1
|
Salazar-Puerta AI, Ott N, Diaz-Starokozheva L, Das D, Lawrence WR, Johnson J, Houser R, Higuita-Castro N, Stanford KI, Gallego-Perez D. A Protocol for co-Injecting Cells with Pulverized Fibers for Improved Cell Survival and Engraftment. Bio Protoc 2024; 14:e5117. [PMID: 39600980 PMCID: PMC11588581 DOI: 10.21769/bioprotoc.5117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Adipose tissue is crucial for medical applications such as tissue reconstruction, cosmetic procedures, and correcting soft tissue deformities. Significant advances in the use of adipose tissue have been achieved through Coleman's studies in fat grafting, which gained widespread acceptance due to its effectiveness and safety. Despite its benefits, adipose tissue grafting faces several limitations, including high absorption rates due to insufficient support or anchorage, replacement by fibrous tissue, migration from the intended site, and loss of the initial desired morphology post-administration. To counteract these constraints, there is a need for improved grafting techniques that enhance the predictability and consistency of outcomes. Biomaterials are extensively used in tissue engineering to support cell adhesion, proliferation, and growth. Both natural and synthetic materials have shown promise in creating suitable microenvironments for adipose tissue regeneration. PLGA, a synthetic copolymer, is particularly notable for its biocompatibility, biodegradability, and tunable mechanical properties. Here, we describe a protocol using milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers combined with lipoaspirated tissue to create a fibrous slurry for injection. By pulverizing PLGA fiber mats to create fiber fragments with increased pore size and porosity, we can influence key cellular responses and enhance the success of adipose tissue-grafting procedures. This approach improves anchorage and support for adipocytes, thereby increasing cell viability. This method aims to enhance vascularity, perfusion, and volume retention in adipose tissue grafts, which addresses many of the limitations of current approaches to adipose tissue grafting and holds promise for more consistent and successful outcomes. Key features • Adipose tissue for tissue reconstruction. • Need for improved engraftment and volume retention. • Pulverized PLGA fiber mats to create a fibrous "slurry" that allows injection. • PLGA fibers co-injected with lipoaspirated tissue. • Improved adipose engraftment outcomes (e.g., perfusion, vascularity, and retention of graft volume).
Collapse
Affiliation(s)
| | - Neil Ott
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - William R. Lawrence
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Robert Houser
- Cosmetic & Plastic Surgery of Columbus, Columbus, OH, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | | | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Vu MN, Le HD, Vu TT, Nguyen TN, Chu HH, Bui VN. Integrated RNA Sequencing Analysis Revealed Early Gene Expression Shifts Associated with Cancer Progression in MCF-7 Breast Cancer Cells Cocultured with Adipose-Derived Stem Cells. Curr Issues Mol Biol 2024; 46:11817-11834. [PMID: 39590296 PMCID: PMC11592593 DOI: 10.3390/cimb46110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer remains a prevalent global health challenge, with tumor-removal surgeries being among the most common treatments but often leading to aesthetic defects. Adipose-derived stem cell (ADSC)-enriched fat grafting in breast reconstruction offers promising therapeutic benefits. However, concerns about its oncological safety persist, particularly regarding the potential risks of promoting cancer recurrence. This study investigated the effects of ADSCs on breast cancer progression by coculturing ADSCs with the MCF-7 breast cancer cell line for a short cell cultivation period of 3 days. We performed an RNA-seq analysis to identify significant transcriptomic changes in cocultured MCF-7 cells and carried out functional enrichment analyses to uncover key biological pathways influenced by ADSCs. Our findings revealed that transcriptomic alterations in MCF-7 cells are linked to aggressive cancer traits, including the upregulation of epithelial-mesenchymal transition (EMT) and the HIF-1 signaling pathway, which indicate a shift toward aerobic glycolysis. Some of the observed gene expression changes also correlated with relapse risk and mortality. These findings underscore the need for further research to explore the implications of these genes and pathways in driving aggressive cancer phenotypes and assess the safety of ADSCs in clinical settings.
Collapse
Affiliation(s)
- Minh Ngoc Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam (H.H.C.)
- University of Science, Vietnam National University (VNU-HUS), Hanoi 100000, Vietnam
| | - Hoang Duc Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam (H.H.C.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Thi Tien Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam (H.H.C.)
| | - Trung Nam Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam (H.H.C.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam (H.H.C.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Van Ngoc Bui
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam (H.H.C.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Li Y, Wang W, Liu Z, Liu G, Li X. Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells. Cell Biochem Biophys 2024:10.1007/s12013-024-01545-w. [PMID: 39316261 DOI: 10.1007/s12013-024-01545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The integrin α (ITGA) subfamily genes play a fundamental role in various cancers. However, the potential mechanism and application values of ITGA genes in adipogenic differentiation of human adipose-derived stem cells (hADSCs) remain elusive. This study confirmed that ITGA2/3/5 mRNA expressions were repressed during adipogenesis. Blockade of ITGA2/3/5 enhanced adipogenic differentiation of hADSCs. Oil red O staining found that more lipid droplets were apparent in the ITGA2/3/5 inhibition group following 14 d adipogenic induction than in the control group. In addition, inhibition of ITGA2/3/5 promoted the expression of adipogenesis-related genes (PPAR-γ, C/EBPα, FABP4). Mechanistically, ITGA2/3/5 functioned by regulating the Rac1 signaling pathway, which reasonably explains ITGA2/3/5's role in adipogenic differentiation of hADSCs. Our studies suggest that blockades of ITGA2/3/5 promote the adipogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Ying Li
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Wendi Wang
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zijian Liu
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Guangjing Liu
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiaobing Li
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
4
|
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7806. [PMID: 39063048 PMCID: PMC11277008 DOI: 10.3390/ijms25147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the most prevalent of primary liver cancers and stands as the third leading cause of cancer-related deaths. Early-stage HCC can be effectively managed with available treatment modalities ranging from invasive techniques, such as liver resection and thermoablation, to systemic therapies primarily employing tyrosine kinase inhibitors. Unfortunately, these interventions take a significant toll on the body, either through physical trauma or the adverse effects of pharmacotherapy. Consequently, there is an understandable drive to develop novel HCC therapies. Adipose-derived stem cells (ADSCs) are a promising therapeutic tool. Their facile extraction process, coupled with the distinctive immunomodulatory capabilities of their secretome, make them an intriguing subject for investigation in both oncology and regenerative medicine. The factors they produce are both enzymes affecting the extracellular matrix (specifically, metalloproteinases and their inhibitors) as well as cytokines and growth factors affecting cell proliferation and invasiveness. So far, the interactions observed with various cancer cell types have not led to clear conclusions. The evidence shows both inhibitory and stimulatory effects on tumor growth. Notably, these effects appear to be dependent on the tumor type, prompting speculation regarding their potential inhibitory impact on HCC. This review briefly synthesizes findings from preclinical and clinical studies examining the effects of ADSCs on cancers, with a specific focus on HCC, and emphasizes the need for further research.
Collapse
Affiliation(s)
- Aleksandra Gładyś
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Adam Mazurski
- Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| |
Collapse
|
5
|
Camargo CP, Santos DLDS, Cerqueira Dantas VAN, Furuya TK, Freitas-Marchi BL, Alves MJF, Uno M, Gemperli R. Effect of ASC Injection in the Inflammatory Reaction in Silicone Implant Capsule: Animal Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5977. [PMID: 39081810 PMCID: PMC11288612 DOI: 10.1097/gox.0000000000005977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 08/02/2024]
Abstract
Background Capsular contracture is a common complication affecting about 80% of patients who receive radiotherapy after breast reconstruction with silicone prostheses. This study examines the use of adipocyte stem cells (ASCs) to treat capsular contracture. Methods Thirty rats were operated on to implant a minisilicone prosthesis in the dorsal region. The rats were divided into three groups: control (saline solution injection), radiotherapy (RDT), and RDT + ASC. After 3 months, the capsules were collected and submitted to histological analysis for inflammatory cell presence, vascular density, and collagen fibers, and gene expression of Tnf, Il1rap, Il10, Cd68, Mmp3, and Mmp9 by qPCR. Results In macroscopic analysis, the RTGO score showed a two-point reduction in RDT + ASC compared with the RDT (P = 0.003). In histological analysis, ASC exhibited less than 50% of inflammatory cells compared with RDT (P = 0.004), which was similar to control. This study demonstrated that Il1rap gene expression was identical in both RDT and RTD + ASC. Compared with control, treatment with ASC reduced Il1rap expression by 30%. Cd68 and Mmp3 expression levels were similar in both the control and RTD + ASC. Conclusion This study suggests that ASC treatment decreases silicone prosthesis capsule inflammation.
