1
|
Taki S, Boron WF, Moss FJ. Novel RPTPγ and RPTPζ splice variants from mixed neuron-astrocyte hippocampal cultures as well as from the hippocampi of newborn and adult mice. Front Physiol 2024; 15:1406448. [PMID: 38952869 PMCID: PMC11215419 DOI: 10.3389/fphys.2024.1406448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor protein tyrosine phosphatases γ and ζ (RPTPγ and RPTPζ) are transmembrane signaling proteins with extracellular carbonic anhydrase-like domains that play vital roles in the development and functioning of the central nervous system (CNS) and are implicated in tumor suppression, neurodegeneration, and sensing of extracellular [CO2] and [HCO3 -]. RPTPγ expresses throughout the body, whereas RPTPζ preferentially expresses in the CNS. Here, we investigate differential RPTPγ-RPTPζ expression in three sources derived from a wild-type laboratory strain of C57BL/6 mice: (a) mixed neuron-astrocyte hippocampal (HC) cultures 14 days post isolation from P0-P2 pups; (b) P0-P2 pup hippocampi; and (c) 9- to 12-week-old adult hippocampi. Regarding RPTPγ, we detect the Ptprg variant-1 (V1) transcript, representing canonical exons 1-30. Moreover, we newly validate the hypothetical assembly [XM_006517956] (propose name, Ptprg-V3), which lacks exon 14. Both transcripts are in all three HC sources. Regarding RPTPζ, we confirm the expression of Ptprz1-V1, detecting it in pups and adults but not in cultures, and Ptprz1-V3 through Ptprz1-V7 in all three preparations. We newly validate hypothetical assemblies Ptprz1-X1 (in cultures and pups), Ptprz1-X2 (in all three), and Ptprz1-X5 (in pups and adults) and propose to re-designate them as Ptprz1-V0, Ptprz1-V2, and Ptprz1-V8, respectively. The diversity of RPTPγ and RPTPζ splice variants likely corresponds to distinct signaling functions, in different cellular compartments, during development vs later life. In contrast to previous studies that report divergent RPTPγ and RPTPζ protein expressions in neurons and sometimes in the glia, we observe that RPTPγ and RPTPζ co-express in the somata and processes of almost all HC neurons but not in astrocytes, in all three HC preparations.
Collapse
Affiliation(s)
- Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Fraser J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
2
|
Boni C, Laudanna C, Sorio C. A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease. Biomolecules 2022; 12:84. [PMID: 35053232 PMCID: PMC8773835 DOI: 10.3390/biom12010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase receptor gamma (PTPRG) is known to interact with and regulate several tyrosine kinases, exerting a tumor suppressor role in several type of cancers. Its wide expression in human tissues compared to the other component of group 5 of receptor phosphatases, PTPRZ expressed as a chondroitin sulfate proteoglycan in the central nervous system, has raised interest in its role as a possible regulatory switch of cell signaling processes. Indeed, a carbonic anhydrase-like domain (CAH) and a fibronectin type III domain are present in the N-terminal portion and were found to be associated with its role as [HCO3-] sensor in vascular and renal tissues and a possible interaction domain for cell adhesion, respectively. Studies on PTPRG ligands revealed the contactins family (CNTN) as possible interactors. Furthermore, the correlation of PTPRG phosphatase with inflammatory processes in different normal tissues, including cancer, and the increasing amount of its soluble form (sPTPRG) in plasma, suggest a possible role as inflammatory marker. PTPRG has important roles in human diseases; for example, neuropsychiatric and behavioral disorders and various types of cancer such as colon, ovary, lung, breast, central nervous system, and inflammatory disorders. In this review, we sum up our knowledge regarding the latest discoveries in order to appreciate PTPRG function in the various tissues and diseases, along with an interactome map of its relationship with a group of validated molecular interactors.
