1
|
Ladakis DC, Vreones M, Blommer J, Harrison KL, Smith MD, Vasileiou ES, Moussa H, Ahmadi G, Ezzedin O, DuVal AL, Dewey BE, Prince JL, Fitzgerald KC, Sotirchos ES, Saidha S, Calabresi PA, Kapogiannis D, Bhargava P. Synaptic Protein Loss in Extracellular Vesicles Reflects Brain and Retinal Atrophy in People With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200257. [PMID: 38754047 PMCID: PMC11131364 DOI: 10.1212/nxi.0000000000200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES To assess whether the rate of change in synaptic proteins isolated from neuronally enriched extracellular vesicles (NEVs) is associated with brain and retinal atrophy in people with multiple sclerosis (MS). METHODS People with MS were followed with serial blood draws, MRI (MRI), and optical coherence tomography (OCT) scans. NEVs were immunocaptured from plasma, and synaptopodin and synaptophysin proteins were measured using ELISA. Subject-specific rates of change in synaptic proteins, as well as brain and retinal atrophy, were determined and correlated. RESULTS A total of 50 people with MS were included, 46 of whom had MRI and 45 had OCT serially. The rate of change in NEV synaptopodin was associated with whole brain (rho = 0.31; p = 0.04), cortical gray matter (rho = 0.34; p = 0.03), peripapillary retinal nerve fiber layer (rho = 0.37; p = 0.01), and ganglion cell/inner plexiform layer (rho = 0.41; p = 0.006) atrophy. The rate of change in NEV synaptophysin was also correlated with whole brain (rho = 0.31; p = 0.04) and cortical gray matter (rho = 0.31; p = 0.049) atrophy. DISCUSSION NEV-derived synaptic proteins likely reflect neurodegeneration and may provide additional circulating biomarkers for disease progression in MS.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Michael Vreones
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Joseph Blommer
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kimystian L Harrison
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Matthew D Smith
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Eleni S Vasileiou
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Hussein Moussa
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Gelareh Ahmadi
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Omar Ezzedin
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Anna L DuVal
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Blake E Dewey
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jerry L Prince
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kathryn C Fitzgerald
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Elias S Sotirchos
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Shiv Saidha
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Dimitrios Kapogiannis
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Pavan Bhargava
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
2
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
4
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
5
|
Polyák H, Cseh EK, Bohár Z, Rajda C, Zádori D, Klivényi P, Toldi J, Vécsei L. Cuprizone markedly decreases kynurenic acid levels in the rodent brain tissue and plasma. Heliyon 2021; 7:e06124. [PMID: 33553777 PMCID: PMC7856478 DOI: 10.1016/j.heliyon.2021.e06124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background The kynurenine (KYN) pathway (KP) of the tryptophan (TRP) metabolism seems to play a role in the pathomechanism of multiple sclerosis (MS). Cuprizone (CPZ) treated animals develop both demyelination (DEM) and remyelination (REM) in lack of peripheral immune response, such as the lesion pattern type III and IV in MS, representing primary oligodendrogliopathy. Objective To measure the metabolites of the KP in the CPZ treated animals, including TRP, KYN and kynurenic acid (KYNA). We proposed that KYNA levels might be decreased in the CPZ-induced demyelinating phase of the animal model of MS, which model represents the progressive phase of the disease. Methods A total of 64 C57Bl/6J animals were used for the study. Immunohistochemical (IHC) measurements were performed to prove the effect of CPZ, whereas high-performance liquid chromatography (HPLC) was used to quantify the metabolites of the KP (n = 10/4 groups; DEM, CO1, REM, CO2). Results IHC measurements proved the detrimental effects of CPZ. HPLC measurements demonstrated a decrease of KYNA in the hippocampus (p < 0.05), somatosensory cortex (p < 0.01) and in plasma (p < 0.001). Conclusion This is the first evidence of marked reduction in KYNA levels in a non-immune mediated model of MS. Our results suggest an involvement of the KP in the pathomechanism of MS, which needs to be further elucidated.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Centre of Excellence, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
- Corresponding author.
| |
Collapse
|
6
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
7
|
Colombo E, Pascente R, Triolo D, Bassani C, De Angelis A, Ruffini F, Ottoboni L, Comi G, Martino G, Farina C. Laquinimod Modulates Human Astrocyte Function and Dampens Astrocyte-Induced Neurotoxicity during Inflammation. Molecules 2020; 25:E5403. [PMID: 33218208 PMCID: PMC7699283 DOI: 10.3390/molecules25225403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Astrocytes greatly participate to inflammatory and neurotoxic reactions occurring in neurodegenerative diseases and are valuable pharmacological targets to support neuroprotection. Here we used human astrocytes generated from reprogrammed fibroblasts as a cellular model to study the effect of the compound Laquinimod and its active metabolite de-Laquinimod on astrocyte functions and the astrocyte-neuron interaction. We show that human iAstrocytes expressed the receptor for the inflammatory mediator IL1 and responded to it via nuclear translocation of NFκB, an event that did not occur if cells were treated with Laquinimod, indicating a direct anti-inflammatory activity of the drug on the human astrocyte. Similarly, while exposure to IL1 downregulated glial glutamate transporters GLAST and GLT1, treatment with Laquinimod supported maintenance of physiological levels of these proteins despite the inflammatory milieu. Laquinimod also induced nuclear translocation of the aryl hydrocarbon receptor (AHR), suggesting that drug action was mediated by activation of the AHR pathway. However, the drug was effective despite AHR inhibition via CH223191, indicating that AHR signaling in the astrocyte is dispensable for drug responses. Finally, in vitro experiments with rat spinal neurons showed that laquinimod did not exert neuroprotection directly on the neuron but dampened astrocyte-induced neurodegeneration. Our findings indicate that fibroblast-derived human astrocytes represent a suitable model to study astrocyte-neuron crosstalk and demonstrate indirect, partial neuroprotective efficacy for laquinimod.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Rosaria Pascente
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Daniela Triolo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Claudia Bassani
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Anthea De Angelis
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Francesca Ruffini
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Linda Ottoboni
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Giancarlo Comi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| | - Gianvito Martino
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.C.); (R.P.); (D.T.); (C.B.); (A.D.A.); (F.R.); (L.O.); (G.C.); (G.M.)
