1
|
Kaneko K, Kuroda H, Matsumoto Y, Sakamoto N, Yamazaki N, Yamamoto N, Umezawa S, Namatame C, Ono H, Takai Y, Takahashi T, Fujimori J, Nakashima I, Harigaya Y, Lassmann H, Fujihara K, Misu T, Aoki M. Different Complement Activation Patterns Following C5 Cleavage in MOGAD and AQP4-IgG+NMOSD. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200293. [PMID: 39133885 PMCID: PMC11379436 DOI: 10.1212/nxi.0000000000200293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
OBJECTIVES In myelin oligodendrocyte glycoprotein IgG-associated disease (MOGAD) and aquaporin-4 IgG+ neuromyelitis optica spectrum disorder (AQP4+NMOSD), the autoantibodies are mainly composed of IgG1, and complement-dependent cytotoxicity is a primary pathomechanism in AQP4+NMOSD. We aimed to evaluate the CSF complement activation in MOGAD. METHODS CSF-C3a, CSF-C4a, CSF-C5a, and CSF-C5b-9 levels during the acute phase before treatment in patients with MOGAD (n = 12), AQP4+NMOSD (n = 11), multiple sclerosis (MS) (n = 5), and noninflammatory neurologic disease (n = 2) were measured. RESULTS CSF-C3a and CSF-C5a levels were significantly higher in MOGAD (mean ± SD, 5,629 ± 1,079 pg/mL and 2,930 ± 435.8 pg/mL) and AQP4+NMOSD (6,017 ± 3,937 pg/mL and 2,544 ± 1,231 pg/mL) than in MS (1,507 ± 1,286 pg/mL and 193.8 ± 0.53 pg/mL). CSF-C3a, CSF-C4a, and CSF-C5a did not differ between MOGAD and AQP4+NMOSD while CSF-C5b-9 (membrane attack complex, MAC) levels were significantly lower in MOGAD (17.4 ± 27.9 ng/mL) than in AQP4+NMOSD (62.5 ± 45.1 ng/mL, p = 0.0019). Patients with MOGAD with severer attacks (Expanded Disability Status Scale [EDSS] ≥ 3.5) had higher C5b-9 levels (34.0 ± 38.4 ng/m) than those with milder attacks (EDSS ≤3.0, 0.9 ± 0.7 ng/mL, p = 0.044). DISCUSSION The complement pathway is activated in both MOGAD and AQP4+NMOSD, but MAC formation is lower in MOGAD, particularly in those with mild attacks, than in AQP4+NMOSD. These findings may have pathogenetic and therapeutic implications in MOGAD.
Collapse
Affiliation(s)
- Kimihiko Kaneko
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Hiroshi Kuroda
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Yuki Matsumoto
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Naohiro Sakamoto
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Naoya Yamazaki
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Naoki Yamamoto
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Shu Umezawa
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Chihiro Namatame
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Hirohiko Ono
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Yoshiki Takai
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Toshiyuki Takahashi
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Juichi Fujimori
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Ichiro Nakashima
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Yasuo Harigaya
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Hans Lassmann
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Kazuo Fujihara
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Tatsuro Misu
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| | - Masashi Aoki
- From the Department of Neurology (K.K., H.K., Y.M., N.S., N. Yamazaki, N. Yamamoto, S.U., C.N., H.O., Y.T., T.T., K.F., T.M., M.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Multiple Sclerosis and Neuromyelitis Optica Center (H.K., K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama; Department of Multiple Sclerosis Therapeutics (H.K., K.F.), Fukushima Medical University, Fukushima, Japan; Department of Neurology (T.T.), NHO Yonezawa National Hospital, Yamagata, Japan; Division of Neurology (J.F., I.N.), Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Neurology (Y.H.), Japanese Redcross Maebashi Hospital; Department of Neurology (Y.H.), Mihara Memorial Hospital, Isesaki, Japan; and Center for Brain Research (H.L.), Medical University of Vienna, Austria
| |
Collapse
|
2
|
Aher PS, Bhavsar D, Toshniwal S, Bora RA, Jagadish R. Neuromyelitis Optica: A Peek Into the Brain Through the Eyes. Cureus 2024; 16:e67408. [PMID: 39310466 PMCID: PMC11414768 DOI: 10.7759/cureus.67408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
A rare demyelinating syndrome, known as neuromyelitis optica, is characterized by optic neuritis and transverse myelitis. A 27-year-old female presented to the eye department, with complaints of sudden progressive diminution of vision in both eyes (left eye more than right eye), acutely not being able to move both her eyes, double vision on lateral gazes with chronic dryness and irritation. Examination revealed restricted extraocular movements in all gazes. Magnetic resonance imaging of orbit showed retrobulbar optic neuritis. Blood tests revealed positive neuromyelitis optica myelin oligodendrocyte glycoprotein antibodies after which diagnosis of neuromyelitis optica was made.
Collapse
Affiliation(s)
- Priyanka S Aher
- Ophthalmology, Dr. D. Y. Patil Medical College and Hospital, Pune, IND
| | - Deepaswi Bhavsar
- Ophthalmology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Pune, IND
| | - Sumit Toshniwal
- Ophthalmology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Pune, IND
| | - Riddhi A Bora
- Ophthalmology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Pune, IND
| | - Rohan Jagadish
- Ophthalmology, Dr. D. Y. Patil Medical College and Hospital, Pune, IND
| |
Collapse
|
3
|
Mireles-Ramírez MA, Pacheco-Moises FP, González-Usigli HA, Sánchez-Rosales NA, Hernández-Preciado MR, Delgado-Lara DLC, Hernández-Cruz JJ, Ortiz GG. Neuromyelitis optica spectrum disorder: pathophysiological approach. Int J Neurosci 2024; 134:826-838. [PMID: 36453541 DOI: 10.1080/00207454.2022.2153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Aim: To review the main pathological findings of Neuromyelitis Optica Spectrum Disorder (NMOSD) associated with the presence of autoantibodies to aquaporin-4 (AQP4) as well as the mechanisms of astrocyte dysfunction and demyelination. Methods: An comprehensive search of the literature in the field was carried out using the database of The National Center for Biotechnology Information from . Systematic searches were performed until July 2022. Results: NMOSD is an inflammatory and demyelinating disease of the central nervous system mainly in the areas of the optic nerves and spinal cord, thus explaining mostly the clinical findings. Other areas affected in NMOSD are the brainstem, hypothalamus, and periventricular regions. Relapses in NMOSD are generally severe and patients only partially recover. NMOSD includes clinical conditions where autoantibodies to aquaporin-4 (AQP4-IgG) of astrocytes are detected as well as similar clinical conditions where such antibodies are not detected. AQP4 are channel-forming integral membrane proteins of which AQ4 isoforms are able to aggregate in supramolecular assemblies termed orthogonal arrays of particles (OAP) and are essential in the regulation of water homeostasis and the adequate modulation of neuronal activity and circuitry. AQP4 assembly in orthogonal arrays of particles is essential for AQP4-IgG pathogenicity since AQP4 autoantibodies bind to OAPs with higher affinity than for AQP4 tetramers. NMOSD has a complex background with prominent roles for genes encoding cytokines and cytokine receptors. AQP4 autoantibodies activate the complement-mediated inflammatory demyelination and the ensuing damage to AQP4 water channels, leading to water influx, necrosis and axonal loss. Conclusions: NMOSD as an astrocytopathy is a nosological entity different from multiple sclerosis with its own serological marker: immunoglobulin G-type autoantibodies against the AQP4 protein which elicits a complement-dependent cytotoxicity and neuroinflammation. Some patients with typical manifestations of NMSOD are AQP4 seronegative and myelin oligodendrocyte glycoprotein positive. Thus, the detection of autoantibodies against AQP4 or other autoantibodies is crucial for the correct treatment of the disease and immunosuppressant therapy is the first choice.