Collapse
Affiliation(s)
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy; (C.B.); (C.L.)
| |
Collapse
|
3
|
Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13102311. [PMID: 34065882 PMCID: PMC8151247 DOI: 10.3390/cancers13102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia. Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication.
Collapse
|
4
|
Ismail MA, Vezzalini M, Morsi H, Abujaber A, Al Sayab A, Siveen K, Yassin MA, Monne M, Samara M, Cook R, Sorio C, Modjtahedi H, Al-Dewik NI. Predictive value of tyrosine phosphatase receptor gamma for the response to treatment tyrosine kinase inhibitors in chronic myeloid leukemia patients. Sci Rep 2021; 11:8833. [PMID: 33893334 PMCID: PMC8065106 DOI: 10.1038/s41598-021-86875-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Protein tyrosine phosphatase receptor gamma (PTPRG) is a member of the receptor-like family protein tyrosine phosphatases and acts as a tumor suppressor gene in different neoplasms. Recent studies reported the down-regulation of PTPRG expression levels in Chronic Myeloid Leukemia disease (CML). In addition, the BCR-ABL1 transcript level is currently a key predictive biomarker of CML response to treatment with Tyrosine Kinase Inhibitors (TKIs). The aim of this study was to employ flow cytometry to monitor the changes in the expression level of PTPRG in the white blood cells (WBCs) of CML patients at the time of diagnosis and following treatment with TKIs. WBCs from peripheral blood of 21 CML patients were extracted at diagnosis and during follow up along with seven healthy individuals. The PTPRG expression level was determined at protein and mRNA levels by both flow cytometry with monoclonal antibody (TPγ B9-2) and RT-qPCR, and BCR-ABL1 transcript by RT-qPCR, respectively. PTPRG expression was found to be lower in the neutrophils and monocytes of CML patients at time of diagnosis compared to healthy individuals. Treatment with TKIs nilotinib and Imatinib Mesylate restored the expression of PTPRG in the WBCs of CML patients to levels observed in healthy controls. Moreover, restoration levels were greatest in optimal responders and occurred earlier with nilotinib compared to imatinib. Our results support the measurement of PTPRG expression level in the WBCs of CML patients by flow cytometry as a monitoring tool for the response to treatment with TKIs in CML patients.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Female
- Flow Cytometry
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lymphocytes/drug effects
- Male
- Middle Aged
- Protein Kinase Inhibitors/therapeutic use
- RNA, Messenger/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Treatment Outcome
Collapse
Affiliation(s)
- Mohamed A Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, London, United Kingdom.
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar.
| | | | - Hisham Morsi
- Quality of Life Unit, National Center for Cancer Care and Research, (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ahmad Abujaber
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ali Al Sayab
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Kodappully Siveen
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, "San Francesco" Hospital, Nuoro, Italy
| | - Muthanna Samara
- Department of Psychology, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, United Kingdom
| | - Richard Cook
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, London, United Kingdom
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Helmout Modjtahedi
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, London, United Kingdom
| | - Nader I Al-Dewik
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, London, United Kingdom.
- Qatar Medical Genetic Center (QMGC), Hamad General Hospital (HGH), and Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), P.O. BOX. 3050, Doha, Qatar.
- College of Health and Life Science (CHLS), Genomics and Precision Medicine, Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| |
Collapse
|
5
|
Vezzalini M, Mafficini A, Tomasello L, Lorenzetto E, Moratti E, Fiorini Z, Holyoake TL, Pellicano F, Krampera M, Tecchio C, Yassin M, Al-Dewik N, Ismail MA, Al Sayab A, Monne M, Sorio C. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients. J Hematol Oncol 2017. [PMID: 28637510 PMCID: PMC5479035 DOI: 10.1186/s13045-017-0494-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. METHODS TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. RESULTS Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. CONCLUSIONS The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions.