| |
Collapse
|
8
|
Jiang N, Li Z, Li Z, Zhang Y, Yu Z, Wan P, Zhu Y, Li Y, Su W, Zhuo Y. Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury. Int Immunopharmacol 2020; 88:106989. [PMID: 33182069 DOI: 10.1016/j.intimp.2020.106989] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 09/07/2020] [Indexed: 11/15/2022]
Abstract
Retinal ischemia/reperfusion (I/R) occurs in various vision disabled ocular diseases, involved in acute glaucoma, diabetic retinopathy, ischemic optic neuropathy, hypertensive retinopathy and retinal vascular occlusion. Laquinimod (LQ), a new type of immunosuppressant, has been reported to exert anti-inflammatory effects on autoimmune diseases. This research aims to investigate the protective effect of LQ on I/R damage by focusing on inhibiting dysregulated neuroinflammation and neuronal apoptosis. In our study, mice were treated with LQ after high intraocular pressure (IOP)-induced retinal I/R injury. The data showed that LQ significantly attenuated high IOP-induced retinal ganglion cell (RGC) death and inner plexiform layer (IPL) thinning and inhibited microglial activation. The results of qRT-PCR, flow cytometry and Luminex multiplex assays demonstrated the anti-inflammatory action of LQ in BV2 cells stimulated with lipopolysaccharide (LPS). In addition, primary RGC apoptosis induced by oxygen-glucose deprivation/reperfusion (OGD/R) was also directly suppressed by LQ. Importantly, LQ inhibited the expression of cleaved caspase-8 and the downstream NLRP3 inflammasome and IL-1β. In conclusion, our findings offer the first evidence that LQ treatment prevents retinal I/R damage. Furthermore, LQ could directly inhibit RGC apoptosis. Caspase-8 activation and subsequent inflammation can also be suppressed by LQ, which suggests that LQ may act through inhibiting the caspase-8 pathway. This study demonstrates a new mechanism of LQ and provides beneficial preclinical data for the clinical application of LQ.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ziyu Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peixing Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
10
|
Laquinimod ameliorates secondary brain inflammation. Neurobiol Dis 2019; 134:104675. [PMID: 31731041 DOI: 10.1016/j.nbd.2019.104675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that a degenerative processes within the brain can trigger the formation of new, focal inflammatory lesions in Multiple Sclerosis (MS). Here, we used a novel pre-clinical MS animal model to test whether the amelioration of degenerative brain events reduces the secondary recruitment of peripheral immune cells and, in consequence, inflammatory lesion development. Neural degeneration was induced by a 3 weeks cuprizone intoxication period. To mitigate the cuprizone-induced pathology, animals were treated with Laquinimod (25 mg/kg) during the cuprizone-intoxication period. At the beginning of week 6, encephalitogenic T cell development in peripheral lymphoid organs was induced by the immunization with myelin oligodendrocyte glycoprotein 35-55 peptide (i.e., Cup/EAE). Demyelination, axonal injury and reactive gliosis were determined by immunohistochemistry. Positron emission tomography (PET) imaging was performed to analyze glia activation in vivo. Vehicle-treated cuprizone mice displayed extensive callosal demyelination, glia activation and enhanced TSPO-ligand binding. This cuprizone-induced pathology was profoundly ameliorated in mice treated with Laquinimod. In vehicle-treated Cup/EAE mice, the cuprizone-induced pathology triggered massive peripheral immune cell recruitment into the forebrain, evidenced by multifocal perivascular inflammation, glia activation and neuro-axonal injury. While anti myelin oligodendrocyte glycoprotein 35-55 peptide immune responses were comparable in vehicle- and Laquinimod-treated Cup/EAE mice, the cuprizone-triggered immune cell recruitment was ameliorated by the Laquinimod treatment. This study clearly illustrates that amelioration of a primary brain-intrinsic degenerative process secondary halts peripheral immune cell recruitment and, in consequence, inflammatory lesion development. These findings have important consequences for the interpretation of the results of clinical studies.
Collapse
|
11
|
Nyamoya S, Steinle J, Chrzanowski U, Kaye J, Schmitz C, Beyer C, Kipp M. Laquinimod Supports Remyelination in Non-Supportive Environments. Cells 2019; 8:cells8111363. [PMID: 31683658 PMCID: PMC6912710 DOI: 10.3390/cells8111363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/20/2023] Open
Abstract
Inflammatory demyelination, which is a characteristic of multiple sclerosis lesions, leads to acute functional deficits and, in the long term, to progressive axonal degeneration. While remyelination is believed to protect axons, the endogenous-regenerative processes are often incomplete or even completely fail in many multiple sclerosis patients. Although it is currently unknown why remyelination fails, recurrent demyelination of previously demyelinated white matter areas is one contributing factor. In this study, we investigated whether laquinimod, which has demonstrated protective effects in active multiple sclerosis patients, protects against recurrent demyelination. To address this, male mice were intoxicated with cuprizone for up to eight weeks and treated with either a vehicle solution or laquinimod at the beginning of week 5, where remyelination was ongoing. The brains were harvested and analyzed by immunohistochemistry. At the time-point of laquinimod treatment initiation, oligodendrocyte progenitor cells proliferated and maturated despite ongoing demyelination activity. In the following weeks, myelination recovered in the laquinimod- but not vehicle-treated mice, despite continued cuprizone intoxication. Myelin recovery was paralleled by less severe microgliosis and acute axonal injury. In this study, we were able to demonstrate that laquinimod, which has previously been shown to protect against cuprizone-induced oligodendrocyte degeneration, exerts protective effects during oligodendrocyte progenitor differentiation as well. By this mechanism, laquinimod allows remyelination in non-supportive environments. These results should encourage further clinical studies in progressive multiple sclerosis patients.
Collapse
Affiliation(s)
- Stella Nyamoya
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Julia Steinle
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Joel Kaye
- AyalaPharma, VP Research & Nonclinical Development, Rehovot 7670104, Israel.
