival in ovarian cancer. BMC Med Inform Decis Mak 2022; 22:345. [PMID: 36585641 PMCID: PMC9801354 DOI: 10.1186/s12911-022-02087-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ovarian cancer is the fifth leading cause of mortality among women in the United States. Ovarian cancer is also known as forgotten cancer or silent disease. The survival of ovarian cancer patients depends on several factors, including the treatment process and the prognosis. METHODS The ovarian cancer patients' dataset is compiled from the Surveillance, Epidemiology, and End Results (SEER) database. With the help of a clinician, the dataset is curated, and the most relevant features are selected. Pearson's second coefficient of skewness test is used to evaluate the skewness of the dataset. Pearson correlation coefficient is also used to investigate the associations between features. Statistical test is utilized to evaluate the significance of the features. Six Machine Learning (ML) models, including K-Nearest Neighbors , Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost), are implemented for survival prediction in both classification and regression approaches. An interpretable method, Shapley Additive Explanations (SHAP), is applied to clarify the decision-making process and determine the importance of each feature in prediction. Additionally, DTs of the RF model are displayed to show how the model predicts the survival intervals. RESULTS Our results show that RF (Accuracy = 88.72%, AUC = 82.38%) and XGBoost (Root Mean Squad Error (RMSE)) = 20.61%, R2 = 0.4667) have the best performance for classification and regression approaches, respectively. Furthermore, using the SHAP method along with extracted DTs of the RF model, the most important features in the dataset are identified. Histologic type ICD-O-3, chemotherapy recode, year of diagnosis, age at diagnosis, tumor stage, and grade are the most important determinant factors in survival prediction. CONCLUSION To the best of our knowledge, our study is the first study that develops various ML models to predict ovarian cancer patients' survival on the SEER database in both classification and regression approaches. These ML algorithms also achieve more accurate results and outperform statistical methods. Furthermore, our study is the first study to use the SHAP method to increase confidence and transparency of the proposed models' prediction for clinicians. Moreover, our developed models, as an automated auxiliary tool, can help clinicians to have a better understanding of the estimated survival as well as important features that affect survival.
Collapse
Affiliation(s)
- Amir Sorayaie Azar
- grid.412763.50000 0004 0442 8645Department of Computer Engineering, Urmia University, Urmia, Iran
| | - Samin Babaei Rikan
- grid.412763.50000 0004 0442 8645Department of Computer Engineering, Urmia University, Urmia, Iran
| | - Amin Naemi
- grid.10825.3e0000 0001 0728 0170Center for Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | | | - Habibollah Pirnejad
- grid.412763.50000 0004 0442 8645Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran ,grid.6906.90000000092621349Erasmus School of Health Policy and Management (ESHPM), Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | - Uffe Kock Wiil
- grid.10825.3e0000 0001 0728 0170Center for Health Informatics and Technology, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
44
|
Mavragani A, Bradley H, Jin Y, Zhou L, Sun S, Xu X, Li S, Yang H, Zhang Q, Wang Y. An Assessment of the Predictive Performance of Current Machine Learning-Based Breast Cancer Risk Prediction Models: Systematic Review. JMIR Public Health Surveill 2022; 8:e35750. [PMID: 36426919 PMCID: PMC9837707 DOI: 10.2196/35750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/17/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Several studies have explored the predictive performance of machine learning-based breast cancer risk prediction models and have shown controversial conclusions. Thus, the performance of the current machine learning-based breast cancer risk prediction models and their benefits and weakness need to be evaluated for the future development of feasible and efficient risk prediction models. OBJECTIVE The aim of this review was to assess the performance and the clinical feasibility of the currently available machine learning-based breast cancer risk prediction models. METHODS We searched for papers published until June 9, 2021, on machine learning-based breast cancer risk prediction models in PubMed, Embase, and Web of Science. Studies describing the development or validation models for predicting future breast cancer risk were included. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias and the clinical applicability of the included studies. The pooled area under the curve (AUC) was calculated using the DerSimonian and Laird random-effects model. RESULTS A total of 8 studies with 10 data sets were included. Neural network was the most common machine learning method for the development of breast cancer risk prediction models. The pooled AUC of the machine learning-based optimal risk prediction model reported in each study was 0.73 (95% CI 0.66-0.80; approximate 95% prediction interval 0.56-0.96), with a high level of heterogeneity between studies (Q=576.07, I2=98.44%; P<.001). The results of head-to-head comparison of the performance difference between the 2 types of models trained by the same data set showed that machine learning models had a slightly higher advantage than traditional risk factor-based models in predicting future breast cancer risk. The pooled AUC of the neural network-based risk prediction model was higher than that of the nonneural network-based optimal risk prediction model (0.71 vs 0.68, respectively). Subgroup analysis showed that the incorporation of imaging features in risk models resulted in a higher pooled AUC than the nonincorporation of imaging features in risk models (0.73 vs 0.61; Pheterogeneity=.001, respectively). The PROBAST analysis indicated that many machine learning models had high risk of bias and poorly reported calibration analysis. CONCLUSIONS Our review shows that the current machine learning-based breast cancer risk prediction models have some technical pitfalls and that their clinical feasibility and reliability are unsatisfactory.
Collapse
Affiliation(s)
| | | | - Yujing Jin
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Lengxiao Zhou
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaomei Sun
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqian Xu
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuqian Li
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
45
|
Abstract
Predicting outcomes in open-heart surgery can be challenging. Unexpected readmissions, long hospital stays, and mortality have economic implications. In this study, we investigated machine learning (ML) performance in data visualization and predicting patient outcomes associated with open-heart surgery. We evaluated 8,947 patients who underwent cardiac surgery from April 2006 to January 2018. Data visualization and classification were performed at cohort-level and patient-level using clustering, correlation matrix, and seven different predictive models for predicting three outcomes ("Discharged," "Died," and "Readmitted") at binary level. Cross-validation was used to train and test each dataset with the application of hyperparameter optimization and data imputation techniques. Machine learning showed promising performance for predicting mortality (AUC 0.83 ± 0.03) and readmission (AUC 0.75 ± 0.035). The cohort-level analysis revealed that ML performance is comparable to the Society of Thoracic Surgeons (STS) risk model even with limited number of samples ( e.g. , less than 3,000 samples for ML versus more than 100,000 samples for the STS risk models). With all cases (8,947 samples, referred as patient-level analysis), ML showed comparable performance to what has been reported for the STS models. However, we acknowledge that it remains unknown at this stage as to how the model might perform outside the institution and does not in any way constitute a comparison of the performance of the internal model with the STS model. Our study demonstrates a systematic application of ML in analyzing and predicting outcomes after open-heart surgery. The predictive utility of ML in cardiac surgery and clinical implications of the results are highlighted.