Collapse
Affiliation(s)
- Cristina Pires Camargo
- From the Microsurgery and Plastic Surgery Laboratory, School of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Deborah Luisa de Sousa Santos
- Multiprofessional Residency Program in Oncology Care for Adults, Comissão de Residência Multiprofissional (COREMU), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | | | - Tatiane Katsue Furuya
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna Leticia Freitas-Marchi
- Laboratório de Fisiologia da Pele e Bioengenharia Tecidual, Escola de Artes, Ciências e Humanidades (EACH—USP), São Paulo, SP, Brazil
| | - Maria José Ferreira Alves
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rolf Gemperli
- Plastic Surgery Division, School of Medicine, Universida de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Berkane Y, Oubari H, van Dieren L, Charlès L, Lupon E, McCarthy M, Cetrulo CL, Bertheuil N, Uygun BE, Smadja DM, Lellouch AG. Tissue engineering strategies for breast reconstruction: a literature review of current advances and future directions. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:15. [PMID: 38304901 PMCID: PMC10777243 DOI: 10.21037/atm-23-1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 02/03/2024]
Abstract
Background and Objective Mastectomy is a primary treatment for breast cancer patients, and both autologous and implant-based reconstructive techniques have shown excellent results. In recent years, advancements in bioengineering have led to a proliferation of innovative approaches to breast reconstruction. This article comprehensively explores the promising perspectives offered by bioengineering and tissue engineering in the field of breast reconstruction. Methods A literature review was conducted between April and June 2023 on PubMed and Google Scholar Databases. All English and French articles related to bioengineering applied to the field of breast reconstruction were included. We used the Evidence-Based Veterinary Medicine Association (EBVM) Toolkit 14 checklist for narrative reviews as a quality assurance measure and the Scale for the Assessment of Narrative Review Articles (SANRA) tool to self-assess our methodology. Key Content and Findings Over 130 references related to breast bioengineering were included. The analysis revealed four key applications: enhancing the quality of the skin envelope, improving the viability of fat grafting, creating breast shape and volume via bio-printing, and optimizing nipple reconstruction through engineering techniques. The primary identified approaches revolved around establishing structural support and enhancing cellular viability. Structural techniques predominantly involved the implementation of 3D printed, decellularized, or biocompatible material scaffolds. Meanwhile, promoting cellular content trophicity primarily focused on harnessing the regenerative potential of adipose-derived stem cells (ADSCs) and increasing the tissue's survivability and cell trophicity. Conclusions Tissue and bioengineering hold immense promise in the field of breast reconstruction, offering a diverse array of approaches. By combining existing techniques with novel advancements, they have the potential to significantly enhance the therapeutic options available to plastic and reconstructive surgeons.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes, Rennes, France
- Unité Mixte de Recherche UMR 1236 Suivi Immunologique des Thérapeutiques Innovantes, INSERM and University of Rennes, Rennes, France
| | - Haizam Oubari
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Grenoble University Hospital Center, Grenoble, France
| | - Loïc van Dieren
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic Surgery, University of Antwerp, Wilrijk, Belgium
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Elise Lupon
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Pasteur 2 Hospital, University Côte d’Azur, Sophia Antipolis, Nice, France
| | - Michelle McCarthy
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes, Rennes, France
- Unité Mixte de Recherche UMR 1236 Suivi Immunologique des Thérapeutiques Innovantes, INSERM and University of Rennes, Rennes, France
| | - Basak E. Uygun
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David M. Smadja
- Unité Mixte de Recherche UMR-S 1140 Innovative Therapies in Haemostasis, INSERM and University of Paris, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, Paris, France
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Unité Mixte de Recherche UMR-S 1140 Innovative Therapies in Haemostasis, INSERM and University of Paris, Paris, France
| |
Collapse
|
7
|
Xu W, Huang Y, Yuen H, Shi L, Qian H, Cui L, Tang M, Wang J, Zhu J, Wang Z, Xiao L, Zhao X, Wang L. Living prosthetic breast for promoting tissue regeneration and inhibiting tumor recurrence. Bioeng Transl Med 2023; 8:e10409. [PMID: 37693055 PMCID: PMC10487338 DOI: 10.1002/btm2.10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
Developing a living prosthetic breast to inhibit potential breast cancer recurrence and simultaneously promote breast reconstruction would be a promising strategy for clinical treatment of breast cancer after mastectomy. Here, a living prosthetic breast in the form of injectable gelatin methacryloyl microspheres is prepared, where they encapsulated zeolitic imidazolate framework (ZIF) nanoparticles loaded with small molecules urolithin C (Uro-C) and adipose-derived stem cells (ADSCs). Taking advantage of the acidic tumor microenvironment, the ZIF triggered a pH-sensitive drug release in situ so that Uro-C can induce tumor cell apoptosis via reactive oxygen species (ROS) generation. Meanwhile, the ADSCs proliferate in situ to promote tissue regeneration. Using such a design, our data showed that the ADSCs maintained viable and proliferate under the inhibitory effect of Uro-C in vitro. Through ROS generation, Uro-C also activated a suppressive tumor microenvironment in mice by both re-polarizing M2 macrophages to M1 macrophages for elevated inflammatory responses, and increasing the ratio between CD8 and CD4 T cells for tumor recurrence inhibition, significantly promoting new adipose tissue formation. Altogether, our results demonstrate that the prepared living prosthetic breast with bifunctional properties can be a promising candidate in clinic involving tumor treatment and tissue engineering in synergy.
Collapse
Affiliation(s)
- Wenting Xu
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Yu Huang
- Department of Obstetrics and GynecologyThe First People's Hospital of Zhangjiagang, Soochow UniversityZhangjiagangChina
| | - Ho‐Yin Yuen
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Linli Shi
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Haiqing Qian
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Lijuan Cui
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Mengyu Tang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Jiahui Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Jie Zhu
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Xin Zhao
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Lihong Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| |
Collapse
|
8
|
Supper P, Semmler L, Placheta-Györi E, Teufelsbauer M, Harik-Chraim E, Radtke C. [Update and Trends in Breast Reconstruction After Mastectomy]. HANDCHIR MIKROCHIR P 2023; 55:253-261. [PMID: 37487507 PMCID: PMC10415025 DOI: 10.1055/a-2082-1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/15/2023] [Indexed: 07/26/2023] Open
Abstract
Due to refinements in operating techniques, autologous breast reconstruction has become part of standard care. It has become more difficult to advise patients due to the expansion of oncologic options for mastectomy, radiation therapy and the variety of reconstructive techniques. The goal of reconstruction is to achieve oncologically clear margins and a long-term aesthetically satisfactory result with a high quality of life. Immediate reconstruction preserves the skin of the breast and its natural form and prevents the psychological trauma associated with mastectomy. However, secondary reconstructions often have a higher satisfaction, since here no restitutio ad integrum is assumed. Alloplastic, i. e., implant-based, breast reconstruction and autologous breast reconstruction are complementary techniques. This article provides an overview of current options for breast reconstruction including patients' satisfaction and quality of life following breast reconstruction. Although immediate reconstruction is still the preferred choice of most patients and surgeons, delayed reconstruction does not appear to compromise clinical or patient-reported outcomes. Recent refinements in surgical techniques and autologous breast reconstruction include stacked-flaps, as well as microsurgical nerve coaptation to restore sensitivity, which lead to improved outcomes and quality of life. Nowadays Skin-sparing and nipple-sparing mastectomy, accompanied by improved implant quality, allows immediate prosthetic breast reconstruction as well as reemergence of the prepectoral implantation. The choice of breast reconstruction depends on the type of mastectomy, necessary radiation, individual risk factors, as well as the patient's habitus and wishes. Overall, recent developments in breast reconstruction led to an increase in patient satisfaction, quality of life and aesthetic outcome with oncological safety.