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Markus Kipp
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
- Centre for Transdisciplinary Neurosciences, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
12
|
Wilmes AT, Reinehr S, Kühn S, Pedreiturria X, Petrikowski L, Faissner S, Ayzenberg I, Stute G, Gold R, Dick HB, Kleiter I, Joachim SC. Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model. J Neuroinflammation 2018; 15:183. [PMID: 29903027 PMCID: PMC6002998 DOI: 10.1186/s12974-018-1208-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The oral immunomodulatory agent laquinimod is currently evaluated for multiple sclerosis (MS) treatment. Phase II and III studies demonstrated a reduction of degenerative processes. In addition to anti-inflammatory effects, laquinimod might have neuroprotective properties, but its impact on the visual system, which is often affected by MS, is unknown. The aim of our study was to investigate potential protective effects of laquinimod on the optic nerve and retina in an experimental autoimmune encephalomyelitis (EAE) model. METHODS We induced EAE in C57/BL6 mice via MOG35-55 immunization. Animals were divided into an untreated EAE group, three EAE groups receiving laquinimod (1, 5, or 25 mg/kg daily), starting the day post-immunization, and a non-immunized control group. Thirty days post-immunization, scotopic electroretinograms were carried out, and mice were sacrificed for histopathology (HE, LFB), immunohistochemistry (MBP, Iba1, Tmem119, F4/80, GFAP, vimentin, Brn-3a, cleaved caspase 3) of the optic nerve and retina, and retinal qRT-PCR analyses (Brn-3a, Iba1, Tmem119, AMWAP, CD68, GFAP). To evaluate the effect of a therapeutic approach, EAE animals were treated with 25 mg/kg laquinimod from day 16 when 60% of the animals had developed clinical signs of EAE. RESULTS Laquinimod reduced neurological EAE symptoms and improved the neuronal electrical output of the inner nuclear layer compared to untreated EAE mice. Furthermore, cellular infiltration, especially recruited phagocytes, and demyelination in the optic nerve were reduced. Microglia were diminished in optic nerve and retina. Retinal macroglial signal was reduced under treatment, whereas in the optic nerve macroglia were not affected. Additionally, laquinimod preserved retinal ganglion cells and reduced apoptosis. A later treatment with laquinimod in a therapeutic approach led to a reduction of clinical signs and to an improved b-wave amplitude. However, no changes in cellular infiltration and demyelination of the optic nerves were observed. Also, the number of retinal ganglion cells remained unaltered. CONCLUSION From our study, we deduce neuroprotective and anti-inflammatory effects of laquinimod on the optic nerve and retina in EAE mice, when animals were treated before any clinical signs were noted. Given the fact that the visual system is frequently affected by MS, the agent might be an interesting subject of further neuro-ophthalmic investigations.
Collapse
Affiliation(s)
- Anna T Wilmes
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sandra Kühn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Xiomara Pedreiturria
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Laura Petrikowski
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
13
|
Bonfiglio T, Olivero G, Vergassola M, Di Cesare Mannelli L, Pacini A, Iannuzzi F, Summa M, Bertorelli R, Feligioni M, Ghelardini C, Pittaluga A. Environmental training is beneficial to clinical symptoms and cortical presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. Neuropharmacology 2018; 145:75-86. [PMID: 29402503 DOI: 10.1016/j.neuropharm.2018.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/08/2023]
Abstract
The effect of "prophylactic" environmental stimulation on clinical symptoms and presynaptic defects in mice suffering from the experimental autoimmune encephalomyelitis (EAE) at the acute stage of disease (21 ± 1 days post immunization, d.p.i.) was investigated. In EAE mice raised in an enriched environment (EE), the clinical score was reduced when compared to EAE mice raised in standard environment (SE).Concomitantly, gain of weight and increased spontaneous motor activity and curiosity were observed, suggesting increased well-being in mice. Impaired glutamate exocytosis and cyclic adenosine monophosphate (cAMP) production in cortical terminals of SE-EAE mice were evident at 21 ± 1 d.p.i.. Differently, the 12 mM KCl-evoked glutamate exocytosis from cortical synaptosomes of EE-EAE mice was comparable to that observed in SE and EE-control mice, but significantly higher than that in SE-EAE mice. Similarly, the 12 mM KCl-evoked cAMP production in EE-EAE mice cortical synaptosomes recovered to the level observed in SE and EE-control mice. MUNC-18 and SNAP25 contents, but not Syntaxin-1a and Synaptotagmin 1 levels, were increased in cortical synaptosomes from EE-EAE mice when compared to SE-EAE mice. Circulating IL-1β was increased in the spinal cord, but not in the cortex, of SE-EAE mice, and it did not recover in EE-EAE mice. Inflammatory infiltrates were reduced in the cortex but not in the spinal cord of EE-EAE mice. Demyelination was observed in the spinal cord; EE significantly diminished it. We conclude that "prophylactic" EE is beneficial to synaptic derangements and preserves glutamate transmission in the cortex of EAE mice. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- T Bonfiglio
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - G Olivero
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - M Vergassola
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pacini
- Department of Experimental and Clinical Medicine, DMSC, Section of Anatomy and Histology, University of Florence, Italy
| | - F Iannuzzi
- EBRI-European Brain Research Institute, Rome, Italy
| | - M Summa
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - R Bertorelli
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - M Feligioni
- EBRI-European Brain Research Institute, Rome, Italy; Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pittaluga
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
14
|
Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation 2018; 15:5. [PMID: 29304807 PMCID: PMC5756343 DOI: 10.1186/s12974-017-1048-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Laquinimod is an immunomodulatory drug under clinical investigation for the treatment of the progressive form of multiple sclerosis (MS) with both anti-inflammatory and neuroprotective effects. Excitotoxicity, a prominent pathophysiological feature of MS and of its animal model, experimental autoimmune encephalomyelitis (EAE), involves glutamate transporter (GluT) dysfunction in glial cells. The aim of this study was to assess whether laquinimod might exert direct neuroprotective effects by interfering with the mechanisms of excitotoxicity linked to GluT function impairments in EAE. Methods Osmotic minipumps allowing continuous intracerebroventricular (icv) infusion of laquinimod for 4 weeks were implanted into C57BL/6 mice before EAE induction. EAE cerebella were taken to perform western blot and qPCR experiments. For ex vivo experiments, EAE cerebellar slices were incubated with laquinimod before performing electrophysiology, western blot, and qPCR. Results In vivo treatment with laquinimod attenuated EAE clinical score at the peak of the disease, without remarkable effects on inflammatory markers. In vitro application of laquinimod to EAE cerebellar slices prevented EAE-linked glutamatergic alterations without mitigating astrogliosis and inflammation. Moreover, such treatment induced an increase of Slcla3 mRNA coding for the glial glutamate–aspartate transporter (GLAST) without affecting the protein content. Concomitantly, laquinimod significantly increased the levels of the glial glutamate transporter 1 (GLT-1) protein and pharmacological blockade of GLT-1 function fully abolished laquinimod anti-excitotoxic effect. Conclusions Overall, our results suggest that laquinimod protects against glutamate excitotoxicity of the cerebellum of EAE mice by bursting the expression of glial glutamate transporters, independently of its anti-inflammatory effects.