Collapse
Affiliation(s)
- Mario A Mireles-Ramírez
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Fermín P Pacheco-Moises
- Department of Chemistry, University Center of Exact Sciences and Engineering; University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Héctor A González-Usigli
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Nayeli A Sánchez-Rosales
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | - Martha R Hernández-Preciado
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
| | | | - José J Hernández-Cruz
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in medicine HC, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Genaro Gabriel Ortiz
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara, Jalisco, Mexico
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in medicine HC, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Zhao Z, Pan C, Chen J, Wu R, Xu Z, Huang H. Symptom progression in neuromyelitis optica spectrum disorder from ataxia through syncope to neuropathic pain: A case report. Medicine (Baltimore) 2024; 103:e38966. [PMID: 39029081 PMCID: PMC11398810 DOI: 10.1097/md.0000000000038966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
RATIONALE Neuromyelitis optica spectrum disorder (NMOSD) involves autoimmune and inflammatory responses in the central nervous system, primarily affecting the optic nerves and spinal cord. Atypical presentations such as ataxia and syncope complicate the diagnosis, and lesions in the medulla are easily mistaken for cerebral infarction. This case report emphasizes the need to recognize such manifestations to avoid misdiagnosis and ensure timely treatment. PATIENT CONCERNS This case report presents an NMOSD female patient who experienced ataxia, syncope, and neuropathic pain during her illness. DIAGNOSIS NMOSD. INTERVENTIONS The patient managed her blood sugar with insulin, controlled neuropathic pain with pregabalin, and underwent 5 plasma exchanges. OUTCOMES Significant improvement was noted 1 week post-plasma exchange, with complete resolution of neuropathic pain and no symptom recurrence reported at 6-month follow-up. LESSONS Atypical manifestations of NMOSD, such as ataxia, syncope, and trigeminal neuralgia, increase diagnostic difficulty. Recognizing these symptoms is crucial to avoid misdiagnosis and ensure timely and appropriate treatment for patients.
Collapse
Affiliation(s)
- Ziyi Zhao
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chunhua Pan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junting Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Wu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Krasnov VS. Neuromyelitis optica spectrum disorders and complement system: issues of pathogenesis and therapeutic options. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2023; 15:135-141. [DOI: 10.14412/2074-2711-2023-6-135-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
An important component of the pathogenesis of neuromyelitis optica spectrum diseases (NMOSD) with antibodies to aquaporin-4 (AQP4-IgG) is a classical pathway of complement system (CS) activation with the implementation of mechanisms of complement-mediated cytotoxicity. Eculizumab is a humanized monoclonal antibody that suppresses the final stage of CS activation and has a high affinity for its C5 component. The most important components in the pathogenesis of NMOSD with AQP4-IgG, the role of CS, the results of clinical trials with the drug eculizumab and its place in the treatment of NMOSD are discussed.
Collapse
Affiliation(s)
- V. S. Krasnov
- Acad. I.P. Pavlov First Saint Petersburg State Medical University of Ministry of Health of Russia
| |
Collapse
|
6
|
Taheri N, Sarrand J, Soyfoo MS. Neuromyelitis Optica: Pathogenesis Overlap with Other Autoimmune Diseases. Curr Allergy Asthma Rep 2023; 23:647-654. [PMID: 37889429 DOI: 10.1007/s11882-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Neuromyelitis optica (NMO) is an auto-immune disease essentially depicted by optic neuritis and transverse myelitis. Per se, NMO was initially believed to be a sub-type of multiple sclerosis with typical demyelinating cerebral lesions and optic nerve inflammation. More recently, corroborating lignes of evidence have strengthened the concept of the spectrum of diseases associated with NMO and more specifically with the role of anti-aquaporin-4 antibodies in the pathogenesis of disease. RECENT FINDINGS In this article, we review the recent pathogenic findings in NMO and more interestingly the newly discovered role of anti-aquaporin-4 antibodies as key players in triggering cerebral lesions. The concept of spectrum of diseases associated with NMO is also discussed. These recent findings have paved in the further understanding of the pathogenesis underlying NMO and new treatments are currently being developed targeting anti-aquaporin-4 antibodies.
Collapse
Affiliation(s)
- Nadim Taheri
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Julie Sarrand
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Muhammad S Soyfoo
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium.
| |
Collapse
|
7
|
Anuradha M, Akash C, Gaurav C, Aamna M, Rakesh S, Arjun S. Wernicke's Encephalopathy Precipitated by Area Postrema Syndrome of NMO-SD. Ann Indian Acad Neurol 2023; 26:572-574. [PMID: 37970268 PMCID: PMC10645195 DOI: 10.4103/aian.aian_462_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/24/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Mahto Anuradha
- Department of Neurology, Grant Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Chheda Akash
- Department of Neurology, Grant Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Chaudhary Gaurav
- Department of Neurology, Grant Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Maniyar Aamna
- Department of Neurology, Grant Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Singh Rakesh
- Department of Neurology, Grant Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Shah Arjun
- Department of Neurology, Grant Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Complement Inhibition in Myasthenia Gravis and Neuromyelitis Optica Spectrum Disorder. Can J Neurol Sci 2023; 50:165-173. [PMID: 34895385 DOI: 10.1017/cjn.2021.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complement system is a tightly controlled signaling network that plays a role in innate immune surveillance. However, abnormal signaling through this pathway contributes to tissue damage in several inflammatory, autoimmune, and degenerative diseases. Myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) have complement dysfunction at the core of pathogenesis, providing a strong rationale for therapeutic targeting of complement components. The purpose of this paper is to briefly review the role of complement activation in the pathogenesis of MG and NMOSD, to discuss the rationale and evidence for complement inhibition as a method to manage these diseases, and to provide a Canadian perspective on the use of complement inhibition therapy through real-world cases of MG and NMOSD.
Collapse
|
9
|
Loda E, Arellano G, Perez-Giraldo G, Miller SD, Balabanov R. Can Immune Tolerance Be Re-established in Neuromyelitis Optica? Front Neurol 2022; 12:783304. [PMID: 34987468 PMCID: PMC8721118 DOI: 10.3389/fneur.2021.783304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory disease of the central nervous system that primarily affects the optic nerves and spinal cord of patients, and in some instances their brainstem, diencephalon or cerebrum as spectrum disorders (NMOSD). Clinical and basic science knowledge of NMO has dramatically increased over the last two decades and it has changed the perception of the disease as being inevitably disabling or fatal. Nonetheless, there is still no cure for NMO and all the disease-modifying therapies (DMTs) are only partially effective. Furthermore, DMTs are not disease- or antigen-specific and alter all immune responses including those protective against infections and cancer and are often associated with significant adverse reactions. In this review, we discuss the pathogenic mechanisms of NMO as they pertain to its DMTs and immune tolerance. We also examine novel research therapeutic strategies focused on induction of antigen-specific immune tolerance by administrating tolerogenic immune-modifying nanoparticles (TIMP). Development and implementation of immune tolerance-based therapies in NMO is likely to be an important step toward improving the treatment outcomes of the disease. The antigen-specificity of these therapies will likely ameliorate the disease safely and effectively, and will also eliminate the clinical challenges associated with chronic immunosuppressive therapies.