Collapse
Affiliation(s)
- Paul Supper
- Universitätsklinik für Plastische, Rekonstruktive und
Ästhetische Chirurgie, Medizinische Universität
Wien
| | - Lorenz Semmler
- Universitätsklinik für Plastische, Rekonstruktive und
Ästhetische Chirurgie, Medizinische Universität
Wien
| | - Eva Placheta-Györi
- Universitätsklinik für Plastische, Rekonstruktive und
Ästhetische Chirurgie, Medizinische Universität
Wien
| | - Maryana Teufelsbauer
- Universitätsklinik für Plastische, Rekonstruktive und
Ästhetische Chirurgie, Medizinische Universität
Wien
| | - Elissa Harik-Chraim
- Universitätsklinik für Plastische, Rekonstruktive und
Ästhetische Chirurgie, Medizinische Universität
Wien
| | - Christine Radtke
- Universitätsklinik für Plastische, Rekonstruktive und
Ästhetische Chirurgie, Medizinische Universität
Wien
| |
Collapse
|
9
|
Wu Q, Chen S, Peng W, Chen D. Current perspectives on cell-assisted lipotransfer for breast cancer patients after radiotherapy. World J Surg Oncol 2023; 21:133. [PMID: 37069583 PMCID: PMC10108507 DOI: 10.1186/s12957-023-03010-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Cell-assisted lipotransfer (CAL), a technique of autologous adipose transplantation enriched with adipose-derived stem cells (ADSCs), has the potential to improve cosmetic outcomes at irradiated sites. However, many concerns have been raised about the possibility of ADSCs increasing oncological risk in cancer patients. With the increasing demand for CAL reconstruction, there is an urgent need to determine whether CAL treatment could compromise oncological safety after radiotherapy, as well as to evaluate its efficacy in guiding clinical decisions. METHODS A PRISMA-compliant systematic review of the safety and efficacy of CAL in breast cancer patients after radiotherapy was conducted. The PubMed, Ovid, Cochrane Library, and ClinicalTrials.gov databases were comprehensively searched from inception to 31 December 2021. RESULTS The search initially yielded 1185 unique studies. Ultimately, seven studies were eligible. Based on the limited outcome evidence, CAL did not increase recurrence risk in breast cancer patients but presented aesthetic improvement and higher volumetric persistence in a long-term follow-up. Although breast reconstruction with CAL also had oncological safety after radiotherapy, these patients needed more adipose tissue and had relatively lower fat graft retention than the non-irradiated patients (P < 0.05). CONCLUSIONS CAL has oncological safety and does not increase recurrence risk in irradiated patients. Since CAL doubles the amount of adipose required without significantly improving volumetric persistence, clinical decisions for irradiated patients should be made more cautiously to account for the potential costs and aesthetic outcomes. There is limited evidence at present; thus, higher-quality, evidence-based studies are required to establish a consensus on breast reconstruction with CAL after radiotherapy.
Collapse
Affiliation(s)
- Qiuwan Wu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, Fujian, 361003, P. R. China
- The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian, P. R. China
| | - Shuai Chen
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, Fujian, 361003, P. R. China
| | - Wuyun Peng
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, Fujian, 361003, P. R. China
| | - Donghan Chen
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, Fujian, 361003, P. R. China.
- The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian, P. R. China.
| |
Collapse
|
10
|
Teixeira AM, Martins P. A review of bioengineering techniques applied to breast tissue: Mechanical properties, tissue engineering and finite element analysis. Front Bioeng Biotechnol 2023; 11:1161815. [PMID: 37077233 PMCID: PMC10106631 DOI: 10.3389/fbioe.2023.1161815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Female breast cancer was the most prevalent cancer worldwide in 2020, according to the Global Cancer Observatory. As a prophylactic measure or as a treatment, mastectomy and lumpectomy are often performed at women. Following these surgeries, women normally do a breast reconstruction to minimize the impact on their physical appearance and, hence, on their mental health, associated with self-image issues. Nowadays, breast reconstruction is based on autologous tissues or implants, which both have disadvantages, such as volume loss over time or capsular contracture, respectively. Tissue engineering and regenerative medicine can bring better solutions and overcome these current limitations. Even though more knowledge needs to be acquired, the combination of biomaterial scaffolds and autologous cells appears to be a promising approach for breast reconstruction. With the growth and improvement of additive manufacturing, three dimensional (3D) printing has been demonstrating a lot of potential to produce complex scaffolds with high resolution. Natural and synthetic materials have been studied in this context and seeded mainly with adipose derived stem cells (ADSCs) since they have a high capability of differentiation. The scaffold must mimic the environment of the extracellular matrix (ECM) of the native tissue, being a structural support for cells to adhere, proliferate and migrate. Hydrogels (e.g., gelatin, alginate, collagen, and fibrin) have been a biomaterial widely studied for this purpose since their matrix resembles the natural ECM of the native tissues. A powerful tool that can be used in parallel with experimental techniques is finite element (FE) modeling, which can aid the measurement of mechanical properties of either breast tissues or scaffolds. FE models may help in the simulation of the whole breast or scaffold under different conditions, predicting what might happen in real life. Therefore, this review gives an overall summary concerning the human breast, specifically its mechanical properties using experimental and FE analysis, and the tissue engineering approaches to regenerate this particular tissue, along with FE models.
Collapse
Affiliation(s)
| | - Pedro Martins
- UBS, INEGI, LAETA, Porto, Portugal
- I3A, Universidad de Zaragoza, Zaragoza, Spain
- *Correspondence: Pedro Martins,
| |
Collapse
|
11
|
Surowiecka A, Chrapusta A, Klimeczek-Chrapusta M, Korzeniowski T, Drukała J, Strużyna J. Mesenchymal Stem Cells in Burn Wound Management. Int J Mol Sci 2022; 23:ijms232315339. [PMID: 36499664 PMCID: PMC9737138 DOI: 10.3390/ijms232315339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Mesenchymal stem cells have a known regenerative potential and are used in many indications. They secrete many growth factors, including for fibroblasts (FGF), endothelium (VEGF), as well as 14 anti-inflammatory cytokines, and they stimulate tissue regeneration, promoting the secretion of proteins and glycosaminoglycans of extracellular matrices, such as collagen I, II, III, and V, elastin, and also metalloproteinases. They secrete exosomes that contain proteins, nucleic acids, lipids, and enzymes. In addition, they show the activity of inactivating free radicals. The aim of this study was an attempt to collect the existing literature on the use of stem cells in the treatment of a burn wound. There were 81 studies included in the analysis. The studies differed in terms of the design, burn wound model, source of stem cells, and methods of cellular therapy application. No major side effects were reported, and cellular therapy reduced the healing time of the burn wound. Few case reports on human models did not report any serious adverse events. However, due to the heterogeneity of the evidence, cellular therapy in burn wound treatment remains an experimental method.
Collapse
Affiliation(s)
- Agnieszka Surowiecka
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Correspondence:
| | - Anna Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Maria Klimeczek-Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Tomasz Korzeniowski
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 31-826 Cracow, Poland
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
12
|
Imai Y, Mori N, Nihashi Y, Kumagai Y, Shibuya Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Sekido M, Kida YS. Therapeutic Potential of Adipose Stem Cell-Derived Conditioned Medium on Scar Contraction Model. Biomedicines 2022; 10:biomedicines10102388. [PMID: 36289649 PMCID: PMC9598573 DOI: 10.3390/biomedicines10102388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Scars are composed of stiff collagen fibers, which contract strongly owing to the action of myofibroblasts. To explore the substances that modulate scar contracture, the fibroblast-populated collagen lattice (FPCL) model has been used. However, the molecular signature of the patient-derived FPCL model has not been verified. Here, we examined whether the patient-derived keloid FPCL model reflects scar contraction, analyzing detailed gene expression changes using comprehensive RNA sequencing and histological morphology, and revealed that these models are consistent with the changes during human scar contracture. Moreover, we examined whether conditioned media derived from adipose stem cells (ASC-CM) suppress the scar contracture of the collagen disc. Detailed time-series measurements of changes in disc area showed that the addition of ASC-CM significantly inhibited the shrinkage of collagen discs. In addition, a deep sequencing data analysis revealed that ASC-CM suppressed inflammation-related gene expression in the early phase of contraction; in the later phase, this suppression was gradually replaced by extracellular matrix (ECM)-related gene expression. These lines of data suggested the effectiveness of ASC-CM in suppressing scar contractures. Therefore, the molecular analysis of the ASC-CM actions found in this study will contribute to solving medical problems regarding pathological scarring in wound prognosis.