Collapse
|
15
|
Hussain RZ, Miller-Little WA, Lambracht-Washington D, Jaramillo TC, Takahashi M, Zhang S, Fu M, Cutter GR, Hayardeny L, Powell CM, Rosenberg RN, Stüve O. Laquinimod has no effects on brain volume or cellular CNS composition in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. J Neuroimmunol 2017; 309:100-110. [PMID: 28601278 DOI: 10.1016/j.jneuroim.2017.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Laquinimod is an anti-inflammatory agent with good central nervous system (CNS) bioavailability, and neuroprotective and myelorestorative properties. A clinical trial in patients with multiple sclerosis demonstrated that laquinimod significantly reduced loss of brain volume. The cellular substrate or molecular events underlying that treatment effect are unknown. In this study, we aimed to explore laquinimod's potential effects on brain volume, animal behavior, cellular numbers and composition of CNS-intrinsic cells and mononuclear cells within the CNS, amyloid beta (Aβ) accumulation and tau phosphorylation in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. METHODS Utilizing a dose response study design, four months old F1 3xTg-AD/C3H mice were treated for 10months between ages 4 and 14months with laquinimod (5, 10, or 25mg/kg), or PBS administered by oral gavage. Brain volumes were measured in a 7 Tesla magnetic resonance imager (MRI) at ages 4 and 14months. Behavioral testing included locomotor and rearing activity and the Morris water maze task. Cell numbers and immunophenotypes were assessed by multiparameter flow cytometry. Aβ deposition and tau phosphorylation were determined by immunohistochemistry. RESULTS In the F1 3xTg-AD/C3H animal model of AD, there was no detectable reduction of brain volume over a period of 10months of treatment, as there was not brain atrophy in any of the placebo or treatment groups. Laquinimod had no detectable effects on most neurobehavioral outcomes. The number or composition of CNS intrinsic cells and mononuclear subsets isolated from the CNS were not altered by laquinimod. CONCLUSION This is the first demonstration that there are no age-associated brain volume changes in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. Consequently, laquinimod had no effect on that outcome of this study. Most secondary outcomes on the effects of laquinimod on behavior and the number and composition of CNS-intrinsic cells and mononuclear cells within the CNS were also negative.
Collapse
Affiliation(s)
- Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Tom C Jaramillo
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Masaya Takahashi
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, USA; Advanced Imaging Center, University of Texas Southwestern Medical Center at Dallas, USA
| | - Shanrong Zhang
- Advanced Imaging Center, University of Texas Southwestern Medical Center at Dallas, USA
| | - Min Fu
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, USA
| | | | - Craig M Powell
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center at Dallas, USA; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany; Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, USA.
| |
Collapse
|
16
|
Laquinimod enhances central nervous system barrier functions. Neurobiol Dis 2017; 102:60-69. [PMID: 28235673 DOI: 10.1016/j.nbd.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Laquinimod is currently being tested as a therapeutic drug in multiple sclerosis. However, its exact mechanism of action is still under investigation. Tracking of fluorescently-tagged encephalitogenic T cells during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, revealed that laquinimod significantly reduces the invasion of pathogenic effector T cells into the CNS tissue. T-cell activation, differentiation and amplification within secondary lymphoid organs after immunization with myelin antigen, their migratory capacity and re-activation within the nervous tissue were either only mildly affected or remained unchanged. Instead, laquinimod directly impacted the functionality of the CNS vasculature. The expression of tight junction proteins p120 and ZO-1 in human brain endothelial cells was up-regulated upon laquinimod treatment, resulting in a significant increase in the transendothelial electrical resistance of confluent monolayers of brain endothelial cells. Similarly, expression of the adhesion molecule activated leukocyte cell adhesion molecule (ALCAM) and inflammatory chemokines CCL2 and IP-10 was suppressed, leading to a significant reduction in the migration of memory TH1 and TH17 lymphocytes across the blood brain barrier (BBB). Our data indicate that laquinimod exerts its therapeutic effects by tightening the BBB and limiting parenchymal invasion of effector T cells, thereby reducing CNS damage.
Collapse
|
17
|
Bonfiglio T, Olivero G, Merega E, Di Prisco S, Padolecchia C, Grilli M, Milanese M, Di Cesare Mannelli L, Ghelardini C, Bonanno G, Marchi M, Pittaluga A. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis. PLoS One 2017; 12:e0170825. [PMID: 28125677 PMCID: PMC5268435 DOI: 10.1371/journal.pone.0170825] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1-0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Cerebral Cortex/drug effects
- Cerebral Cortex/immunology
- Cerebral Cortex/pathology
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Exocytosis/drug effects
- Female
- Fingolimod Hydrochloride/pharmacology
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/pathology
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Inbred C57BL
- Neuroglia/drug effects
- Neuroglia/immunology
- Neuroglia/pathology
- Organ Specificity
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- Synapses/drug effects
- Synapses/immunology
- Synapses/pathology
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Silvia Di Prisco
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Cristina Padolecchia
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology section, University of Florence, Florence, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
18
|
Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2016; 113:E6145-E6152. [PMID: 27671624 DOI: 10.1073/pnas.1607843113] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR-/- mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases.
Collapse
|
19
|
Berg J, Mahmoudjanlou Y, Duscha A, Massa MG, Thöne J, Esser C, Gold R, Haghikia A. The immunomodulatory effect of laquinimod in CNS autoimmunity is mediated by the aryl hydrocarbon receptor. J Neuroimmunol 2016; 298:9-15. [DOI: 10.1016/j.jneuroim.2016.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/08/2016] [Indexed: 01/16/2023]
|
20
|
Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci Rep 2016; 6:31652. [PMID: 27528441 PMCID: PMC4985819 DOI: 10.1038/srep31652] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence supports a role for abnormal immune activation and inflammatory responses in Huntington disease (HD). In this study, we evaluated the therapeutic potential of laquinimod (1 and 10 mg/kg), a novel immunomodulatory agent shown to be protective in a number of neuroinflammatory conditions, in the YAC128 mouse model of HD. Treatment with laquinimod for 6 months rescued atrophy in the striatum, in certain cortical regions, and in the corpus callosum of YAC128 HD mice. Diffusion tensor imaging showed that white matter microstructural abnormalities in the posterior corpus callosum were improved following treatment with low dose (1 mg/kg) laquinimod, and were paralleled by reduced levels of interleukin-6 in the periphery of YAC128 HD mice. Functionally, treatment with laquinimod (1 and 10 mg/kg) led to modest improvements in motor function and in depressive-like behaviour. Taken together, these results suggest that laquinimod may improve some features of pathology in HD, and provides support for the role of immune activation in the pathogenesis of HD.
Collapse
|
21
|
Thalamus Degeneration and Inflammation in Two Distinct Multiple Sclerosis Animal Models. J Mol Neurosci 2016; 60:102-14. [PMID: 27491786 DOI: 10.1007/s12031-016-0790-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e., damage to axons, synapses, and nerve cell bodies. While several accepted paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early and late neurodegeneration are still in their infancy and have not been convincingly validated. It was speculated that the thalamus with its multiple reciprocal connections is sensitive to inflammatory processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. To what extent the thalamus is affected in commonly applied MS animal models is, however, not known. In this article we describe direct and indirect damage to the thalamus in two distinct MS animal models. In the cuprizone model, we observed primary oligodendrocyte stress which is followed by demyelination, microglia/astrocyte activation, and acute axonal damage. These degenerative cuprizone-induced lesions were found to be more severe in the lateral compared to the medial part of the thalamus. In MOG35-55-induced EAE, in contrast, most parts of the forebrain, including the thalamus were not directly involved in the autoimmune attack. However, important thalamic afferent fiber tracts, such as the spinothalamic tract were inflamed and demyelinated on the spinal cord level. Quantitative immunohistochemistry revealed that this spinal cord inflammatory-demyelination is associated with neuronal loss within the target region of the spinothalamic tract, namely the sensory ventral posterolateral nucleus of the thalamus. This study highlights the possibility of trans-neuronal degeneration as one mechanism of secondary neuronal damage in MS. Further studies are now warranted to investigate involved cell types and cellular mechanisms.