Collapse
Affiliation(s)
- Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gina Perez-Giraldo
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Liu C, Shi M, Zhu M, Chu F, Jin T, Zhu J. Comparisons of clinical phenotype, radiological and laboratory features, and therapy of neuromyelitis optica spectrum disorder by regions: update and challenges. Autoimmun Rev 2021; 21:102921. [PMID: 34384938 DOI: 10.1016/j.autrev.2021.102921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease of the central nervous system (CNS) associated with autoantibody (ab) to aquaporin-4 (AQP4). There is obvious variation between regions and countries in the epidemiology, clinical features and management in NMOSD. Based on published population-based observation and cohort studies, the different clinical pattern of NMOSD has been seen in several geographical regions and some of these patients with NMOSD-like features do not fully meet the current diagnostic criteria, which is needed to consider the value of recently revised diagnostic criteria. At present, all treatments applied in NMOSD have made great progress, however, these treatments failed in AQP4 ab negative and refractory patients. Therefore, it is necessary to turn into an innovative idea and to open a new era of NMOSD treatment to develop novel and diverse targets and effective therapeutic drugs in NMOSD and to conduct the trails in large clinical samples and case-control studies to confirm their therapeutic effects on NMOSD in the future, which still remain a challenge.
Collapse
Affiliation(s)
- Caiyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Mingqin Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
11
|
Uzonyi B, Szabó Z, Trojnár E, Hyvärinen S, Uray K, Nielsen HH, Erdei A, Jokiranta TS, Prohászka Z, Illes Z, Józsi M. Autoantibodies Against the Complement Regulator Factor H in the Serum of Patients With Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:660382. [PMID: 33986750 PMCID: PMC8111293 DOI: 10.3389/fimmu.2021.660382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), characterized by pathogenic, complement-activating autoantibodies against the main water channel in the CNS, aquaporin 4 (AQP4). NMOSD is frequently associated with additional autoantibodies and antibody-mediated diseases. Because the alternative pathway amplifies complement activation, our aim was to evaluate the presence of autoantibodies against the alternative pathway C3 convertase, its components C3b and factor B, and the complement regulator factor H (FH) in NMOSD. Four out of 45 AQP4-seropositive NMOSD patients (~9%) had FH autoantibodies in serum and none had antibodies to C3b, factor B and C3bBb. The FH autoantibody titers were low in three and high in one of the patients, and the avidity indexes were low. FH-IgG complexes were detected in the purified IgG fractions by Western blot. The autoantibodies bound to FH domains 19-20, and also recognized the homologous FH-related protein 1 (FHR-1), similar to FH autoantibodies associated with atypical hemolytic uremic syndrome (aHUS). However, in contrast to the majority of autoantibody-positive aHUS patients, these four NMOSD patients did not lack FHR-1. Analysis of autoantibody binding to FH19-20 mutants and linear synthetic peptides of the C-terminal FH and FHR-1 domains, as well as reduced FH, revealed differences in the exact binding sites of the autoantibodies. Importantly, all four autoantibodies inhibited C3b binding to FH. In conclusion, our results demonstrate that FH autoantibodies are not uncommon in NMOSD and suggest that generation of antibodies against complement regulating factors among other autoantibodies may contribute to the complement-mediated damage in NMOSD.
Collapse
Affiliation(s)
- Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsóka Szabó
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Trojnár
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Satu Hyvärinen
- Department of Bacteriology and Immunology, Medicum, and Immunobiology Research Program Unit, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, Medicum, and Immunobiology Research Program Unit, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
12
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Chamberlain JL, Huda S, Whittam DH, Matiello M, Morgan BP, Jacob A. Role of complement and potential of complement inhibitors in myasthenia gravis and neuromyelitis optica spectrum disorders: a brief review. J Neurol 2019; 268:1643-1664. [PMID: 31482201 DOI: 10.1007/s00415-019-09498-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
Abstract
The complement system is a powerful member of the innate immune system. It is highly adept at protecting against pathogens, but exists in a delicate balance between its protective functions and overactivity, which can result in autoimmune disease. A cascade of complement proteins that requires sequential activation, and numerous complement regulators, exists to regulate a proportionate response to pathogens. In spite of these mechanisms there is significant evidence for involvement of the complement system in driving the pathogenesis of variety of diseases including neuromyelitis optica spectrum disorders (NMOSD) and myasthenia gravis (MG). As an amplification cascade, there are an abundance of molecular targets that could be utilized for therapeutic intervention. Clinical trials assessing complement pathway inhibition in both these conditions have recently been completed and include the first randomized placebo-controlled trial in NMOSD showing positive results. This review aims to review and update the reader on the complement system and the evolution of complement-based therapeutics in these two disorders.
Collapse
Affiliation(s)
| | - Saif Huda
- Department of Neurology, The Walton Centre, Lower Lane, Liverpool, L9 7LJ, UK
| | - Daniel H Whittam
- Department of Neurology, The Walton Centre, Lower Lane, Liverpool, L9 7LJ, UK
| | - Marcelo Matiello
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - B Paul Morgan
- School of Medicine, Henry Wellcome Building for Biomedical Research, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK
| | - Anu Jacob
- Department of Neurology, The Walton Centre, Lower Lane, Liverpool, L9 7LJ, UK.,University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Chang VTW, Chang HM. Review: Recent advances in the understanding of the pathophysiology of neuromyelitis optica spectrum disorder. Neuropathol Appl Neurobiol 2019; 46:199-218. [PMID: 31353503 DOI: 10.1111/nan.12574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica is an autoimmune inflammatory disorder of the central nervous system that preferentially targets the spinal cord and optic nerve. Following the discovery of circulating antibodies against the astrocytic aquaporin 4 (AQP4) water channel protein, recent studies have expanded our knowledge of the unique complexities of the pathogenesis of neuromyelitis optica and its relationship with the immune response. This review describes and summarizes the recent advances in our understanding of the molecular mechanisms underlying neuromyelitis optica disease pathology and examines their potential as therapeutic targets. Additionally, we update the most recent research by proposing major unanswered questions regarding how peripheral AQP4 antibodies are produced and their entry into the central nervous system, the causes of AQP4-IgG-seronegative disease, why peripheral AQP4-expressing organs are spared from damage, and the impact of this disease on pregnancy.
