1
|
Sharma J, Collins TD, Roach T, Mishra S, Lam BK, Mohamed ZS, Veal AE, Polk TB, Jones A, Cornaby C, Haider MI, Zeumer-Spataro L, Johnson HM, Morel LM, Larkin J. Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model. Sci Rep 2021; 11:6354. [PMID: 33737712 PMCID: PMC7973732 DOI: 10.1038/s41598-021-86017-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune diseases are driven largely by a pathogenic cytokine milieu produced by aberrantly activated lymphocytes. Many cytokines, including interferon gamma (IFN-γ), utilize the JAK/STAT pathway for signal propagation. Suppressor of Cytokine Signaling-1 (SOCS1) is an inducible, intracellular protein that regulates IFN-γ signaling by dampening JAK/STAT signaling. Using Fas deficient, MRL/MpJ-Faslpr/J (MRL/lpr) mice, which develop lupus-like disease spontaneously, we tested the hypothesis that a peptide mimic of the SOCS1 kinase inhibitory region (SOCS1-KIR) would inhibit lymphocyte activation and modulate lupus-associated pathologies. Consistent with in vitro studies, SOCS1-KIR intraperitoneal administration reduced the frequency, activation, and cytokine production of memory CD8+ and CD4+ T lymphocytes within the peripheral blood, spleen, and lymph nodes. In addition, SOCS1-KIR administration reduced lymphadenopathy, severity of skin lesions, autoantibody production, and modestly reduced kidney pathology. On a cellular level, peritoneal SOCS1-KIR administration enhanced Foxp3 expression in total splenic and follicular regulatory T cells, reduced the effector memory/naïve T lymphocyte ratio for both CD4+ and CD8+ cells, and reduced the frequency of GL7+ germinal center enriched B cells. Together, these data show that SOCS1-KIR treatment reduced auto-reactive lymphocyte effector functions and suggest that therapeutic targeting of the SOCS1 pathway through peptide administration may have efficacy in mitigating autoimmune pathologies.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Teresa D Collins
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Tracoyia Roach
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Shiwangi Mishra
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Brandon K Lam
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zaynab Sidi Mohamed
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Antia E Veal
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Timothy B Polk
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Amari Jones
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Caleb Cornaby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mohammed I Haider
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Howard M Johnson
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Laurence M Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph Larkin
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. Negative Regulation of Cytokine Signaling in Immunity. Cold Spring Harb Perspect Biol 2018; 10:a028571. [PMID: 28716890 PMCID: PMC6028070 DOI: 10.1101/cshperspect.a028571] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene transcriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Akanuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Liu Y, Gibson SA, Benveniste EN, Qin H. Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in Neuroinflammatory Diseases. Crit Rev Immunol 2018; 35:505-27. [PMID: 27279046 DOI: 10.1615/critrevimmunol.2016015517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogenic CD4+ T cells and myeloid cells play critical roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These immune cells secrete aberrantly high levels of pro-inflammatory cytokines that pathogenically bridge the innate and adaptive immune systems and damage neurons and oligodendrocytes. These cytokines include interleukin-2 (IL-2), IL-6, IL-12, IL-21, IL-23, granulocyte macrophage-colony stimulating factor (GM-CSF), and interferon-γ (IFN-γ). It is, therefore, not surprising that both the dysregulated expression of these cytokines and the subsequent activation of their downstream signaling cascades is a common feature in MS/EAE. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is utilized by numerous cytokines for signal transduction and is essential for the development and regulation of immune responses. Unbridled activation of the JAK/STAT pathway by pro-inflammatory cytokines has been demonstrated to be critically involved in the pathogenesis of MS/EAE. In this review, we discuss recent advancements in our understanding of the involvement of the JAK/STAT signaling pathway in the pathogenesis of MS/EAE, with a particular focus on therapeutic approaches to target the JAK/STAT pathway.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294; Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sara A Gibson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
4
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
5
|
Multiple Sclerosis Risk Allele in CLEC16A Acts as an Expression Quantitative Trait Locus for CLEC16A and SOCS1 in CD4+ T Cells. PLoS One 2015. [PMID: 26203907 PMCID: PMC4512731 DOI: 10.1371/journal.pone.0132957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
For multiple sclerosis, genome wide association studies and follow up studies have identified susceptibility single nucleotide polymorphisms located in or near CLEC16A at chromosome 16p13.13, encompassing among others CIITA, DEXI and SOCS1 in addition to CLEC16A. These genetic variants are located in intronic or intergenic regions and display strong linkage disequilibrium with each other, complicating the understanding of their functional contribution and the identification of the direct causal variant(s). Previous studies have shown that multiple sclerosis-associated risk variants in CLEC16A act as expression quantitative trait loci for CLEC16A itself in human pancreatic β-cells, for DEXI and SOCS1 in thymic tissue samples, and for DEXI in monocytes and lymphoblastoid cell lines. Since T cells are major players in multiple sclerosis pathogenesis, we have performed expression analyses of the CIITA-DEXI-CLEC16A-SOCS1 gene cluster in CD4+ and CD8+ T cells isolated from multiple sclerosis patients and healthy controls. We observed a higher expression of SOCS1 and CLEC16A in CD4+ T cells in samples homozygous for the risk allele of CLEC16A rs12927355. Pair-wise linear regression analysis revealed high correlation in gene expression in peripheral T cells of CIITA, DEXI, CLEC16A and SOCS1. Our data imply a possible regulatory role for the multiple sclerosis-associated rs12927355 in CLEC16A.
Collapse
|