Collapse
|
22
|
Luessi F, Zipp F, Witsch E. Dendritic cells as therapeutic targets in neuroinflammation. Cell Mol Life Sci 2016; 73:2425-50. [PMID: 26970979 PMCID: PMC11108452 DOI: 10.1007/s00018-016-2170-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disorder of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin sheaths and neurons. There is still no cure for the disease, but drug regimens can reduce the frequency of relapses and slightly delay progression. Myeloid cells or antigen-presenting cells (APCs) such as dendritic cells (DC), macrophages, and resident microglia, are key players in both mediating immune responses and inducing immune tolerance. Mounting evidence indicates a contribution of these myeloid cells to the pathogenesis of multiple sclerosis and to the effects of treatment, the understanding of which might provide strategies for more potent novel therapeutic interventions. Here, we review recent insights into the role of APCs, with specific focus on DCs in the modulation of neuroinflammation in MS.
Collapse
Affiliation(s)
- Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Esther Witsch
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
23
|
Villoslada P. Neuroprotective therapies for multiple sclerosis and other demyelinating diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0004-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Thöne J, Linker RA. Laquinimod in the treatment of multiple sclerosis: a review of the data so far. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1111-8. [PMID: 27042003 PMCID: PMC4798201 DOI: 10.2147/dddt.s55308] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Laquinimod (ABR-215062) is a new orally available carboxamide derivative, which is currently developed for relapsing remitting (RR) and chronic progressive (CP) forms of multiple sclerosis (MS; RRMS or CPMS) as well as neurodegenerative diseases. Its mechanism of action may comprise immunomodulatory effects on T-cells, monocytes, and dendritic cells as well as neuroprotective effects with prominent actions on astrocytes. Laquinimod was tested in Phase II and III clinical trials in RRMS at different dosages ranging from 0.1 to 0.6 mg/day. The compound was well tolerated, yet at the dosages tested only led to moderate effects on the reduction of relapse rates as primary study endpoint in Phase III trials. In contrast, significant effects on brain atrophy and disease progression were observed. While there were no significant safety signals in the clinical trials, the Committee for Medicinal Products for Human Use (CHMP) refused marketing authorization for RRMS based on the assessment of the risk–benefit ratio with regard to data from animal studies. At present, the compound is further tested in RRMS as well as CPMS and Huntington’s disease at different concentrations. Results from these trials will further inform about the clinical benefit of laquinimod in patient cohorts with a persisting, but still insufficiently met need for safe and at the same time effective oral compounds with neuroprotective effects.
Collapse
Affiliation(s)
- Jan Thöne
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
25
|
Harlow DE, Honce JM, Miravalle AA. Remyelination Therapy in Multiple Sclerosis. Front Neurol 2015; 6:257. [PMID: 26696956 PMCID: PMC4674562 DOI: 10.3389/fneur.2015.00257] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder of the central nervous system that results in destruction of the myelin sheath that surrounds axons and eventual neurodegeneration. Current treatments approved for the treatment of relapsing forms of MS target the aberrant immune response and successfully reduce the severity of attacks and frequency of relapses. Therapies are still needed that can repair damage particularly for the treatment of progressive forms of MS for which current therapies are relatively ineffective. Remyelination can restore neuronal function and prevent further neuronal loss and clinical disability. Recent advancements in our understanding of the molecular and cellular mechanisms regulating myelination, as well as the development of high-throughput screens to identify agents that enhance myelination, have lead to the identification of many potential remyelination therapies currently in preclinical and early clinical development. One problem that has plagued the development of treatments to promote remyelination is the difficulty in assessing remyelination in patients with current imaging techniques. Powerful new imaging technologies are making it easier to discern remyelination in patients, which is critical for the assessment of these new therapeutic strategies during clinical trials. This review will summarize what is currently known about remyelination failure in MS, strategies to overcome this failure, new therapeutic treatments in the pipeline for promoting remyelination in MS patients, and new imaging technologies for measuring remyelination in patients.
Collapse
Affiliation(s)
- Danielle E Harlow
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Justin M Honce
- Department of Radiology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Augusto A Miravalle
- Department of Neurology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| |
Collapse
|
26
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
27
|
Constantinescu SE, Constantinescu CS. Laquinimod (ABR-215062) for the treatment of relapsing multiple sclerosis. Expert Rev Clin Pharmacol 2015; 9:49-57. [DOI: 10.1586/17512433.2016.1108189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Healy LM, Michell-Robinson MA, Antel JP. Regulation of human glia by multiple sclerosis disease modifying therapies. Semin Immunopathol 2015; 37:639-49. [DOI: 10.1007/s00281-015-0514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
|
29
|
D’Amico E, Leone C, Caserta C, Patti F. Oral drugs in multiple sclerosis therapy: an overview and a critical appraisal. Expert Rev Neurother 2015; 15:803-24. [DOI: 10.1586/14737175.2015.1058162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
The role of laquinimod in modulation of the immune response in relapsing-remitting multiple sclerosis: Lessons from gene expression signatures. J Neuroimmunol 2015; 283:11-6. [PMID: 26004150 DOI: 10.1016/j.jneuroim.2015.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
Abstract
Laquinimod, is a potential oral immunomodulatory drug, for relapsing-remitting multiple sclerosis (RRMS). We analyzed the blood-transcriptional changes in RRMS patients (who participated in the ALLEGRO clinical trial) at one and six months after laquinimod treatment using gene expression microarrays. The molecular effects of laquinimod were enhanced by duration of treatment and showed down-regulation of inflammatory responses mainly via TGFb signaling, and of pro-inflammatory cytokines as well as of cellular movement, including adhesion, migration and leukocyte extravasation signaling. Our results demonstrate that laquinimod suppresses inflammation through down-regulation of inflammatory cytokines and arrest of leukocyte extravasation and thereby could attenuate disease activity in RRMS patients.