Collapse
|
46
|
Tseng YJ, Wang YC, Hsueh PC, Wu CC. Development and validation of machine learning-based risk prediction models of oral squamous cell carcinoma using salivary autoantibody biomarkers. BMC Oral Health 2022; 22:534. [PMID: 36424594 PMCID: PMC9685866 DOI: 10.1186/s12903-022-02607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The incidence of oral cavity squamous cell carcinoma (OSCC) continues to rise. OSCC is associated with a low average survival rate, and most patients have a poor disease prognosis because of delayed diagnosis. We used machine learning techniques to predict high-risk cases of OSCC by using salivary autoantibody levels and demographic and behavioral data. METHODS We collected the salivary samples of patients recruited from a teaching hospital between September 2008 and December 2012. Ten salivary autoantibodies, sex, age, smoking, alcohol consumption, and betel nut chewing were used to build prediction models for identifying patients with a high risk of OSCC. The machine learning algorithms applied in the study were logistic regression, random forest, support vector machine with the radial basis function kernel, eXtreme Gradient Boosting (XGBoost), and a stacking model. We evaluated the performance of the models by using the area under the receiver operating characteristic curve (AUC), with simulations conducted 100 times. RESULTS A total of 337 participants were enrolled in this study. The best predictive model was constructed using a stacking algorithm with original forms of age and logarithmic levels of autoantibodies (AUC = 0.795 ± 0.055). Adding autoantibody levels as a data source significantly improved the prediction capability (from 0.698 ± 0.06 to 0.795 ± 0.055, p < 0.001). CONCLUSIONS We successfully established a prediction model for high-risk cases of OSCC. This model can be applied clinically through an online calculator to provide additional personalized information for OSCC diagnosis, thereby reducing the disease morbidity and mortality rates.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- grid.260539.b0000 0001 2059 7017Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan ,grid.2515.30000 0004 0378 8438Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA USA
| | - Yi-Cheng Wang
- grid.145695.a0000 0004 1798 0922Department of Information Management, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chun Hsueh
- grid.9851.50000 0001 2165 4204Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chih-Ching Wu
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, No. 259, Wenhua 1St Rd., Guishan Dist., Taoyuan City, 33302 Taiwan ,grid.413801.f0000 0001 0711 0593Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
47
|
Khan A, Khan A, Ullah M, Alam MM, Bangash JI, Suud MM. A computational classification method of breast cancer images using the VGGNet model. Front Comput Neurosci 2022; 16:1001803. [DOI: 10.3389/fncom.2022.1001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the most prevalent diseases worldwide. The most prevalent condition in women when aberrant cells develop out of control is breast cancer. Breast cancer detection and classification are exceedingly difficult tasks. As a result, several computational techniques, including k-nearest neighbor (KNN), support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), and genetic algorithms, have been applied in the current computing world for the diagnosis and classification of breast cancer. However, each method has its own limitations to how accurately it can be utilized. A novel convolutional neural network (CNN) model based on the Visual Geometry Group network (VGGNet) was also suggested in this study. The 16 layers in the current VGGNet-16 model lead to overfitting on the training and test data. We, thus, propose the VGGNet-12 model for breast cancer classification. The VGGNet-16 model has the problem of overfitting the breast cancer classification dataset. Based on the overfitting issues in the existing model, this research reduced the number of different layers in the VGGNet-16 model to solve the overfitting problem in this model. Because various models of the VGGNet, such as VGGNet-13 and VGGNet-19, were developed, this study proposed a new version of the VGGNet model, that is, the VGGNet-12 model. The performance of this model is checked using the breast cancer dataset, as compared to the CNN and LeNet models. From the simulation result, it can be seen that the proposed VGGNet-12 model enhances the simulation result as compared to the model used in this study. Overall, the experimental findings indicate that the suggested VGGNet-12 model did well in classifying breast cancer in terms of several characteristics.
Collapse
|
48
|
Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model. Int J Mol Sci 2022; 23:ijms232112986. [DOI: 10.3390/ijms232112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis.