Collapse
Affiliation(s)
- Marzia Vezzalini
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Andrea Mafficini
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Luisa Tomasello
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Present address: The Ohio State University, Wexner Medical Center Biomedical Research Tower, 460W 12th Avenue, room 1070, Columbus, OH, 43210, USA
| | - Erika Lorenzetto
- Section of Physiology, Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona, Italy
| | - Elisabetta Moratti
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Zeno Fiorini
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Pellicano
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, Scotland, UK
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mohamed Yassin
- National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Nader Al-Dewik
- Qatar Medical Genetics Center, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Ismail
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation, Doha, Qatar
| | - Ali Al Sayab
- National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, "San Francesco" Hospital, ASL3, Nuoro, 08100, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
6
|
Bellisola G, Bolomini Vittori M, Cinque G, Dumas P, Fiorini Z, Laudanna C, Mirenda M, Sandt C, Silvestri G, Tomasello L, Vezzalini M, Wehbe K, Sorio C. Unsupervised explorative data analysis of normal human leukocytes and BCR/ABL positive leukemic cells mid-infrared spectra. Analyst 2015; 140:4407-22. [PMID: 25988195 DOI: 10.1039/c5an00148j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived parental Ba/F3 cells (Ba/F3#PAR), Ba/F3 cells transfected with p210(BCR/ABL) (Ba/F3#WT) and expressing high levels of protein tyrosine kinase (PTK), and human-derived BCR/ABL positive K562 leukemic cell sub-clones engineered to differently express receptor-type tyrosine-protein phosphatase gamma (PTPRG). Synchrotron radiation (SR) and conventional (globar) IR sources were used to perform microFTIR respectively, on single cells and over several cells within the same sample. Ex vivo time-course experiments were run, inducing maximal protein phosphorylation in PMNs by 100 nM N-formylated tripeptide fMLP. Within the specific IR fingerprint 1800-850 cm(-1) frequency domain, PCA identified two regions with maximal signal variance. These were used to model and test the robustness of PCA in representing the dynamics of protein phosphorylation/de-phosphorylation processes. An IR signal ratio marker reflecting the homeostatic control by protein kinases and phosphatases was identified in normal leukocytes. The models identified by microFTIR and PCA in normal leukocytes also distinguished BCR/ABL positive Ba/F3#WT from BCR/ABL negative Ba/F3#PAR cells as well as K562 cells exposed to functionally active protein tyrosine phosphatase recombinant protein ICD-Tat transduced in cells by HIV-1 Tat technology or cells treated with the PTK inhibitor imatinib mesylate (IMA) from cells exposed to phosphatase inactive (D1028A)ICD-Tat recombinant protein and untreated control cells, respectively. The IR signal marker correctly reflected the degrees of protein phosphorylation associated with abnormal PTK activity in BCR/ABL positive leukemic cells and in general was inversely related to the expression/activity of PTPRG in leukemic sub-clones. In conclusion, we have described a new, reliable and simple spectroscopic method to study the ex vivo protein phosphorylation/de-phosphorylation balance in cell models: it is suitable for biomedical and pharmacological research labs but it also needs further optimization and its evaluation on large cohorts of patients to be proposed in the clinical setting of leukemia.
Collapse
Affiliation(s)
- G Bellisola
- Azienda Ospedaliera Universitaria Intergrata di Verona, Department of Pathology and Diagnostics - Unit of Immunology, Policinico G. Rossi, P.le L.A. Scuro 10, I-37134 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Identification of protein tyrosine phosphatase receptor gamma extracellular domain (sPTPRG) as a natural soluble protein in plasma. PLoS One 2015; 10:e0119110. [PMID: 25775014 PMCID: PMC4361625 DOI: 10.1371/journal.pone.0119110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/28/2015] [Indexed: 02/06/2023] Open
Abstract
Background PTPRG is a widely expressed protein tyrosine phosphatase present in various isoforms. Peptides from its extracellular domain have been detected in plasma by proteomic techniques. We aim at characterizing the plasmatic PTPRG (sPTPRG) form and to identify its source. Methodology/Principal Findings The expression of sPTPRG was evaluated in human plasma and murine plasma and tissues by immunoprecipitation and Western blotting. The polypeptides identified have an apparent Mr of about 120 kDa (major band) and 90 kDa (minor band) respectively. Full length PTPRG was identified in the 100.000×g pelleted plasma fraction, suggesting that it was present associated to cell-derived vesicles (exosomes). The release of sPTPRG by HepG2 human hepatocellular carcinoma cell line was induced by ethanol and sensitive to metalloproteinase and not to Furin inhibitors. Finally, increased levels of the plasmatic ∼120 kDa isoform were associated with the occurrence of liver damage. Conclusions These results demonstrate that sPTPRG represent a novel candidate protein biomarker in plasma whose increased expression is associated to hepatocyte damage. This observation could open a new avenue of investigation in this challenging field.