Collapse
|
31
|
Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation 2015; 22:181-95. [PMID: 24852748 DOI: 10.1159/000362370] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). MS pathogenesis is a complex phenomenon that is influenced by genetic and environmental factors that lead to the dysregulation of immune homeostasis and tolerance. It has been shown that pathogenic T lymphocyte subsets, such as T helper 1 (Th1) and Th17 cells, play a crucial role in the autoimmune cascade influencing disease initiation, progression and subsequent tissue damage during MS. On the other hand, several mechanisms have been described in both patients and animal models of MS with the potential to modulate myelin-specific autoimmune responses and to facilitate amelioration of disease pathology. To this end, regulatory T cells (Tregs) are considered to be a powerful cell subset not only in the maintenance of homeostasis but also in the re-establishment of tolerance. Along these lines, other cell subsets such as dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), γδ T cells and natural killer (NK) cells have been shown to regulate the autoimmune response in the CNS under certain circumstances. This review will attempt to summarize the relevant knowledge of the regulatory mechanisms exerted by immune cells in MS that could hold the promise for the design of novel therapeutic strategies.
Collapse
|
32
|
Calabrese M, Gajofatto A, Benedetti MD. Therapeutic strategies for relapsing-remitting multiple sclerosis: a special focus on reduction of grey matter damage as measured by brain atrophy. Expert Rev Neurother 2014; 14:1417-28. [PMID: 25391525 DOI: 10.1586/14737175.2014.979794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past two decades, several pathological and radiological findings convincingly demonstrated that damage of the cortical and deep grey matter is a key issue in multiple sclerosis with a significant impact on physical and cognitive disability. Moreover, it has become increasingly evident that the effect of available therapies on the inflammatory white matter damage is not a guarantee of a meaningful effect on the neurodegenerative process mainly affecting the grey matter. Despite the efficacy of all approved disease-modifying drugs should be measured considering such a relevant aspect of the disease, data from clinical trials are few, scattered and heterogeneous. The aim of this review is to summarize the evidence so far acquired on the effect of reducing grey matter damage produced by current and emerging disease-modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Neurology section, Department of Neurological and Movement Sciences, Policlinico di Borgo Roma, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Piazzale Ludovico Antonio Scuro, 37134, Verona, Italy
| | | | | |
Collapse
|
33
|
Abstract
Multiple sclerosis (MS), an inflammatory disease affecting the central nervous system, is considered to exhibit an important neurodegenerative component as well. Laquinimod is an orally administered quinoline-3-carboxamide under development for the treatment of MS. In vitro and animal studies have revealed various mechanisms by which laquinimod may exert its effects on the immune and nervous systems. These include effects on the innate immune system that promote the differentiation of anti-inflammatory/regulatory T cells, the activation of microglia cells, an increase in the expression of brain-derived neurotrophic factor, as well as the prevention of inflammation-induced excitotoxicity. Two phase III studies revealed the clinical benefits of laquinimod in patients with relapsing-remitting MS and exhibited a benign safety profile for this drug. Ongoing clinical trials will help to define the optimal dose and indication for laquinimod in MS. This article reviews current experimental and clinical evidence on the role of laquinimod in patients with this disabling disease.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Laquinimod exerts strong clinical and immunomodulatory effects in Lewis rat experimental autoimmune neuritis. J Neuroimmunol 2014; 274:38-45. [PMID: 25005118 DOI: 10.1016/j.jneuroim.2014.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Laquinimod is an immunomodulatory drug with neuroprotective potential. We used the animal model of experimental autoimmune neuritis (EAN) in the Lewis rat to study the effects of laquinimod treatment. After immunization with the neuritogenic peptide aa 53-78 of P2 myelin protein, preventive therapy with 12.5mg/kg laquinimod once daily inhibited neuritis in clinical and electrophysiological terms. Histology corroborated a lower degree of inflammatory lesions and demyelination in the sciatic nerve. The proportion of FoxP3-positive regulatory T cells in the peripheral lymph nodes of treated rats remained unchanged. We conclude that laquinimod may represent a therapeutic option in human autoimmune neuropathies.
Collapse
|
35
|
Mishra MK, Wang J, Keough MB, Fan Y, Silva C, Sloka S, Hayardeny L, Brück W, Yong VW. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann Clin Transl Neurol 2014; 1:409-22. [PMID: 25356411 PMCID: PMC4184669 DOI: 10.1002/acn3.67] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/19/2014] [Accepted: 04/22/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Laquinimod is an emerging oral medication for multiple sclerosis (MS) that reduces brain atrophy and progression of disability in two Phase III clinical trials. The mechanism of these effects is unclear. Persistent activation of microglia occurs in MS and contributes to injury. Thus, we investigated whether laquinimod alters properties of microglia in culture and in experimental autoimmune encephalomyelitis (EAE), and whether this reduces neurodegeneration. METHODS Microglia were cultured from human brains. EAE was induced in mice. RESULTS The activation of human microglia increased levels of several pro- and anti-inflammatory cytokines and these elevations were attenuated by pretreatment with laquinimod. Laquinimod prevented the decline in activated microglia of miR124a, a microRNA implicated in maintaining microglia quiescence, and reduced the activity of several signaling pathways (Jun-N-terminal kinase, ribosomal S6 kinase, and AKT/protein kinase B) in activated microglia. In EAE, axonal injury correlated with accumulation of microglia/macrophages in the spinal cord. EAE mice treated with laquinimod before onset of clinical signs subsequently had reduced microglia/macrophage density and axonal injury. Remarkably, when laquinimod treatment was initiated well into the disease course, the progressive demyelination, and axonal loss was halted. Besides inflammatory molecules associated with microglia, the level of inducible nitric oxide (NO) synthase capable of producing free radical toxicity was attenuated by laquinimod in EAE mice. Finally, in coculture where microglia activation caused neuronal death, laquinimod decreased NO levels, and neurotoxicity. INTERPRETATION Laquinimod is a novel inhibitor of microglial activation that lowers microglia-induced neuronal death in culture and axonal injury/loss in EAE.
Collapse
Affiliation(s)
- Manoj Kumar Mishra
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary Calgary, Alberta, Canada
| | - Janet Wang
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary Calgary, Alberta, Canada
| | - Michael B Keough
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary Calgary, Alberta, Canada
| | - Yan Fan
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary Calgary, Alberta, Canada
| | - Claudia Silva
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary Calgary, Alberta, Canada
| | - Scott Sloka
- Grand River Hospital Kitchener, Ontario, Canada
| | | | - Wolfgang Brück
- Department of Neuropathology, University Medical Center Göttingen, Germany
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary Calgary, Alberta, Canada
| |
Collapse
|
36
|
di Nuzzo L, Orlando R, Nasca C, Nicoletti F. Molecular pharmacodynamics of new oral drugs used in the treatment of multiple sclerosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:555-68. [PMID: 24876766 PMCID: PMC4035221 DOI: 10.2147/dddt.s52428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New oral drugs have considerably enriched the therapeutic armamentarium for the treatment of multiple sclerosis. This review focuses on the molecular pharmacodynamics of fingolimod, dimethyl fumarate (BG-12), laquinimod, and teriflunomide. We specifically comment on the action of these drugs at three levels: 1) the regulation of the immune system; 2) the permeability of the blood-brain barrier; and 3) the central nervous system. Fingolimod phosphate (the active metabolite of fingolimod) has a unique mechanism of action and represents the first ligand of G-protein-coupled receptors (sphingosine-1-phosphate receptors) active in the treatment of multiple sclerosis. Dimethyl fumarate activates the nuclear factor (erythroid-derived 2)-related factor 2 pathway of cell defense as a result of an initial depletion of reduced glutathione. We discuss how this mechanism lies on the border between cell protection and toxicity. Laquinimod has multiple (but less defined) mechanisms of action, which make the drug slightly more effective on disability progression than on annualized relapse rate in clinical studies. Teriflunomide acts as a specific inhibitor of the de novo pyrimidine biosynthesis. We also discuss new unexpected mechanisms of these drugs, such as the induction of brain-derived neurotrophic factor by fingolimod and the possibility that laquinimod and teriflunomide regulate the kynurenine pathway of tryptophan metabolism.