Collapse
Affiliation(s)
- V T W Chang
- St George's, University of London, London, UK
| | - H-M Chang
- Department of Obstetrics and Gynaecology, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
15
|
CD55 upregulation in astrocytes by statins as potential therapy for AQP4-IgG seropositive neuromyelitis optica. J Neuroinflammation 2019; 16:57. [PMID: 30851734 PMCID: PMC6408857 DOI: 10.1186/s12974-019-1448-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neuromyelitis optica spectrum disorder (herein called NMO) is an inflammatory demyelinating disease that can be initiated by binding of immunoglobulin G autoantibodies (AQP4-IgG) to aquaporin-4 on astrocytes, causing complement-dependent cytotoxicity (CDC) and downstream inflammation. The increased NMO pathology in rodents deficient in complement regulator protein CD59 following passive transfer of AQP4-IgG has suggested the potential therapeutic utility of increasing the expression of complement regulator proteins. Methods A cell-based ELISA was developed to screen for pharmacological upregulators of endogenous CD55 and CD59 in a human astrocyte cell line. A statin identified from the screen was characterized in cell culture models and rodents for its action on complement regulator protein expression and its efficacy in models of seropositive NMO. Results Screening of ~ 11,500 approved and investigational drugs and nutraceuticals identified transcriptional upregulators of CD55 but not of CD59. Several statins, including atorvastatin, simvastatin, lovastatin, and fluvastatin, increased CD55 protein expression in astrocytes, including primary cultures, by three- to four-fold at 24 h, conferring significant protection against AQP4-IgG-induced CDC. Mechanistic studies revealed that CD55 upregulation involves inhibition of the geranylgeranyl transferase pathway rather than inhibition of cholesterol biosynthesis. Oral atorvastatin at 10–20 mg/kg/day for 3 days strongly increased CD55 immunofluorescence in mouse brain and spinal cord and reduced NMO pathology following intracerebral AQP4-IgG injection. Conclusion Atorvastatin or other statins may thus have therapeutic benefit in AQP4-IgG seropositive NMO by increasing CD55 expression, in addition to their previously described anti-inflammatory and immunomodulatory actions.
Collapse
|
16
|
Abstract
Purpose of review Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory diseases of the central nervous system (CNS), with the presence of aquaporin 4 (AQP4)-specific serum antibodies in the vast majority of patients, and with the presence of myelin oligodendrocyte glycoprotein (MOG)-specific antibodies in approximately 40% of all AQP4-antibody negative NMOSD patients. Despite differences in antigen recognition, the preferred sites of lesions are similar in both groups of patients: They localize to the spinal cord and to the anterior visual pathway including retina, optic nerves, chiasm, and optic tracts, and – to lesser extent – also to certain predilection sites in the brain. Recent findings The involvement of T cells in the formation of NMOSD lesions has been challenged for quite some time. However, several recent findings demonstrate the key role of T cells for lesion formation and localization. Studies on the evolution of lesions in the spinal cord of NMOSD patients revealed a striking similarity of early NMOSD lesions with those observed in corresponding T-cell-induced animal models, both in lesion formation and in lesion localization. Studies on retinal abnormalities in NMOSD patients and corresponding animals revealed the importance of T cells for the very early stages of retinal lesions which eventually culminate in damage to Müller cells and to the retinal nerve fiber layer. Finally, a study on cerebrospinal fluid (CSF) barrier pathology demonstrated that NMOSD immunopathology extends beyond perivascular astrocytic foot processes to include the pia, the ependyma, and the choroid plexus, and that diffusion of antibodies from the CSF could further influence lesion formation in NMOSD patients. Summary The pathological changes observed in AQP4-antibody positive and MOG-antibody positive NMOSD patients are strikingly similar to those found in corresponding animal models, and many mechanisms which determine lesion localization in experimental animals seem to closely reflect the human situation.
Collapse
|
17
|
Hillebrand S, Schanda K, Nigritinou M, Tsymala I, Böhm D, Peschl P, Takai Y, Fujihara K, Nakashima I, Misu T, Reindl M, Lassmann H, Bradl M. Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathol 2019; 137:467-485. [PMID: 30564980 PMCID: PMC6514074 DOI: 10.1007/s00401-018-1950-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
It is well established that the binding of pathogenic aquaporin-4 (AQP4)-specific autoantibodies to astrocytes may initiate a cascade of events culminating in the destruction of these cells and in the formation of large tissue-destructive lesions typical for patients with neuromyelitis optica spectrum disorders (NMOSD). To date, not a single experimental study has shown that the systemic presence of the antibody alone can induce any damage to the central nervous system (CNS), while pathological studies on brains of NMOSD patients suggested that there might be ways for antibody entry and subsequent tissue damage. Here, we systemically applied a highly pathogenic, monoclonal antibody with high affinity to AQP4 over prolonged period of time to rats, and show that AQP4-abs can enter the CNS on their own, via circumventricular organs and meningeal or parenchymal blood vessels, that these antibodies initiate the formation of radically different lesions with AQP4 loss, depending on their mode and site of entry, and that lesion formation is much more efficient in the presence of encephalitogenic T-cell responses. We further demonstrate that the established tissue-destructive lesions trigger the formation of additional lesions by short and far reaching effects on blood vessels and their branches, and that AQP4-abs have profound effects on the AQP4 expression in peripheral tissues which counter-act possible titer loss by antibody absorption outside the CNS. Cumulatively, these data indicate that directly induced pathological changes caused by AQP4-abs inside and outside the CNS are efficient drivers of disease evolution in seropositive organisms.
Collapse
Affiliation(s)
- Sophie Hillebrand
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Magdalini Nigritinou
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Irina Tsymala
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Denise Böhm
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Patrick Peschl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an uncommon antibody-mediated disease of the central nervous system. Long segments of spinal cord inflammation (myelitis), severe optic neuritis, and/or bouts of intractable vomiting and hiccoughs (area postrema syndrome) are classic presentations of the disease and may alert the clinician to the diagnosis. Untreated, approximately 50% of NMOSD patients will be wheelchair users and blind, and a third will have died within 5 years of their first attack. Unlike multiple sclerosis, a progressive clinical course is very unusual and the accrual of disability is related to relapses. Approximately 75% of patients have antibodies against aquaporin-4, a water channel expressed on astrocytes. Relapses are treated aggressively to prevent residual disability with high-dose steroids and often plasma exchange. Relapse prevention is crucial and achieved with long-term immunosuppression. In this article we review the pathogenesis, clinical features, diagnosis and management of NMOSD.
Collapse
Affiliation(s)
- Saif Huda
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Dan Whittam
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | | | | | - Anu Jacob
- Walton Centre NHS Foundation Trust, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
19
|
Shang K, Qin C, Bu BT, Tian DS. Aquaporin-4 antibody positive neuromyelitis optica spectrum disorder subsequent to rhabdomyolysis: a case report and literature review. Int J Neurosci 2019; 129:930-932. [PMID: 30722721 DOI: 10.1080/00207454.2019.1579718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rhabdomyolysis could be caused by various mechanisms including autoimmune reaction. Here, we reported a case of 76-year-old-woman diagnosed with aquaporin-4 (AQP4) IgG positive neuromyelitis optica spectrum disorder (NMOSD) following rhabdomyolysis. After a review of literature, we propose that physical injury of skeletal muscle cells may lead to the production of AQP4 IgG and this AQP4 IgG might further decrease in the stability of skeletal muscle cells creating a positive feedback loop. HyperCKemia might be an inducement of NMOSD.