Collapse
Affiliation(s)
- Yukiko Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Nobuhito Mori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yoichiro Shibuya
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Junya Oshima
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masahiro Sasaki
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Kaoru Sasaki
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yukiko Aihara
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Mitsuru Sekido
- Department of Plastic and Reconstructive surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-861-3000
| |
Collapse
|
13
|
Zeng N, Chen H, Wu Y, Liu Z. Adipose Stem Cell-Based Treatments for Wound Healing. Front Cell Dev Biol 2022; 9:821652. [PMID: 35087840 PMCID: PMC8787271 DOI: 10.3389/fcell.2021.821652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Wound healing is one of the most complex physiological regulation mechanisms of the human body. Stem cell technology has had a significant impact on regenerative medicine. Adipose stem cells (ASCs) have many advantages, including their ease of harvesting and high yield, rich content of cell components and cytokines, and strong practicability. They have rapidly become a favored tool in regenerative medicine. Here, we summarize the mechanism and clinical therapeutic potential of ASCs in wound repair.
Collapse
Affiliation(s)
- Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Chen H, Hou K, Wu Y, Liu Z. Use of Adipose Stem Cells Against Hypertrophic Scarring or Keloid. Front Cell Dev Biol 2022; 9:823694. [PMID: 35071247 PMCID: PMC8770320 DOI: 10.3389/fcell.2021.823694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic scars or keloid form as part of the wound healing reaction process, and its formation mechanism is complex and diverse, involving multi-stage synergistic action of multiple cells and factors. Adipose stem cells (ASCs) have become an emerging approach for the treatment of many diseases, including hypertrophic scarring or keloid, owing to their various advantages and potential. Herein, we analyzed the molecular mechanism of hypertrophic scar or keloid formation and explored the role and prospects of stem cell therapy, in the treatment of this condition.
Collapse
Affiliation(s)
| | | | | | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Sutthiwanjampa C, Shin BH, Ryu NE, Kang SH, Heo CY, Park H. Assessment of human adipose-derived stem cell on surface-modified silicone implant to reduce capsular contracture formation. Bioeng Transl Med 2022; 7:e10260. [PMID: 35111952 PMCID: PMC8780897 DOI: 10.1002/btm2.10260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 11/07/2022] Open
Abstract
Medical devices made from poly(dimethylsiloxane) (PDMS)-based silicone implants have been broadly used owing to their inert properties, biocompatibility, and low toxicity. However, long-term implantation is usually associated with complications, such as capsular contracture due to excessive local inflammatory response, subsequently requiring implant removal. Therefore, modification of the silicone surface to reduce a risk of capsular contracture has attracted increasing attention. Human adipose-derived stem cells (hASCs) are known to provide potentially therapeutic applications for tissue engineering, regenerative medicine, and reconstructive surgery. Herein, hASCs coating on a PDMS (hASC-PDMS) or itaconic acid (IA)-conjugated PDMS (hASC-IA-PDMS) surface is examined to determine its biocompatibility for reducing capsular contracture on the PDMS surface. In vitro cell cytotoxicity evaluation showed that hASCs on IA-PDMS exhibit higher cell viability than hASCs on PDMS. A lower release of proinflammatory cytokines is observed in hASC-PDMS and hASC-IA-PDMS compared to the cells on plate. Multiple factors, including in vivo mRNA expression levels of cytokines related to fibrosis; number of inflammatory cells; number of macrophages and myofibroblasts; capsule thickness; and collagen density following implantation in rats for 60 days, indicate that incorporated coating hASCs on PDMSs most effectively reduces capsular contracture. This study demonstrates the potential of hASCs coating for the modification of PDMS surfaces in enhancing surface biocompatibility for reducing capsular contracture of PDMS-based medical devices.
Collapse
Affiliation(s)
| | - Byung Ho Shin
- Department of Biomedical EngineeringCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Na Eun Ryu
- School of Integrative Engineering, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive SurgeryChung‐Ang University HospitalSeoulRepublic of Korea
| | - Chan Yeong Heo
- Department of Biomedical EngineeringCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamRepublic of Korea
- Interdisciplinary Program for BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgeryCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung‐Ang UniversitySeoulRepublic of Korea
| |
Collapse
|
16
|
Brock CK, Hebert KL, Artiles M, Wright MK, Cheng T, Windsor GO, Nguyen K, Alzoubi MS, Collins-Burow BM, Martin EC, Lau FH, Bunnell BA, Burow ME. A Role for Adipocytes and Adipose Stem Cells in the Breast Tumor Microenvironment and Regenerative Medicine. Front Physiol 2021; 12:751239. [PMID: 34912237 PMCID: PMC8667576 DOI: 10.3389/fphys.2021.751239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity rates are climbing, representing a confounding and contributing factor to many disease states, including cancer. With respect to breast cancer, obesity plays a prominent role in the etiology of this disease, with certain subtypes such as triple-negative breast cancer having a strong correlation between obesity and poor outcomes. Therefore, it is critical to examine the obesity-related alterations to the normal stroma and the tumor microenvironment (TME). Adipocytes and adipose stem cells (ASCs) are major components of breast tissue stroma that have essential functions in both physiological and pathological states, including energy storage and metabolic homeostasis, physical support of breast epithelial cells, and directing inflammatory and wound healing responses through secreted factors. However, these processes can become dysregulated in both metabolic disorders, such as obesity and also in the context of breast cancer. Given the well-established obesity-neoplasia axis, it is critical to understand how interactions between different cell types in the tumor microenvironment, including adipocytes and ASCs, govern carcinogenesis, tumorigenesis, and ultimately metastasis. ASCs and adipocytes have multifactorial roles in cancer progression; however, due to the plastic nature of these cells, they also have a role in regenerative medicine, making them promising tools for tissue engineering. At the physiological level, the interactions between obesity and breast cancer have been examined; here, we will delineate the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment. We will define the current state of understanding of how adipocytes and ASCs contribute to tumor progression through their role in the tumor microenvironment and how this is altered in the context of obesity. We will also introduce recent developments in utilizing adipocytes and ASCs in novel approaches to breast reconstruction and regenerative medicine.
Collapse
Affiliation(s)
- Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Katherine L Hebert
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Maria Artiles
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Maryl K Wright
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Thomas Cheng
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gabrielle O Windsor
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madlin S Alzoubi
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bridgette M Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Frank H Lau
- Section of Plastic & Reconstructive Surgery, Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
17
|
Chen A, Zhang L, Chen P, Zhang C, Tang S, Chen X. Comparison of the Efficacy and Safety of Cell-Assisted Lipotransfer and Platelet-Rich Plasma Assisted Lipotransfer: What Should We Expect from a Systematic Review with Meta-Analysis? Cell Transplant 2021; 30:963689721989607. [PMID: 33845642 PMCID: PMC8058798 DOI: 10.1177/0963689721989607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to the high absorption rate of traditional autologous fat grafting, cell-assisted lipotransfer (CAL) and platelet-rich plasma (PRP)-assisted lipotransfer were developed. The purpose of this article was to evaluate the efficacy and safety of CAL and PRP in promoting the survival of autologous fat grafting through systematic review and meta-analysis. We searched Pubmed, Cochrane Library, Web of Science, and EMBASE for clinical studies on CAL and PRP-assisted lipotransfer published from January 2010 to January 2020. Then a meta-analysis was performed to assess the efficacy of CAL and PRP-assisted lipotransfer through data analysis of fat survival rate. We also assessed the incidence of complications and multiple operations to analyze their safety. A total of 36 studies (1697 patients) were included in this review. Regardless of the recipient area, CAL and PRP-assisted lipotransfer significantly improved the fat survival rate (CAL vs non-CAL: 71% vs 48%, P < 0.0001; PRP vs non-PRP: 70% vs 40%, P < 0.0001; CAL vs PRP: 71% vs 70%, P = 0.7175). However, in large-volume fat grafting, such as breast reconstruction, both increased the incidence of complications and did not decrease the frequency of multiple operations after lipotransfer. Further prospective studies are needed to evaluate the clinical benefits of CAL and PRP-assisted lipotransfer.