Collapse
Affiliation(s)
- Luigi di Nuzzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Carla Nasca
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy ; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
37
|
Boullerne AI, Polak PE, Braun D, Sharp A, Pelligrino D, Feinstein DL. Effects of peptide fraction and counter ion on the development of clinical signs in experimental autoimmune encephalomyelitis. J Neurochem 2014; 129:696-703. [PMID: 24471474 DOI: 10.1111/jnc.12664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022]
Abstract
The most commonly used immunogen to induce experimental autoimmune encephalomyelitis is MOG35-55 , a 21-residue peptide derived from myelin oligodendrocyte glycoprotein (MOG). In most studies, mice exhibit a chronic disease; however, in some studies mice show a transient disease. One variable that is not often controlled for is the peptide fraction of the purified MOG material, which can vary from less than 50% to over 90%, with the remainder of mass primarily comprised of the counter ion used for peptide purification. We compared the development of clinical signs in female C57Bl6 mice immunized with two commercially available MOG35-55 peptides of similar purity but different peptide fraction (MOG-A being 45%; MOG-B being 72%). A single immunization with MOG-A induced a chronic disease course with some recovery at later stages, whereas immunization with MOG-B induced a similar course of disease but with significantly lower average clinical scores despite a higher peptide content. The addition of a booster immunization significantly increased clinical severity with both preparations, and significantly reduced the average day of onset using MOG-A. To determine if the counter ion could influence disease, we compared MOG-B-containing trifluoroacetate with MOG-B-containing acetate. Although disease incidence and severity were similar, the average day of disease onset occurred approximately 5 days earlier with the use of MOG-B-containing trifluoroacetate. These results demonstrate that differences in peptide fraction influence the course of encephalomyelitis disease, which may be due in part to the levels of counter ions present in the purified material. These findings underscore the fact that a knowledge of peptide fraction is as critical as knowledge of peptide purity when using peptides from different sources.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
38
|
Haggiag S, Ruggieri S, Gasperini C. Efficacy and safety of laquinimod in multiple sclerosis: current status. Ther Adv Neurol Disord 2013; 6:343-52. [PMID: 24228070 DOI: 10.1177/1756285613499424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Laquinimod is a novel immunomodulatory agent, in development as a potential disease-modifying treatment for multiple sclerosis (MS). Structurally related to linomide, its pharmacological predecessor, laquinimod combines anti-inflammatory and possibly clinically relevant neuroprotective effects with the convenience of oral administration. In this review we aim to highlight the immunomodulatory and neuroprotective effects of laquinimod, and to describe its effects in animal models of MS. Furthermore, we focus on current results of clinical studies in MS. Randomized, controlled clinical trials in relapsing MS demonstrate a dose-response effect on disease activity, measured by reduced clinical relapse rate, reduced number of brain MRI active lesions, as well as on sustained disability and brain atrophy. Laquinimod has a favourable tolerability and safety profile. A new phase III study, recently completed, will soon provide further details on the therapeutic potential of this drug. Laquinimod is a promising emerging treatment for relapsing-remitting MS that may provide a new therapeutic option in the near future.
Collapse
Affiliation(s)
- Shalom Haggiag
- Multiple Sclerosis Clinical Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | | | | |
Collapse
|
39
|
Thöne J, Gold R. Review of laquinimod and its therapeutic potential in multiple sclerosis. Expert Opin Pharmacother 2013; 14:2545-52. [PMID: 24215556 DOI: 10.1517/14656566.2013.848855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic immunological disease of the central nervous system characterized by early inflammatory demyelination and subsequent neurodegeneration. Although major progress has occurred, MS is still an incurable disease. Further, parenteral application and/or safety issues of the currently licensed drugs are associated with low patient compliance. Thus, there remains an unmet need for the development of more effective and well-tolerated oral therapies for the treatment of MS. At this point in time, different oral available substances are under investigation and hold promise in the treatment of relapsing-remitting MS (RRMS). AREAS COVERED The physical, chemical and pharmacological properties of laquinimod , as well as its suggested mechanisms of action, clinical efficacy and side-effect profile are reviewed. EXPERT OPINION Laquinimod is a new orally administered synthetic drug designed as an immunomodulator. Its mechanisms of action are not yet fully elucidated. Studies in mice and humans revealed different mechanisms of action, including anti-inflammatory and neuroprotective effects. So far, Phase II and Phase III clinical trials have shown its efficacy on magnetic resonance imaging based measures of disease activity, annualized relapse rate and disability progression in RRMS patients. Current data suggest a relatively modest efficacy by measures of relapse rate and there seems to be no superiority in comparison to established disease-modifying agents in relapsing-remitting MS. Further studies are necessary to evaluate both neuroprotective efficacy and optimal dosage of laquinimod in more detail.