Collapse
Affiliation(s)
- Ke Shang
- a Department of Neurology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Chuan Qin
- a Department of Neurology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Bi-Tao Bu
- a Department of Neurology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Shi Tian
- a Department of Neurology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
20
|
Bejerot S, Hesselmark E, Mobarrez F, Wallén H, Hietala MA, Nybom R, Wetterberg L. Neuromyelitis optica spectrum disorder with increased aquaporin-4 microparticles prior to autoantibodies in cerebrospinal fluid: a case report. J Med Case Rep 2019; 13:27. [PMID: 30696485 PMCID: PMC6352324 DOI: 10.1186/s13256-018-1929-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/18/2018] [Indexed: 11/15/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorders are severe autoimmune inflammatory diseases of the central nervous system associated with the presence of immunoglobulin G antibodies against the water channel protein aquaporin-4. During exacerbation, specific aquaporin-4 immunoglobulin G may be produced intrathecally. We measured extracellular aquaporin-4 microparticles in the cerebrospinal fluid of a patient who later developed the typical symptoms and signs of a neuromyelitis optica spectrum disorder. Case presentation A 17-year-old South American girl developed acute severe motor and vocal tics and difficulties in walking, peripheral numbness, muscle pain, and bilateral headache. At age 22, she had a multitude of motor and psychiatric symptoms. Over the years, she fulfilled the diagnostic criteria for anorexia nervosa, depression, sleep disorder, obsessive-compulsive disorder, generalized anxiety disorder, panic disorder, agoraphobia, social anxiety disorder, development coordination disorder, attention-deficit/hyperactivity disorder, hypomania, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, conversion disorder, psychosis, and schizotypal personality syndrome. At age 24, she was found to have elevated titers of aquaporin-4 antibodies in serum, suggestive of probable neuromyelitis optica. She subsequently developed visual impairment, and swollen optic nerves were verified by magnetic resonance imaging. She was thus treated with a chimeric monoclonal antibody targeted against the pan-B-cell marker CD20 (rituximab), and almost all symptoms, including the psychiatric symptoms, rapidly decreased. We found a significant increase of extracellular microparticles of aquaporin-4 in cerebrospinal fluid sampled from our patient when she was 22 years old, 2 years before the full clinical development of neuromyelitis optica. Conclusions Microparticles of aquaporin-4 represent subcellular arrangements that may influence the pathogenesis of neuromyelitis optica spectrum disorders and may serve as biomarkers for the underlying cellular disturbances. The increase of aquaporin-4 microparticles in cerebrospinal fluid may be used for early diagnostic purposes; for prevention; and for evaluation of effective treatment, long-term follow-up studies, and elucidating the pathophysiology in neuromyelitis optica spectrum disorders. Further studies of aquaporin-4 microparticles in cerebrospinal fluid of patients with neuromyelitis optica and similar neuropsychiatric disorders are thus called for. Electronic supplementary material The online version of this article (10.1186/s13256-018-1929-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Bejerot
- Department of Clinical Neuroscience, Karolinska Institutet, SE-112 81, Stockholm, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, University Health Care Research Centre, Örebro University, Örebro, Sweden
| | - Eva Hesselmark
- Department of Clinical Neuroscience, Karolinska Institutet, SE-112 81, Stockholm, Sweden
| | - Fariborz Mobarrez
- Unit of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Håkan Wallén
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Stockholm, Sweden
| | - Max Albert Hietala
- Department of Clinical Neuroscience, Karolinska Institutet, SE-112 81, Stockholm, Sweden
| | - Rolf Nybom
- Department of Clinical Neuroscience, Karolinska Institutet, SE-112 81, Stockholm, Sweden
| | - Lennart Wetterberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE-112 81, Stockholm, Sweden.
| |
Collapse
|
21
|
Piven VD, Krasnov VS, Novikova AS, Piven FM, Kushnir YB, Totolian NA. NEUROMYELITIS OPTICA SPECTRUM DISORDERS: DIAGNOSIS AND TREATMENT, THE EXPERIENCE OF CLINICAL OBSERVATIONS. ACTA ACUST UNITED AC 2018. [DOI: 10.24884/1607-4181-2018-25-3-7-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an aggregate of inflammatory and autoimmune disorders of the central nervous system characterized by recurrent, disabling clinical course and damages predominantly targeting optic nerves, brain stem and spinal cord. NMOSD is stratified into two types: seropositive for aquaporin-4 antibodies (AQP4-IgG) and seronegative, which is reported in 25 % of cases. This article presents modern conceptualizations of NMOSD and describes authors’ own experience of clinical observation of patients.
Collapse
|
22
|
Piatek P, Domowicz M, Lewkowicz N, Przygodzka P, Matysiak M, Dzitko K, Lewkowicz P. C5a-Preactivated Neutrophils Are Critical for Autoimmune-Induced Astrocyte Dysregulation in Neuromyelitis Optica Spectrum Disorder. Front Immunol 2018; 9:1694. [PMID: 30083159 PMCID: PMC6065055 DOI: 10.3389/fimmu.2018.01694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune neuroinflammatory disease. In contrast to multiple sclerosis, autoantibodies against aquaporin-4 (AQP4) expressed on astrocytic end-feet have been exclusively detected in sera of NMOSD patients. Several lines of evidence suggested that anti-AQP4 autoantibodies are pathogenic, but the mechanism triggering inflammation, impairment of astrocyte function, and the role of neutrophils presented in NMOSD cerebrospinal fluid remains unknown. In this study, we tested how human neutrophils affect astrocytes in the presence of anti-AQP4 Ab-positive serum derived from NMOSD patients. An in vitro model of inflammation consisted of human astrocyte line, NMOSD serum, and allogenic peripheral blood neutrophils from healthy individuals. We showed evidence of pathogenicity of NMOSD serum, which by consecutive action of anti-AQP4 Abs, complement system, and neutrophils affected astrocyte function. Anti-AQP4 Ab binding astrocytes initiated two parallel complementary reactions. The first one was dependent on the complement cytotoxicity via C5b-9 complex formation, and the second one on the reverse of astrocyte glutamate pump into extracellular space by C5a-preactivated neutrophils. As a consequence, astrocytes were partially destroyed; however, a major population of astrocytes polarized into proinflammatory cells which were characterized by pathological glutamate removal from extracellular space.
Collapse
Affiliation(s)
- Paweł Piatek
- Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Domowicz
- Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, Lodz, Poland
| | - Natalia Lewkowicz
- Department of General Dentistry, Medical University of Lodz, Lodz, Poland
| | | | - Mariola Matysiak
- Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
| | - Przemysław Lewkowicz
- Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
|
24
|
Chang Y, Shu Y, Sun X, Lu T, Chen C, Fang L, He D, Xu C, Lu Z, Hu X, Peng L, Kermode AG, Qiu W. Study of the placentae of patients with neuromyelitis optica spectrum disorder. J Neurol Sci 2018; 387:119-123. [PMID: 29571847 DOI: 10.1016/j.jns.2018.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/07/2018] [Accepted: 01/31/2018] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that circulating AQP4-IgG may lead to negative consequences during pregnancy in patients with neuromyelitis optica spectrum disorder (NMOSD). The objective of this study was to explore whether AQP4-IgG influences pregnancy by affecting AQP4 expression and inducing placental inflammation in patients with NMOSD. We prospectively collected clinical data from six pregnant AQP4-IgG-seropositive NMOSD patients and their infants, and investigated AQP4 expression and placental inflammatory infiltration by comparing hematoxylin and eosin and immunohistochemical (AQP1, AQP4, C5b-9, IgG, CD3, CD8, CD20, and CD68) staining results with three normal controls. Four patients were term pregnant and their infants were normal for development, serum AQP4-IgG was positive at the time of birth, and three infants were negative for AQP4-IgG after 3 months. Two patients underwent induced abortion; one because of NMOSD relapse and another because of fetal malformation. Histological investigation showed normal structure of the chorionic villi, and no significant difference in the intensity of the immunohistochemical staining for AQP1, AQP4, and inflammatory markers in placentae of patients and the controls. Our results showed that there was no significant decrease in placental AQP4 expression, and no obvious placental inflammation or signs of damage in term placentae of NMOSD patients seropositive for AQP4-IgG.