Collapse
Affiliation(s)
- Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Both the authors contributed equally to this article and shared the first authorship
| | - Li Zhang
- Department of Central Sterile Services Department, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Both the authors contributed equally to this article and shared the first authorship
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Mughal M, Sindali K, Man J, Roblin P. 'Fat chance': a review of adipose tissue engineering and its role in plastic and reconstructive surgery. Ann R Coll Surg Engl 2021; 103:245-249. [PMID: 33682428 DOI: 10.1308/rcsann.2020.7031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Soft tissue reconstruction remains a continuing challenge for plastic and reconstructive surgeons. Standard methods of reconstruction such as local tissue transfer and free autologous tissue transfer are successful in addressing soft tissue cover, yet they do not come without the additional morbidity of donor sites. Autologous fat transfer has been used in reconstruction of soft tissue defects in different branches of plastic surgery, specifically breast and facial defect reconstruction, while further maintaining a role in body contouring procedures. Current autologous fat transfer techniques come with the drawbacks of donor-site morbidity and, more significantly, resorption of large amounts of fat. Advancement in tissue engineering has led to the use of engineered adipose tissue structures based on adipose-derived stem cells. This enables a mechanically similar reconstruct that is abundantly available. Cosmetic and mechanical similarity with native tissue is the main clinical goal for engineered adipose tissue. Development of novel techniques in the availability of natural tissue is an exciting prospect; however, it is important to investigate the potential of cell sources and culture strategies for clinical applications. We review these techniques and their applications in plastic surgery.
Collapse
Affiliation(s)
- M Mughal
- St Thomas' Hospital, London, UK.,University College London, London, UK
| | | | - J Man
- St Thomas' Hospital, London, UK
| | | |
Collapse
|
19
|
Puls TJ, Fisher CS, Cox A, Plantenga JM, McBride EL, Anderson JL, Goergen CJ, Bible M, Moller T, Voytik-Harbin SL. Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs. Sci Rep 2021; 11:2711. [PMID: 33526826 PMCID: PMC7851166 DOI: 10.1038/s41598-021-81771-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Complete removal of cancerous tissue and preservation of breast cosmesis with a single breast conserving surgery (BCS) is essential for surgeons. New and better options would allow them to more consistently achieve this goal and expand the number of women that receive this preferred therapy, while minimizing the need for re-excision and revision procedures or more aggressive surgical approaches (i.e., mastectomy). We have developed and evaluated a regenerative tissue filler that is applied as a liquid to defects during BCS prior to transitioning to a fibrillar collagen scaffold with soft tissue consistency. Using a porcine simulated BCS model, the collagen filler was shown to induce a regenerative healing response, characterized by rapid cellularization, vascularization, and progressive breast tissue neogenesis, including adipose tissue and mammary glands and ducts. Unlike conventional biomaterials, no foreign body response or inflammatory-mediated "active" biodegradation was observed. The collagen filler also did not compromise simulated surgical re-excision, radiography, or ultrasonography procedures, features that are important for clinical translation. When post-BCS radiation was applied, the collagen filler and its associated tissue response were largely similar to non-irradiated conditions; however, as expected, healing was modestly slower. This in situ scaffold-forming collagen is easy to apply, conforms to patient-specific defects, and regenerates complex soft tissues in the absence of inflammation. It has significant translational potential as the first regenerative tissue filler for BCS as well as other soft tissue restoration and reconstruction needs.
Collapse
Affiliation(s)
| | - Carla S Fisher
- Division of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeannie M Plantenga
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Emma L McBride
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jennifer L Anderson
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Melissa Bible
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Moller
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Ling L, Mulligan JA, Ouyang Y, Shimpi AA, Williams RM, Beeghly GF, Hopkins BD, Spector JA, Adie SG, Fischbach C. Obesity-associated Adipose Stromal Cells Promote Breast Cancer Invasion Through Direct Cell Contact and ECM Remodeling. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910650. [PMID: 33692663 PMCID: PMC7939099 DOI: 10.1002/adfm.201910650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 05/17/2023]
Abstract
Obesity increases the risk and worsens the prognosis for breast cancer due, in part, to altered adipose stromal cell (ASC) behavior. Whether ASCs from obese individuals increase migration of breast cancer cells relative to their lean counterparts, however, remains unclear. To test this connection, multicellular spheroids composed of MCF10A-derived tumor cell lines of varying malignant potential and lean or obese ASCs were embedded into collagen scaffolds mimicking the elastic moduli of interstitial breast adipose tissue. Confocal image analysis suggests that tumor cells alone migrate insignificantly under these conditions. However, direct cell-cell contact with either lean or obese ASCs enables them to migrate collectively, whereby obese ASCs activate tumor cell migration more effectively than their lean counterparts. Time-resolved optical coherence tomography (OCT) imaging suggests that obese ASCs facilitate tumor cell migration by mediating contraction of local collagen fibers. Matrix metalloproteinase (MMP)-dependent proteolytic activity significantly contributes to ASC-mediated tumor cell invasion and collagen deformation. However, ASC contractility is also important, as co-inhibition of both MMPs and contractility is necessary to completely abrogate ASC-mediated tumor cell migration. These findings imply that obesity-mediated changes of ASC phenotype may impact tumor cell migration and invasion with potential implications for breast cancer malignancy in obese patients.
Collapse
Affiliation(s)
- Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey A. Mulligan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Yunxin Ouyang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | | | - Garrett F. Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Jason A. Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Division of Plastic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Abu-Shahba N, Mahmoud M, Abdel-Rasheed M, Darwish Y, AbdelKhaliq A, Mohammed E, ElHefnawi M, Azmy O. Immunomodulatory and Antioxidative potentials of adipose-derived Mesenchymal stem cells isolated from breast versus abdominal tissue: a comparative study. ACTA ACUST UNITED AC 2020; 9:18. [PMID: 33020894 PMCID: PMC7536259 DOI: 10.1186/s13619-020-00056-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) are considered ideal candidates for both research and cellular therapy due to ease of access, large yield, feasibility, and efficacy in preclinical and clinical studies. Unlike the subcutaneous abdominal fat depot, breast ASCs features are still not well recognized, limiting their possible therapeutic use. ASCs were found to exert immunomodulatory and antioxidative activities for maintaining homeostasis and functionality of diseased/damaged tissues. This study aims to investigate the immunomodulatory and antioxidative potentials of breast versus abdominal isolated ASCs to find out which anatomical site provides ASCs with better immunoregulatory and oxidative stress resistance capabilities. METHODS ASCs were isolated from abdominal and breast tissues. Gene expression analysis was conducted for a panel of immunomodulatory and antioxidative genes, as well as adipokines and proliferation genes. Flow cytometric analysis of a group of immunomodulatory surface proteins was also performed. Finally, the significantly expressed genes have undergone protein-protein interaction and functional enrichment in silico analyses. RESULTS Our results revealed similar morphological and phenotypic characteristics for both breast and abdominal ASCs. However, a significant elevation in the expression of two potent immunosuppressive genes, IL-10 and IDO as well as the expression of the multifaceted immunomodulatory adipokine, visfatin, was detected in breast versus abdominal ASCs. Moreover, a significant overexpression of the antioxidative genes, GPX1, SIRT5, and STAT3 and the proliferation marker, Ki67, was also observed in breast ASCs relative to abdominal ones. In silico analysis showed that both of the differentially upregulated immunomodulatory and antioxidative mediators integratively involved in multiple biological processes and pathways indicating their functional association. CONCLUSION Breast ASCs possess superior immunomodulatory and antioxidative capabilities over abdominal ASCs. Our findings shed light on the possible therapeutic applications of breast ASCs in immune-related and oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt. .,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt.