Collapse
|
8
|
Galvan A, Colombo F, Frullanti E, Dassano A, Noci S, Wang Y, Eisen T, Matakidou A, Tomasello L, Vezzalini M, Sorio C, Dugo M, Ambrogi F, Iacobucci I, Martinelli G, Incarbone M, Alloisio M, Nosotti M, Tosi D, Santambrogio L, Pelosi G, Pastorino U, Houlston RS, Dragani TA. Germline polymorphisms and survival of lung adenocarcinoma patients: a genome-wide study in two European patient series. Int J Cancer 2015; 136:E262-71. [PMID: 25196286 DOI: 10.1002/ijc.29195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/09/2022]
Abstract
In lung cancer, the survival of patients with the same clinical stage varies widely for unknown reasons. In this two-phase study, we examined the hypothesis that germline variations influence the survival of patients with lung adenocarcinoma. First, we analyzed existing genotype and clinical data from 289 UK-resident patients with lung adenocarcinoma, identifying 86 single nucleotide polymorphisms (SNPs) that associated with survival (p < 0.01). We then genotyped these candidate SNPs in a validation series of 748 patients from Italy that resulted genetically compatible with the UK series based on principal component analysis. In a Cox proportional hazard model adjusted for age, sex and clinical stage, four SNPs were confirmed on the basis of their having a hazard ratio (HR) indicating the same direction of effect in the two series and p < 0.05. The strongest association was provided by rs2107561, an intronic SNP of PTPRG, protein tyrosine phosphatase, receptor type, G; the C allele was associated with poorer survival in both patient series (pooled analysis loge HR = 0.31; 95% CI: 0.15-0.46, p = 8.5 × 10(-5) ). PTPRG mRNA levels in 43 samples of lung adenocarcinoma were 40% of those observed in noninvolved lung tissue from the same patients. PTPRG overexpression significantly inhibited the clonogenicity of A549 lung carcinoma cells and the anchorage-independent growth of the NCI-H460 large cell lung cancer line. These four germline variants represent promising candidates that, with further study, may help predict clinical outcome. In addition, the PTPRG locus may have a role in tumor progression.
Collapse
|
9
|
Lorenzetto E, Moratti E, Vezzalini M, Harroch S, Sorio C, Buffelli M. Distribution of different isoforms of receptor protein tyrosine phosphatase γ (Ptprg-RPTP γ) in adult mouse brain: upregulation during neuroinflammation. Brain Struct Funct 2013; 219:875-90. [DOI: 10.1007/s00429-013-0541-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/12/2013] [Indexed: 01/06/2023]
|
10
|
Della Peruta M, Martinelli G, Moratti E, Pintani D, Vezzalini M, Mafficini A, Grafone T, Iacobucci I, Soverini S, Murineddu M, Vinante F, Tecchio C, Piras G, Gabbas A, Monne M, Sorio C. Protein Tyrosine Phosphatase Receptor Type γ Is a Functional Tumor Suppressor Gene Specifically Downregulated in Chronic Myeloid Leukemia. Cancer Res 2010; 70:8896-906. [DOI: 10.1158/0008-5472.can-10-0258] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|