Collapse
Affiliation(s)
- Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Ling Fang
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Chengfang Xu
- Department of Obstetrics, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China
| | - Allan G Kermode
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China; Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Department of Neurology, Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia; Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Wang Z, Yan Y. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica. Front Immunol 2017; 8:1785. [PMID: 29312313 PMCID: PMC5732908 DOI: 10.3389/fimmu.2017.01785] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
26
|
He D, Zhang A, Li Y, Cai G, Li Y, Guo S. Autoimmune aquaporin-4 induced damage beyond the central nervous system. Mult Scler Relat Disord 2017; 18:41-46. [DOI: 10.1016/j.msard.2017.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
|
27
|
Rosito S, Nicchia GP, Palazzo C, Lia A, Buccoliero C, Pisani F, Svelto M, Trojano M, Frigeri A. Supramolecular aggregation of aquaporin-4 is different in muscle and brain: correlation with tissue susceptibility in neuromyelitis optica. J Cell Mol Med 2017; 22:1236-1246. [PMID: 29055082 PMCID: PMC5783885 DOI: 10.1111/jcmm.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/26/2017] [Indexed: 11/27/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by autoantibodies (NMO‐IgG) against the water channel aquaporin‐4 (AQP4). Though AQP4 is also expressed outside the CNS, for example in skeletal muscle, patients with NMO generally do not show clinical/diagnostic evidence of skeletal muscle damage. Here, we have evaluated whether AQP4 supramolecular organization is at the basis of the different tissue susceptibility. Using immunofluorescence we found that while the sera of our cohort of patients with NMO gave typical perivascular staining in the CNS, they were largely negative in the skeletal muscle. This conclusion was obtained using human, rat and mouse skeletal muscle including the AQP4‐KO mouse. A biochemical analysis using a new size exclusion chromatography approach for AQP4 suprastructure fractionation revealed substantial differences in supramolecular AQP4 assemblies and isoform abundance between brain and skeletal muscle matching a lower binding affinity of NMO‐IgG to muscle compared to the brain. Super‐resolution microscopy analysis with g‐STED revealed different AQP4 organization in native tissues, while in the brain perivascular astrocyte endfoot membrane AQP4 was mainly organized in large interconnected and raft‐like clusters, in the sarcolemma of fast‐twitch fibres AQP4 aggregates often appeared as small, relatively isolated linear entities. In conclusion, our results provide evidence that AQP4 supramolecular structure is different in brain and skeletal muscle, which is likely to result in different tissues susceptibility to the NMO disease.
Collapse
Affiliation(s)
- Stefania Rosito
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Palazzo
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Anna Lia
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Buccoliero
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
28
|
Low expression of complement inhibitory protein CD59 contributes to humoral autoimmunity against astrocytes. Brain Behav Immun 2017; 65:173-182. [PMID: 28476558 DOI: 10.1016/j.bbi.2017.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/06/2017] [Accepted: 04/29/2017] [Indexed: 11/22/2022] Open
Abstract
Neuromyelitis optica spectrum disorder is primarily an anti-aquaporin 4 autoantibody-mediated, central nervous system-restricted channelopathy. Patients frequently develop central nervous system-restricted lesions even though autoantigen aquaporin 4 in neuromyelitis optica spectrum disorder is broadly distributed in the central nervous system and peripheral organs. The cause of such tissue-specific immune response remains largely unknown. We confirmed here that CD59, an inhibitory regulator of the complement membrane attack complex, is expressed and co-localized with aquaporin 4 in peripheral organs but is only minimally expressed in astrocytes in the central nervous system. In addition, we further found that CD59 overexpression in mouse brains decreased demyelination, blocked the loss of astrocytes and aquaporin 4, and inhibited membrane attack complex formation and infiltration of inflammatory cells. Inactivation of CD59 in mouse peripheral aquaporin 4-expressing cells and tissues led to complement-dependent cytotoxicity. In accordance with the mouse data, human samples presented higher expression of CD59 in many aquaporin 4-expressing peripheral tissues but not in astrocytes. Silencing or blocking CD59 in aquaporin 4-expressing human tracheal epithelial and skeletal muscle cells induced membrane attack complex formation and cytotoxicity, which suggests a protective role of CD59 in anti-aquaporin 4 antibodies-mediated complement toxicity. Our findings suggest that low CD59 expression in astrocytes may contribute to central nervous system-restricted lesions in neuromyelitis optica spectrum disorder. Restoring CD59 expression in astrocytes may serve as a novel therapeutic target of neuromyelitis optica spectrum disorder.
Collapse
|
29
|
Laranjeira S, Symmonds M, Palace J, Payne SJ, Orlowski P. A mathematical model of cellular swelling in Neuromyelitis optica. J Theor Biol 2017; 433:39-48. [PMID: 28843390 DOI: 10.1016/j.jtbi.2017.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
Neuromyelitis Optica (NMO) is a severe neuro-inflammatory disease of the central nervous system characterized by predominant damage to the optic nerve and of the spinal cord. The pathogenic antibody found in the majority of patients targets the AQP4 channels on astrocytic endfeet and causes the cells to swell. Although, the pathophysiology of the disease is broadly known, there are no specific targeted treatments for this process clinically available nor accurate prognostic markers both during attacks and for predicting long term neuronal damage. This lack is, in part, due to the rarity of the disease and its relatively recent pathogenic clarity. Hence, the ability to mathematically model the progress of the condition to test prospective therapies in silico would be a step forward. This paper combines state of the art models of cellular metabolism and cytotoxic oedema in neurons and astrocytes and augments it with a detailed characterization of water transport across the cellular membrane. In particular, we capture the process of perforation of the cell through the human complement cascade and resulting water and ionic fluxes. Simulating NMO by injecting its antibody and human complement into the extracellular space showed a 25% increase of the astrocytic volume after 12 h from onset. Most of the volume change occurred during the first 30 min of simulation with a peak volume change of 38%. The model was further adapted to simulate the therapeutic potential of CD59. It was found that there is a threshold of CD59 concentration that can prevent the swelling of astrocytes. Since the astrocyte volume changes mostly during the first hour, further experimental work should focus on this time scale to provide data for further model refinement and validation.