| | - Marwa Mahmoud
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Department of Reproductive Health Research, Medical Research Division. National Research Centre, Cairo, Egypt
| | - Yasmine Darwish
- Plastic and Reconstructive Surgery Unit, General Surgery Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad AbdelKhaliq
- Plastic and Reconstructive Surgery Unit, General Surgery Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Eman Mohammed
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Centre of Excellence for Medical Research, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Osama Azmy
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Department of Reproductive Health Research, Medical Research Division. National Research Centre, Cairo, Egypt
| |
Collapse
|
22
|
Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction. Stem Cell Rev Rep 2020; 17:523-538. [PMID: 32929604 DOI: 10.1007/s12015-020-10038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Tissue engineering using Adipose Derived Stromal Cells (ADSCs) has emerged as a novel regenerative medicine approach to replace and reconstruct soft tissue damaged or lost as a result of disease process or therapeutic surgical resection. ADSCs are an attractive cell source for soft tissue regeneration due to the fact that they are easily accessible, multipotent, non-immunogenic and pro-angiogenic. ADSC based regenerative strategies have been successfully translated to the clinical setting for the treatment of Crohn's fistulae, musculoskeletal pathologies, wound healing, and cosmetic breast augmentation (fat grafting). ADSCs are particularly attractive as a source for adipose tissue engineering as they exhibit preferential differentiation to adipocytes and support maintenance of mature adipose graft volume. The potential for reconstruction with an autologous tissue sources and a natural appearance and texture is particularly appealing in the setting of breast cancer; up to 40% of patients require mastectomy for locoregional control and current approaches to post-mastectomy breast reconstruction (PMBR) are limited by the potential for complications at the donor and reconstruction sites. Despite their potential, the use of ADSCs in breast cancer patients is controversial due to concerns regarding oncological safety. These concerns relate to the regeneration of tissue at a site where a malignancy has been treated and the impact this may have on stimulating local disease recurrence or dissemination. Pre-clinical data suggest that ADSCs exhibit pro-oncogenic characteristics and are involved in stimulating progression, and growth of tumour cells. However, there have been conflicting reports on the oncologic outcome, in terms of locoregional recurrence, for breast cancer patients in whom ADSC enhanced fat grafting was utilised as an alternative to reconstruction for small volume defects. A further consideration which may impact the successful translation of ADSC based regenerative strategies for post cancer reconstruction is the potential effects of cancer therapy. This review aims to address the effect of malignant cells, adjuvant therapies and patient-specific factors that may influence the success of regenerative strategies using ADSCs for post cancer tissue regeneration.
Collapse
|
23
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wu Y, Wu M. Exosomes From Adipose-Derived Stem Cells: The Emerging Roles and Applications in Tissue Regeneration of Plastic and Cosmetic Surgery. Front Cell Dev Biol 2020; 8:574223. [PMID: 33015067 PMCID: PMC7511773 DOI: 10.3389/fcell.2020.574223] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are an important stem cell type separated from adipose tissue, with the properties of multilineage differentiation, easy availability, high proliferation potential, and self-renewal. Exosomes are novel frontiers of intercellular communication regulating the biological behaviors of cells, such as angiogenesis, immune modulation, proliferation, and migration. ASC-derived exosomes (ASC-exos) are important components released by ASCs paracrine, possessing multiple biological activities. Tissue regeneration requires coordinated “vital networks” of multiple growth factors, proteases, progenitors, and immune cells producing inflammatory cytokines. Recently, as cell-to-cell messengers, ASC-exos have received much attention for the fact that they are important paracrine mediators contributing to their suitability for tissue regeneration. ASC-exos, with distinct properties by encapsulating various types of bioactive cargoes, are endowed with great application potential in tissue regeneration, mechanically via the migration and proliferation of repair cells, facilitation of the neovascularization, and other specific functions in different tissues. Here, this article elucidated the research progress of ASC-exos about tissue regeneration in plastic and cosmetic surgery, including skin anti-aging therapy, dermatitis improvement, wound healing, scar removal, flap transplantation, bone tissue repair and regeneration, obesity prevention, fat grafting, breast cancer, and breast reconstruction. Deciphering the biological properties of ASC-exos will provide further insights for exploring novel therapeutic strategies of tissue regeneration in plastic and cosmetic surgery.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Vakhshori V, Bougioukli S, Sugiyama O, Kang HP, Tang AH, Park SH, Lieberman JR. Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone 2020; 138:115524. [PMID: 32622870 PMCID: PMC7423694 DOI: 10.1016/j.bone.2020.115524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The treatment of complex bone loss scenarios remains challenging. This study evaluates the efficacy of ex vivo regional gene therapy using transduced human adipose-derived stem cells (ASCs) overexpressing bone morphogenetic protein-2 (BMP-2) to treat critical-sized bone defects. METHODS Critical-sized femoral defects created surgically in immunocompromised rats were treated with ASCs transduced with a lentivirus encoding BMP-2 (Group 1, n = 14), or green fluorescent protein (Group 2, n = 5), nontransduced ASCs (Group 3, n = 5), or rhBMP-2 (Group 4, n = 14). At 12 weeks, femurs were evaluated for quantity and quality of bone formation with plain radiographs, micro-computed tomography, histology/histomorphometry, and biomechanical strength testing. RESULTS Thirteen of 14 samples in Group 1 and all 14 samples in Group 4 showed radiographic healing, while no samples in either Groups 2 or 3 healed. Groups 1 and 4 had significantly higher radiographic scores (p < 0.001), bone volume fraction (BV/TV) (p < 0.001), and bone area fraction (BA/TA) than Groups 2 and 3 (p < 0.001). Radiographic scores, BV/TV, and BA/TA were not significantly different between Groups 1 and 4. No difference with regards to mean torque, rotation at failure, torsional stiffness, and energy to failure was seen between Groups 1 and 4. CONCLUSIONS Human ASCs modified to overexpress BMP-2 resulted in abundant bone formation, with the quality of bone comparable to that of rhBMP-2. This strategy represents a promising approach in the treatment of large bone defects in the clinical setting. CLINICAL RELEVANCE Large bone defects may require sustained protein production to induce an appropriate osteoinductive response. Ex vivo regional gene therapy using a lentiviral vector has the potential to be part of a comprehensive tissue engineering strategy for treating osseous defects.
Collapse
Affiliation(s)
- Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033, United States of America.
| | - Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033, United States of America
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033, United States of America
| | - Hyunwoo P Kang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033, United States of America
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033, United States of America
| | - Sang-Hyun Park
- Orthopaedic Institute for Children, J. Vernon Luck Sr. Orthopaedic Research Center, University of California, Los Angeles, 403 West Adams Boulevard, Los Angeles, CA 90007, United States of America
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
25
|
Extensive Characterization of Mesenchymal Stem Cell Marker Expression on Freshly Isolated and In Vitro Expanded Human Adipose-Derived Stem Cells from Breast Cancer Patients. Stem Cells Int 2020; 2020:8237197. [PMID: 32655648 PMCID: PMC7320289 DOI: 10.1155/2020/8237197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
Variation in numbers and functions of cells in fat tissues may affect therapeutic outcomes and adverse events after autologous fat tissue grafting in postmastectomy breast cancer patients; however, the relevant information regarding cellular components is still incomplete. Phenotypic characterization of heterogeneous cell subsets in stromal vascular fraction (SVF) isolated from fat tissues by flow cytometry was also limited to a combination of few molecules. This study, therefore, developed a polychromatic staining panel for an in-depth characterization of freshly isolated SVF and expanded adipose-derived stem cells (ADSC) from the patients. ADSC were found predominant in SVF (~65% of CD45− cells) with a homogenous phenotype of CD13+CD31−CD34+CD45−CD73+CD90+CD105−CD146− (~94% of total ADSC). Endothelial progenitor cells (EPC) and pericytes were minor (~18% and ~11% of CD45− cells, respectively) with large heterogeneity. Downregulation of CD34 and upregulation of CD105 in ADSC were profound at passage 3, showing a phenotype similar to the classical mesenchymal stem cells from the bone marrow. Results from this study demonstrated that fat tissue collected from patients contains ADSC with a highly homogenous phenotype. The in vitro culture of these cells maintained their homogeneity with modified CD34 and CD105 expression, suggesting the expansion from a single population of ADSC.
Collapse
|
26
|
Lei C, Cai B, Chen X, Huang Z, Wang B. Introduction of ligated vessels promote the retention and regeneration of free fat: constructing a fat flap in tissue engineering chamber. Adipocyte 2020; 9:108-115. [PMID: 32125221 PMCID: PMC7153550 DOI: 10.1080/21623945.2020.1735025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Breast reconstruction with fat grafting has an unstable retention rate due to insufficient revascularization. Tissue Engineering Chamber (TEC) model can promote tissue regeneration in the chamber by introducing ligated vessels around the tissue. We introduced ligated vessels with free fat graft to investigate the retention rate and revascularization of grafted fat that in TEC model. Methods: SD rats (n=24) was divided into 3 groups randomly. Group A: Standard TEC model was constructed; Group B: the epigastric vessel bundles were dissected from the fat flap and ligated, fat flap was cut into granules and planted into the chamber; Group C: Free fat was planted in the chamber. At week 6, samples in the chamber were harvested. Results: Significant volume increase was observed in group A and B, while the volume decreased in group C (P<0.05). Regeneration morphology could be found according to the histological observation in A and B. Micro CT results showed the ligated vessels into grafted fat sprouting robustly, coordinated with volume changes. Conclusion: Fat grafts in TEC model could not only survive but also regenerate. The combination of fat graft and TEC could fabricate a vascularized fat flap, which was a promising method in breast reconstruction. Abbreviations: VOI: Volumes of Interest; TEC: Tissue Engineering Chamber; CAL: Cell Assisted Lipotransfer.