Collapse
|
49
|
Lee LY, Yang CH, Lin YC, Hsieh YH, Chen YA, Chang MDT, Lin YY, Liao CT. A domain knowledge enhanced yield based deep learning classifier identifies perineural invasion in oral cavity squamous cell carcinoma. Front Oncol 2022; 12:951560. [PMID: 36353548 PMCID: PMC9638412 DOI: 10.3389/fonc.2022.951560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Perineural invasion (PNI), a form of local invasion defined as the ability of cancer cells to invade in, around, and through nerves, has a negative prognostic impact in oral cavity squamous cell carcinoma (OCSCC). Unfortunately, the diagnosis of PNI suffers from a significant degree of intra- and interobserver variability. The aim of this pilot study was to develop a deep learning-based human-enhanced tool, termed domain knowledge enhanced yield (Domain-KEY) algorithm, for identifying PNI in digital slides. METHODS Hematoxylin and eosin (H&E)-stained whole-slide images (WSIs, n = 85) were obtained from 80 patients with OCSCC. The model structure consisted of two parts to simulate human decision-making skills in diagnostic pathology. To this aim, two semantic segmentation models were constructed (i.e., identification of nerve fibers followed by the diagnosis of PNI). The inferred results were subsequently subjected to post-processing of generated decision rules for diagnostic labeling. Ten H&E-stained WSIs not previously used in the study were read and labeled by the Domain-KEY algorithm. Thereafter, labeling correctness was visually inspected by two independent pathologists. RESULTS The Domain-KEY algorithm was found to outperform the ResnetV2_50 classifier for the detection of PNI (diagnostic accuracy: 89.01% and 61.94%, respectively). On analyzing WSIs, the algorithm achieved a mean diagnostic accuracy as high as 97.50% versus traditional pathology. The observed accuracy in a validation dataset of 25 WSIs obtained from seven patients with oropharyngeal (cancer of the tongue base, n = 1; tonsil cancer, n = 1; soft palate cancer, n = 1) and hypopharyngeal (cancer of posterior wall, n = 2; pyriform sinus cancer, n = 2) malignancies was 96%. Notably, the algorithm was successfully applied in the analysis of WSIs to shorten the time required to reach a diagnosis. The addition of the hybrid intelligence model decreased the mean time required to reach a diagnosis by 15.0% and 23.7% for the first and second pathologists, respectively. On analyzing digital slides, the tool was effective in supporting human diagnostic thinking. CONCLUSIONS The Domain-KEY algorithm successfully mimicked human decision-making skills and supported expert pathologists in the routine diagnosis of PNI.
Collapse
Affiliation(s)
- Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Han Yang
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Lin
- Department of Strategic Technology, JelloX Biotech Inc., Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Hsieh
- Department of Strategic Technology, JelloX Biotech Inc., Hsinchu, Taiwan
| | - Yung-An Chen
- Department of Strategic Technology, JelloX Biotech Inc., Hsinchu, Taiwan
| | | | - Yen-Yin Lin
- Department of Strategic Technology, JelloX Biotech Inc., Hsinchu, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
50
|
Yang C, Zhou S, Zhu J, Sheng H, Mao W, Fu Z, Chen Z. Plasma Lipid-based Machine Learning Models Provides a Potential Diagnostic Tool for Colorectal Cancer Patients. Clin Chim Acta 2022; 536:191-199. [PMID: 36191612 DOI: 10.1016/j.cca.2022.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer is the second leading cause of cancer-related death across the world. So far, screening methods for colorectal cancer are limited to blood test, imaging test, and digital rectal examination, that are either invasive or ineffective. So, this study aims to explore novel, more convenient and effective diagnostic methods for colorectal cancer. First, the experiment cohort was randomly split to train set and test set, and LC-MS-based plasma lipidomics was applied to identify lipid features in colorectal cancer. Second, univariate and multivariate analyses were performed to screen for significantly differentially expressed lipids. Third, single-lipid-based ROC analysis and multiple-lipid-based machine learning modelling were conducted to assess differential lipids' diagnostic performance. Lastly, survival analyses were used to evaluate lipids' prognostic values. In total, 41 differential lipids were screened out, 10 were upregulated and 31 were downregulated in CRC. Only CerP(d15:0_22:0+O) showed fine predictive accuracy in single-lipid-base ROC analysis. Among the four machine learning models, SVM showed best predictive performance with accuracy (in predicting test set) of 1.0000 (95%CI: 0.8806, 1.0000), that can be reached by modelling with only 14 lipids. Four lipids had significant prognostic values, that were TG(11:0_18:0_18:0) (HR: 0.34), TG(18:0_18:0_18:1) (HR: 0.34), PC(22:1_12:3) (HR: 2.22), LPC(17:0) (HR: 3.16). In conclusion, this study discovered novel lipid features that has potential diagnostic and prognostic values, and showed combination of plasma lipidomics and machine learning modelling could have outstanding diagnostic performance and may serve as a convenient and more accessible way to aid clinical diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Chenxi Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Sicheng Zhou
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jing Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Huaying Sheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weimin Mao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang, China
| | - Zhixuan Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhongjian Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang, China.
| |
Collapse
|