Collapse
Affiliation(s)
- Simão Laranjeira
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, OX3 7DQ, Oxford, United Kingdom
| | - Mkael Symmonds
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | - Jacqueline Palace
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | - Stephen J Payne
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, OX3 7DQ, Oxford, United Kingdom
| | - Piotr Orlowski
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, OX3 7DQ, Oxford, United Kingdom.
| |
Collapse
|
30
|
Yao X, Verkman AS. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol Commun 2017; 5:57. [PMID: 28750658 PMCID: PMC5532786 DOI: 10.1186/s40478-017-0462-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/10/2022] Open
Abstract
Pathogenesis in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorders (herein called NMO) involves complement-dependent cytotoxicity initiated by AQP4-IgG binding to astrocyte AQP4. We recently reported that rats lacking complement inhibitor protein CD59 were highly susceptible to development of NMO pathology in brain and spinal cord following direct AQP4-IgG administration (Yao and Verkman, Acta Neuropath Commun 2017, 5:15). Here, we report evidence that CD59 is responsible for protection of peripheral, AQP4-expressing tissues in seropositive NMO. Rats made seropositive by intraperitoneal injection of AQP4-IgG developed marked weakness by 24 h and died soon thereafter. Serum creatine phosphokinase at 24 h was >900-fold greater in seropositive CD59-/- rats than in seropositive CD59+/+ (or control) rats. AQP4-expressing cells in skeletal muscle and kidney, but not in stomach, of seropositive CD59-/- rats showed injury with deposition of AQP4-IgG and activated complement C5b-9, and inflammation. Organ injury in seropositive CD59-/- rats was prevented by a complement inhibitor. Significant pathological changes in seropositive CD59-/- rats were not seen in optic nerve, spinal cord or brain, including circumventricular tissue. These results implicate a major protective role of CD59 outside of the central nervous system in seropositive NMO, and hence offer an explanation as to why peripheral, AQP4-expressing cells are largely unaffected in NMO.
Collapse
|
31
|
Rosales D, Kister I. Common and Rare Manifestations of Neuromyelitis Optica Spectrum Disorder. Curr Allergy Asthma Rep 2017; 16:42. [PMID: 27167974 DOI: 10.1007/s11882-016-0619-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of a highly specific biomarker of neuromyelitis optica (NMO)-the anti-aquaporin-4 (AQP4) antibody-has opened new paths to understanding disease pathogenesis and afforded a way to confirm the diagnosis in clinical practice. An important consequence of the discovery is the broadening of the spectrum of syndromes seen in the context of AQP4 autoimmunity. These syndromes have been subsumed under the rubric of NMO spectrum disorder (NMOSD). The current classification recognizes not only optic neuritis and myelitis as core syndromes of NMOSD but also cerebral, diencephalic, brainstem, and area postrema syndromes. These neurologic syndromes are the focus of our review. AQP4 is also expressed in many organs outside of the central nervous system, and this may explain some of the unusual, non-neurologic features that have been occasionally reported in NMOSD. Our review catalogues non-neurologic manifestations seen in NMOSD and concludes with a discussion of frequently associated autoimmune and neoplastic comorbidities of NMOSD.
Collapse
Affiliation(s)
- Dominique Rosales
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU School of Medicine, 240 E 38th St, New York, NY, 10016, USA.
| | - Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU School of Medicine, 240 E 38th St, New York, NY, 10016, USA
| |
Collapse
|
32
|
Guo Y, Weigand SD, Popescu BF, Lennon VA, Parisi JE, Pittock SJ, Parks NE, Clardy SL, Howe CL, Lucchinetti CF. Pathogenic implications of cerebrospinal fluid barrier pathology in neuromyelitis optica. Acta Neuropathol 2017; 133:597-612. [PMID: 28184993 PMCID: PMC5348570 DOI: 10.1007/s00401-017-1682-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
Pathogenic autoantibodies associated with neuromyelitis optica (NMO) induce disease by targeting aquaporin-4 (AQP4) water channels enriched on astrocytic endfeet at blood–brain interfaces. AQP4 is also expressed at cerebrospinal fluid (CSF)–brain interfaces, such as the pial glia limitans and the ependyma and at the choroid plexus blood–CSF barrier. However, little is known regarding pathology at these sites in NMO. Therefore, we evaluated AQP4 expression, microglial reactivity, and complement deposition at pial and ependymal surfaces and in the fourth ventricle choroid plexus in 23 autopsy cases with clinically and/or pathologically confirmed NMO or NMO spectrum disorder. These findings were compared to five cases with multiple sclerosis, five cases of choroid plexus papilloma, and five control cases without central nervous system disease. In the NMO cases, AQP4 immunoreactivity was reduced relative to control levels in the pia (91%; 21/23), ependyma (56%; 9/16), and choroid plexus epithelium (100%; 12/12). AQP4 immunoreactivity was normal in MS cases in these regions. Compared to MS, NMO cases also showed a focal pattern of pial and ependymal complement deposition and more pronounced microglial reactivity. In addition, AQP4 loss, microglial reactivity, and complement deposition colocalized along the pia and ependyma only in NMO cases. Within the choroid plexus, AQP4 loss was coincident with C9neo immunoreactivity on epithelial cell membranes only in NMO cases. These observations demonstrate that NMO immunopathology extends beyond perivascular astrocytic foot processes to include the pia, ependyma, and choroid plexus, suggesting that NMO IgG-induced pathological alterations at CSF–brain and blood–CSF interfaces may contribute to the occurrence of ventriculitis, leptomeningitis, and hydrocephalus observed among NMO patients. Moreover, disruption of the blood–CSF barrier induced by binding of NMO IgG to AQP4 on the basolateral surface of choroid plexus epithelial cells may provide a unique portal for entry of the pathogenic antibody into the central nervous system.
Collapse
Affiliation(s)
- Yong Guo
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bogdan F Popescu
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Vanda A Lennon
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Natalie E Parks
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Stacey L Clardy
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Neuroscience, Mayo Clinic, Rochester, MN, USA.
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Weinshenker BG, Wingerchuk DM. Neuromyelitis Spectrum Disorders. Mayo Clin Proc 2017; 92:663-679. [PMID: 28385199 DOI: 10.1016/j.mayocp.2016.12.014] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
The understanding of neuromyelitis optica spectrum disorder (NMOSD) has evolved substantially since its initial description over a century ago. The discovery in 2004 of a pathogenic autoantibody biomarker targeting aquaporin 4 IgG revolutionized diagnosis and therapeutic development. Although NMOSD resembles multiple sclerosis (MS), differences were identified and articulated in the late 1990s. New diagnostic criteria incorporating the biomarker as well as better understanding of the clinical and radiologic features of NMOSD now permit accurate diagnosis and differentiation from MS. Aquaporin 4 IgG-associated NMOSD is now regarded as an immune astrocytopathy with lytic and nonlytic effects on astrocytes. A second autoantibody, myelin oligodendrocyte glycoprotein IgG, which targets myelin rather than astrocytes, leads to an NMOSD syndrome with clinical and radiologic features that overlap but are distinct from those of aquaporin 4 IgG-associated NMOSD and MS. We review current understanding of the clinical aspects, pathophysiology, and treatment of NMOSD.