Collapse
Affiliation(s)
- Chen Lei
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Beichen Cai
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Xiaobin Chen
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Zhiyong Huang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Biao Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
27
|
Fajka-Boja R, Szebeni GJ, Hunyadi-Gulyás É, Puskás LG, Katona RL. Polyploid Adipose Stem Cells Shift the Balance of IGF1/IGFBP2 to Promote the Growth of Breast Cancer. Front Oncol 2020; 10:157. [PMID: 32133294 PMCID: PMC7040181 DOI: 10.3389/fonc.2020.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The close proximity of adipose tissue and mammary epithelium predispose involvement of adipose cells in breast cancer development. Adipose-tissue stem cells (ASCs) contribute to tumor stroma and promote growth of cancer cells. In our previous study, we have shown that murine ASCs, which undergo polyploidization during their prolonged in vitro culturing, enhanced the proliferation of 4T1 murine breast cancer cells in IGF1 dependent manner. Aims: In the present study, our aim was to clarify the regulation of ASC-derived IGF1. Methods: 4T1 murine breast carcinoma cells were co-transplanted with visceral fat-derived ASCs (vASC) or with the polyploid ASC.B6 cell line into female BALB/c mice and tumor growth and lung metastasis were monitored. The conditioned media of vASCs and ASC.B6 cells were subjected to LC-MS/MS analysis and the production of IGFBP2 was verified by Western blotting. The regulatory effect was examined by adding recombinant IGFBP2 to the co-culture of ASC.B6 and 4T1. Akt/protein kinase B (PKB) activation was detected by Western blotting. Results: Polyploid ASCs promoted the tumor growth and metastasis more potently than vASCs with normal karyotype. vASCs produced the IGF1 regulator IGFBP2, which inhibited proliferation of 4T1 cells. Downregulation of IGFBP2 by polyploidization of ASCs and enhanced secretion of IGF1 allowed survival signaling in 4T1 cells, leading to Akt phosphorylation. Conclusions: Our results implicate that ASCs in the tumor microenvironment actively regulate the growth of breast cancer cells through the IGF/IGFBP system.
Collapse
Affiliation(s)
- Roberta Fajka-Boja
- Artificial Chromosome and Stem Cell Research Laboratory, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Gábor J Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Institute of Genetics, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Institute of Biochemistry, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Institute of Genetics, Szeged, Hungary.,Avidin Ltd., Szeged, Hungary
| | - Róbert L Katona
- Artificial Chromosome and Stem Cell Research Laboratory, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| |
Collapse
|
28
|
Conci C, Bennati L, Bregoli C, Buccino F, Danielli F, Gallan M, Gjini E, Raimondi MT. Tissue engineering and regenerative medicine strategies for the female breast. J Tissue Eng Regen Med 2019; 14:369-387. [PMID: 31825164 PMCID: PMC7065113 DOI: 10.1002/term.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
Abstract
The complexity of mammary tissue and the variety of cells involved make tissue regeneration an ambitious goal. This review, supported by both detailed macro and micro anatomy, illustrates the potential of regenerative medicine in terms of mammary gland reconstruction to restore breast physiology and morphology, damaged by mastectomy. Despite the widespread use of conventional therapies, many critical issues have been solved using the potential of stem cells resident in adipose tissue, leading to commercial products. in vitro research has reported that adipose stem cells are the principal cellular source for reconstructing adipose tissue, ductal epithelium, and nipple structures. In addition to simple cell injection, construct made by cells seeded on a suitable biodegradable scaffold is a viable alternative from a long‐term perspective. Preclinical studies on mice and clinical studies, most of which have reached Phase II, are essential in the commercialization of cellular therapy products. Recent studies have revealed that the enrichment of fat grafting with stromal vascular fraction cells is a viable alternative to breast reconstruction. Although in the future, organ‐on‐a‐chip can be envisioned, for the moment researchers are still focusing on therapies that are a long way from regenerating the whole organ, but which nevertheless prevent complications, such as relapse and loss in terms of morphology.
Collapse
Affiliation(s)
- Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Lorenzo Bennati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Chiara Bregoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Federica Buccino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesca Danielli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Michela Gallan
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Ereza Gjini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
29
|
Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S. Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. Int J Mol Sci 2019; 20:E5471. [PMID: 31684107 PMCID: PMC6862236 DOI: 10.3390/ijms20215471] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autologous therapies using adipose-derived stromal vascular fraction (AD-SVFs) and adult adipose-derived mesenchymal stem cells (AD-MSCs) warrant careful preparation of the harvested adipose tissue. Currently, no standardized technique for this preparation exists. Processing quantitative standards (PQSs) define manufacturing quantitative variables (such as time, volume, and pressure). Processing qualitative standards (PQLSs) define the quality of the materials and methods in manufacturing. The purpose of the review was to use PQSs and PQLSs to report the in vivo and in vitro results obtained by different processing kits that use different procedures (enzymatic vs. non-enzymatic) to isolate human AD-SVFs/AD-MSCs. PQSs included the volume of fat tissue harvested and reagents used, the time/gravity of centrifugation, and the time, temperature, and tilt level/speed of incubation and/or centrifugation. PQLSs included the use of a collagenase, a processing time of 30 min, kit weight, transparency of the kit components, the maintenance of a closed sterile processing environment, and the use of a small centrifuge and incubating rocker. Using a kit with the PQSs and PQLSs described in this study enables the isolation of AD-MSCs that meet the consensus quality criteria. As the discovery of new critical quality attributes (CQAs) of AD-MSCs evolve with respect to purity and potency, adjustments to these benchmark PQSs and PQLs will hopefully isolate AD-MSCs of various CQAs with greater reproducibility, quality, and safety. Confirmatory studies will no doubt need to be completed.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Barbara De Angelis
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Ashutosh Kothari
- Chief of Breast Surgery Unit, Guy's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
30
|
Baek W, Kim MS, Park DB, Joo OY, Lee WJ, Roh TS, Sung HJ. Three-Dimensionally Printed Breast Reconstruction Devices Facilitate Nanostructure Surface-Guided Healthy Lipogenesis. ACS Biomater Sci Eng 2019; 5:4962-4969. [PMID: 33455243 DOI: 10.1021/acsbiomaterials.9b00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significant fat loss is common in silicon implantation with autologous lipofilling, the most popular type of breast surgery. To overcome this, a 3D-printed fat carrier with well-defined 200 μm radial string and spoke structure was developed, followed by an electrospun nanofiber coating on the entire device surface to promote fat adhesion. This device enhanced the mechanical properties comparably to commercial acellular dermal matrix for in vitro adipogenic differentiation of adipose-derived stem cells, implantation compatibility without foreign body responses, and maintenance of healthy lipid droplet structures. These results show the promising potential of this device to facilitate surface-guided lipogenesis in composite breast reconstruction surgery.