Collapse
Affiliation(s)
- Jan Thöne
- Ruhr-University Bochum, Department of Neurology at St. Josef-Hospital Bochum , Gudrunstr. 56, D-44791 Bochum , Germany +49 234 509 2411 ; +49 234 509 2414 ;
| | | |
Collapse
|
40
|
Moore S, Khalaj AJ, Yoon J, Patel R, Hannsun G, Yoo T, Sasidhar M, Martinez-Torres L, Hayardeny L, Tiwari-Woodruff SK. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav 2013; 3:664-82. [PMID: 24363970 PMCID: PMC3868172 DOI: 10.1002/brb3.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/28/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future treatment of multiple sclerosis (MS), as well as other diseases. Laquinimod (LQ) is an orally administered, central nervous system (CNS)-active immunomodulator with demonstrated efficacy in MS clinical trials and a favorable safety and tolerability profile. AIMS We aimed to explore the pathological, functional, and behavioral consequences of prophylactic and therapeutic (after presentation of peak clinical disease) LQ treatment in the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. MATERIALS AND METHODS Active EAE-induced 8-week-old C57BL/6 mice were treated with 5 or 25 mg/kg/day LQ via oral gavage beginning on EAE post-immunization day 0, 8, or 21. Clinical scores and rotorod motor performance were assessed throughout the disease course. Immune analysis of autoantigen-stimulated splenocytes, electrophysiological conduction of callosal axons, and immunohistochemistry of white matter-rich corpus callosum and spinal cord were performed. RESULTS Prophylactic and therapeutic treatment with LQ significantly decreased mean clinical disease scores, inhibited Th1 cytokine production, and decreased the CNS inflammatory response. LQ-induced improvement in axon myelination and integrity during EAE was functional, as evidenced by significant recovery of callosal axon conduction and axon refractoriness and pronounced improvement in rotorod motor performance. These improvements correlate with LQ-induced attenuation of EAE-induced demyelination and axon damage, and improved myelinated axon numbers. DISCUSSION Even when initiated at peak disease, LQ treatment has beneficial effects within the chronic EAE mouse model. In addition to its immunomodulatory effects, the positive effects of LQ treatment on oligodendrocyte numbers and myelin density are indicative of significant, functional neuroprotective and neurorestorative effects. CONCLUSIONS Our results support a potential neuroprotective, in addition to immunomodulatory, effect of LQ treatment in inhibiting ongoing MS/EAE disease progression.
Collapse
Affiliation(s)
- Spencer Moore
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Anna J Khalaj
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Jaehee Yoon
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Rhusheet Patel
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Gemmy Hannsun
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Timothy Yoo
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Manda Sasidhar
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Leonardo Martinez-Torres
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative R&D, Teva Pharmaceutical Industries Netanya, Israel
| | - Seema K Tiwari-Woodruff
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California ; Brain Research Institute, UCLA School of Medicine Los Angeles, California ; Intellectual Development and Disabilities Research Center, UCLA Los Angeles, California
| |
Collapse
|
41
|
Brück W, Gold R, Lund BT, Oreja-Guevara C, Prat A, Spencer CM, Steinman L, Tintoré M, Vollmer TL, Weber MS, Weiner LP, Ziemssen T, Zamvil SS. Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol 2013; 70:1315-24. [PMID: 23921521 PMCID: PMC4106803 DOI: 10.1001/jamaneurol.2013.3510] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several innovative disease-modifying treatments (DMTs) for relapsing-remitting multiple sclerosis have been licensed recently or are in late-stage development. The molecular targets of several of these DMTs are well defined. All affect at least 1 of 4 properties, namely (1) trafficking, (2) survival, (3) function, or (4) proliferation. In contrast to β-interferons and glatiramer acetate, the first-generation DMTs, several newer therapies are imbued with safety issues, which may be attributed to their structure or metabolism. In addition to efficacy, understanding the relationship between the mechanism of action of the DMTs and their safety profile is pertinent for decision making and patient care. In this article, we focus primarily on the safety of DMTs in the context of understanding their pharmacological characteristics, including molecular targets, mechanism of action, chemical structure, and metabolism. While understanding mechanisms underlying DMT toxicities is incomplete, it is important to further develop this knowledge to minimize risk to patients and to ensure future therapies have the most advantageous benefit-risk profiles. Recognizing the individual classes of DMTs described here may be valuable when considering use of such agents sequentially or possibly in combination.
Collapse
|
42
|
Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 2013; 328:9-18. [PMID: 23518370 DOI: 10.1016/j.jns.2013.02.011] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/23/2022]
Abstract
Fingolimod is the first oral disease-modifying therapy approved for relapsing forms of multiple sclerosis (MS). Following phosphorylation in vivo, the active agent, fingolimod phosphate (fingolimod-P), acts as a sphingosine 1-phosphate (S1P) receptor modulator, binding with high affinity to four of the five known S1P receptors (S1P1, S1P3, S1P4 and S1P5). The mechanism of action of fingolimod in MS has primarily been considered as immunomodulatory, whereby fingolimod-P modulates S1P1 on lymphocytes, selectively retaining autoreactive lymphocytes in lymph nodes to reduce damaging infiltration into the central nervous system (CNS). However, emerging evidence indicates that fingolimod has direct effects in the CNS in MS. For example, in the MS animal model of experimental autoimmune encephalomyelitis (EAE), fingolimod is highly efficacious in both a prophylactic and therapeutic setting, yet becomes ineffective in animals selectively deficient for S1P1 on astrocytes, despite maintained normal immunologic receptor expression and functions, and S1P-mediated immune activities. Here we review S1P signaling effects relevant to MS in neural cell types expressing S1P receptors, including astrocytes, oligodendrocytes, neurons, microglia and dendritic cells. The direct effects of fingolimod on these CNS cells observed in preclinical studies are discussed in view of the functional consequences of reducing neurodegenerative processes and promoting myelin preservation and repair. The therapeutic implications of S1P modulation in the CNS are considered in terms of the clinical outcomes of MS, such as reducing MS-related brain atrophy, and other CNS disorders. Additionally, we briefly outline other existing and investigational MS therapies that may also have effects in the CNS.
Collapse
|
43
|
Habets P, Krabbendam L, Hofman P, Suckling J, Oderwald F, Bullmore E, Woodruff P, Van Os J, Marcelis M. Cognitive performance and grey matter density in psychosis: functional relevance of a structural endophenotype. Neuropsychobiology 2009; 58:128-37. [PMID: 19088490 DOI: 10.1159/000182889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 09/05/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Structural brain changes and cognitive impairments have been identified as indicators of genetic risk for schizophrenia. However, the pattern of associations between such structural and functional liability markers has been less well investigated. METHODS Magnetic resonance imaging data and cognitive assessments were acquired in 31 patients with psychosis, 32 non-psychotic first-degree relatives and 28 controls. The relationship between cerebral grey matter density and cognitive performance was examined using computational morphometry. RESULTS Two out of 6 cognitive tests revealed significant associations with grey matter density in regions of the frontal lobe, basal ganglia, thalamus and cerebellum in patients and relatives. In patients, poorer executive functioning was associated with cerebellar grey matter density deficits. In relatives, poorer executive functioning was associated with increased grey matter density in the cerebellum and frontal lobe. In both patients and relatives, strategic retrieval from semantic memory was positively associated with grey matter density in basal ganglia structures. Some additional negative associations in the patients differentiated this group from relatives. CONCLUSIONS The overlap in structure-function relationships in individuals with schizophrenia and those with liability for the disorder may suggest that regional grey matter density alterations functionally alter particular neurocircuits, which could lead to cognitive deficits. The non-overlapping structure-function correlations may reflect disease-related or compensatory mechanisms.
Collapse
Affiliation(s)
- P Habets
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|