Collapse
Affiliation(s)
- Wooyeol Baek
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | | | | | - Oh Young Joo
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Jai Lee
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai Suk Roh
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hak-Joon Sung
- Medical Engineering, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| |
Collapse
|
31
|
O'Halloran N, Khan S, Gilligan K, Dwyer R, Kerin M, Lowery A. Oncological Risk in Autologous Stem Cell Donation for Novel Tissue-Engineering Approaches to Postmastectomy Breast Regeneration. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419864896. [PMID: 31555047 PMCID: PMC6753512 DOI: 10.1177/1178223419864896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/30/2023]
Abstract
Adipose tissue engineering using adipose-derived stem cells (ADSCs) has emerged
as an opportunity to develop novel approaches to postmastectomy breast
reconstruction with the potential for an autologous tissue source with a natural
appearance and texture. As of yet, the role of ADSCs in breast cancer
development and metastasis is not completely understood; therefore, we must
consider the oncological safety of employing an autologous source of ADSCs for
use in breast regeneration. This study investigated the regenerative properties
of ADSCs isolated from breast cancer patients, including those who had received
neoadjuvant chemotherapy, and noncancer controls. The ADSCs were characterised
for several parameters central to tissue regeneration, including cell viability,
proliferation, differentiation potential, and cytokine secretion. A stem cell
population was isolated and confirmed by flow cytometry and multilineage
differentiation. There was no difference in cell phenotype or surface antigen
expression between ADSCs from different sources. Adipose-derived stem cells
isolated from the breast of cancer patients exhibited reduced adipogenic
differentiation potential compared with ADSCs from other sources. The greatest
degree of adipogenic differentiation was observed in ADSCs isolated from the
subcutaneous abdominal fat of noncancer controls. The proliferation rate of
ADSCs isolated from the breast of cancer patients was increased compared with
other sources; however, it was decreased in ADSCs isolated from breast cancer
patients who had recently been treated with neoadjuvant chemotherapy. A number
of cytokines were detected in the cell conditioned media of ADSCs from different
sources, including matrix metalloproteinase-2 (MMP-2), which was detected at
higher levels in the secretome of ADSCs from breast cancer patients compared
with noncancer controls. This study provides important information relating to
the suitability of ADSCs as an autologous cell source for adipose tissue
engineering in postcancer reconstruction. Results indicate that while the
surface phenotype does not differ, the differentiation capacity, proliferative
rate, and secreted cytokine profile are affected by the presence or treatment of
breast cancer. These findings support further investigation into the
regenerative potential of these ADSCs, if they are to be considered in clinical
reconstructive strategies.
Collapse
Affiliation(s)
- Niamh O'Halloran
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Sonja Khan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Katie Gilligan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Roisin Dwyer
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Michael Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Aoife Lowery
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
32
|
Scioli MG, Storti G, D'Amico F, Gentile P, Kim BS, Cervelli V, Orlandi A. Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. Int J Mol Sci 2019; 20:ijms20133296. [PMID: 31277510 PMCID: PMC6651808 DOI: 10.3390/ijms20133296] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
33
|
Gentile P, Garcovich S. Concise Review: Adipose-Derived Stem Cells (ASCs) and Adipocyte-Secreted Exosomal microRNA (A-SE-miR) Modulate Cancer Growth and proMote Wound Repair. J Clin Med 2019; 8:jcm8060855. [PMID: 31208047 PMCID: PMC6616456 DOI: 10.3390/jcm8060855] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been routinely used from several years in regenerative surgery without any definitive statement about their potential pro-oncogenic or anti-oncogenic role. ASCs has proven to favor tumor progression in several experimental cancer models, playing a central role in regulating tumor invasiveness and metastatic potential through several mechanisms, such as the paracrine release of exosomes containing pro-oncogenic molecules and the induction of epithelial-mesenchymal transition. However, the high secretory activity and the preferential tumor-targeting make also ASCs a potentially suitable vehicle for delivery of new anti-cancer molecules in tumor microenvironment. Nanotechnologies, viral vectors, drug-loaded exosomes, and micro-RNAs (MiR) represent additional new tools that can be applied for cell-mediated drug delivery in a tumor microenvironment. Recent studies revealed that the MiR play important roles in paracrine actions on adipose-resident macrophages, and their dysregulation has been implicated in the pathogenesis of obesity, diabetes, and diabetic complications as wounds. Numerous MiR are present in adipose tissues, actively participating in the regulation of adipogenesis, adipokine secretion, inflammation, and inter-cellular communications in the local tissues. These results provide important insights into Adipocyte-secreted exosomal microRNA (A-SE-MiR) function and they suggest evaluating the potential role of A-SE-MiR in tumor progression, the mechanisms underlying ASCs-cancer cell interplay and clinical safety of ASCs-based therapies.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
34
|
Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of Human Adipose-Derived Stem Cells for Use in Ex Vivo Regional Gene Therapy for Bone Repair. Hum Gene Ther Methods 2018; 29:269-277. [PMID: 30280937 DOI: 10.1089/hgtb.2018.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of an ex vivo regional gene therapy clinical pathway using adipose-derived stem cells (ASCs) may require cryopreservation for cell culture, storage, and transport prior to clinical use. ASCs isolated from five donors were transduced with a lentiviral vector containing BMP-2. Three groups were assessed: transduction without cell freezing (group 1), freezing of cells for 3 weeks followed by transduction (group 2), and cell transduction prior to freezing (group 3). Nontransduced cells were used as a control. The cluster of differentiation (CD) marker profiles, cell number, BMP-2 production, and osteogenic potential were measured. The CD marker profile (CD44, CD73, CD90, and CD105) was unchanged after cryopreservation. Cell number was equivalent among cryopreservation protocols in transduced and nontransduced cells. There was a trend toward decreased BMP-2 production in group 3 compared to groups 1 and 2. Osteogenic potential based on Alizarin red concentration was higher in group 2 compared to group 3, with no difference compared to group 1. Freezing ASCs prior to transduction with a lentiviral vector containing BMP-2 has no detrimental effect on cell number, BMP-2 production, osteogenic potential, or immunophenotype. Transduction prior to freezing, however, may limit the BMP-2 production and potential osteogenic differentiation of the ASCs.
Collapse
Affiliation(s)
- Venus Vakhshori
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Sofia Bougioukli
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Osamu Sugiyama
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Amy Tang
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Robert Yoho
- Cosmetic surgery private practice, Visalia, California
| | - Jay R Lieberman
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| |
Collapse
|
35
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
36
|
Miana VV, González EAP. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018; 12:822. [PMID: 29662535 PMCID: PMC5880231 DOI: 10.3332/ecancer.2018.822] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are mesenchymal cells with the capacity for self-renewal and multipotential differentiation. This multipotentiality allows them to become adipocytes, chondrocytes, myocytes, osteoblasts and neurocytes among other cell lineages. Stem cells and, in particular, adipose tissue-derived cells, play a key role in reconstructive or tissue engineering medicine as they have already proven effective in developing new treatments. The purpose of this work is to review the applications of ADSCs in various areas of regenerative medicine, as well as some of the risks associated with treatment with ADSCs in neoplastic disease.
Collapse
Affiliation(s)
- Vanesa Verónica Miana
- Centre for Advanced Studies in Humanities and Health Sciences, Interamerican Open University, Buenos Aires, Argentina
| | - Elio A Prieto González
- Centre for Advanced Studies in Humanities and Health Sciences, Interamerican Open University, Buenos Aires, Argentina
| |
Collapse
|
37
|
Luo G, He Y, Yu X. Bone Marrow Adipocyte: An Intimate Partner With Tumor Cells in Bone Metastasis. Front Endocrinol (Lausanne) 2018; 9:339. [PMID: 30013512 PMCID: PMC6036292 DOI: 10.3389/fendo.2018.00339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
The high incidences of bone metastasis in patients with breast cancer, prostate cancer and lung cancer still remains a puzzling issue. The "seeds and soil" hypothesis suggested that bone marrow (soil) may provide a favorable "niche" for tumor cells (seed). When seeking for effective ways to prevent and treat tumor bone metastasis, most researchers focus on tumor cells (seed) but not the bone marrow microenvironment (soil). In reality, only a fraction of circulating tumor cells (CTCs) could survive and colonize in bone. Thus, the bone marrow microenvironment could ultimately determine the fate of tumor cells that have migrated to bone. Bone marrow adipocytes (BMAs) are abundant in the bone marrow microenvironment. Mounting evidence suggests that BMAs may play a dominant role in bone metastasis. BMAs could directly provide energy for tumor cells, enhance the tumor cell proliferation, and resistance to chemotherapy and radiotherapy. BMAs are also known for releasing some inflammatory factors and adipocytokines to promote or inhibit bone metastasis. In this review, we made a comprehensive summary for the interaction between BMAs and bone metastasis. More importantly, we discussed the potentially promising methods for the prevention and treatment of bone metastasis. Genetic disruption and pharmaceutical inhibition may be effective in inhibiting the formation and pro-tumor functions of BMAs.
Collapse
Affiliation(s)
- Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuedong He
- Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Yuedong He
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|