Collapse
|
34
|
Pilch KS, Spaeth PJ, Yuki N, Wakerley BR. Therapeutic complement inhibition: a promising approach for treatment of neuroimmunological diseases. Expert Rev Neurother 2017; 17:579-591. [PMID: 28092989 DOI: 10.1080/14737175.2017.1282821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Autoimmunity is an important cause of disease both in the central and peripheral nervous systems. Aetiologies and clinical manifestations are complex and heterogeneous. Inappropriate control of complement activation at inappropriate sites has been recognized as a major determinant in several neurological conditions, including Guillain-Barré syndrome and neuromyelitis optica. In each case pathogenesis is thought to be associated with generation of autoantibodies which upon binding guide activation of the complement system to self-tissue. Areas covered: Modulation of the complement system activation at such sites may represent a novel therapeutic approach for treatment of immune-mediated inflammatory conditions. In this review we focus on the therapeutic effects of complement inhibitors in Guillain-Barré syndrome and neuromyelitis optica and highlight recent developments within the field. Expert Commentary: Conventional first line treatment strategies in GBS and NMO have the potential disadvantage of causing widespread immunosuppressive effects. A more targeted approach may therefore be more effective and less disruptive to the immune system, especially in the case of NMO, which requires long term immunosuppression. Modulation of the complement system may hold the key and has already been shown to be of clinical benefit in other non-neurological conditions, including paroxysmal nocturnal hemoglobinuria and hereditary angioedema.
Collapse
Affiliation(s)
- Kjara S Pilch
- a Department of Cell and Developmental Biology , University College London , UK
| | - Peter J Spaeth
- b University of Bern, Institute of Pharmacology , Bern , Switzerland
| | - Nobuhiro Yuki
- c Department of Neurology , University of Mishima , Niigata , Japan
| | - Benjamin R Wakerley
- d Department of Neurology , Gloucestershire Hospitals NHS Foundation Trust , Gloucester , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
35
|
Yao X, Verkman AS. Marked central nervous system pathology in CD59 knockout rats following passive transfer of Neuromyelitis optica immunoglobulin G. Acta Neuropathol Commun 2017; 5:15. [PMID: 28212662 PMCID: PMC5316191 DOI: 10.1186/s40478-017-0417-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (herein called NMO) is an inflammatory demyelinating disease of the central nervous system in which pathogenesis involves complement-dependent cytotoxicity (CDC) produced by immunoglobulin G autoantibodies targeting aquaporin-4 (AQP4-IgG) on astrocytes. We reported evidence previously, using CD59-/- mice, that the membrane-associated complement inhibitor CD59 modulates CDC in NMO (Zhang and Verkman, J. Autoimmun. 53:67-77, 2014). Motivated by the observation that rats, unlike mice, have human-like complement activity, here we generated CD59-/- rats to investigate the role of CD59 in NMO and to create NMO pathology by passive transfer of AQP4-IgG under conditions in which minimal pathology is produced in normal rats. CD59-/- rats generated by CRISPR/Cas9 technology showed no overt phenotype at baseline except for mild hemolysis. CDC assays in astrocyte cultures and cerebellar slices from CD59-/- rats showed much greater sensitivity to AQP4-IgG and complement than those from CD59+/+ rats. Intracerebral administration of AQP4-IgG in CD59-/- rats produced marked NMO pathology, with astrocytopathy, inflammation, deposition of activated complement, and demyelination, whereas identically treated CD59+/+ rats showed minimal pathology. A single, intracisternal injection of AQP4-IgG in CD59-/- rats produced hindlimb paralysis by 3 days, with inflammation and deposition of activated complement in spinal cord, optic nerves and brain periventricular and surface matter, with most marked astrocyte injury in cervical spinal cord. These results implicate an important role of CD59 in modulating NMO pathology in rats and demonstrate amplification of AQP4-IgG-induced NMO disease with CD59 knockout.
Collapse
|
36
|
Vogel AL, Knier B, Lammens K, Kalluri SR, Kuhlmann T, Bennett JL, Korn T. Deletional tolerance prevents AQP4-directed autoimmunity in mice. Eur J Immunol 2017; 47:458-469. [PMID: 28058717 PMCID: PMC5359142 DOI: 10.1002/eji.201646855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system (CNS) mediated by antibodies to the water channel protein AQP4 expressed in astrocytes. The contribution of AQP4‐specific T cells to the class switch recombination of pathogenic AQP4‐specific antibodies and the inflammation of the blood–brain barrier is incompletely understood, as immunogenic naturally processed T‐cell epitopes of AQP4 are unknown. By immunizing Aqp4−/− mice with full‐length murine AQP4 protein followed by recall with overlapping peptides, we here identify AQP4(201‐220) as the major immunogenic IAb‐restricted epitope of AQP4. We show that WT mice do not harbor AQP4(201–220)‐specific T‐cell clones in their natural repertoire due to deletional tolerance. However, immunization with AQP4(201–220) of Rag1−/− mice reconstituted with the mature T‐cell repertoire of Aqp4−/− mice elicits an encephalomyelitic syndrome. Similarly to the T‐cell repertoire, the B‐cell repertoire of WT mice is “purged” of AQP4‐specific B cells, and robust serum responses to AQP4 are only mounted in Aqp4−/− mice. While AQP4(201–220)‐specific T cells alone induce encephalomyelitis, NMO‐specific lesional patterns in the CNS and the retina only occur in the additional presence of anti‐AQP4 antibodies. Thus, failure of deletional T‐cell and B‐cell tolerance against AQP4 is a prerequisite for clinically manifest NMO.
Collapse
Affiliation(s)
- Anna-Lena Vogel
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.,Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Benjamin Knier
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.,Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sudhakar Reddy Kalluri
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Jeffrey L Bennett
- Department of Neurology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA.,Program in Neuroscience, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Munich, Germany.,Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
37
|
Boulay AC, Cisternino S, Cohen-Salmon M. Immunoregulation at the gliovascular unit in the healthy brain: A focus on Connexin 43. Brain Behav Immun 2016; 56:1-9. [PMID: 26674996 DOI: 10.1016/j.bbi.2015.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 11/28/2015] [Indexed: 01/18/2023] Open
Abstract
In the brain, immune cell infiltration is normally kept at a very low level and a unique microenvironment strictly restricts immune reactions and inflammation. Even in such quiescent environment, a constant immune surveillance is at work allowing the brain to rapidly react to threats. To date, knowledge about the factors regulating the brain-immune system interrelationship in healthy conditions remains elusive. Interestingly, astrocytes, the most abundant glial cells in the brain, may participate in many aspects of this unique homeostasis, in particular due to their close interaction with the brain vascular system and expression of a specific molecular repertoire. Indeed, astrocytes maintain the blood-brain barrier (BBB) integrity, interact with immune cells, and participate in the regulation of intracerebral liquid movements. We recently showed that Connexin 43 (Cx43), a gap junction protein highly expressed by astrocytes at the BBB interface, is an immunoregulating factor. The absence of astroglial Cx43 leads to a transient endothelial activation, a continuous immune recruitment as well as the development of a specific humoral autoimmune response against the von Willebrand factor A domain-containing protein 5a, an extracellular matrix protein expressed by astrocytes. In this review, we propose to gather current knowledge on how astrocytes may influence the immune system in the healthy brain, focusing on their roles at the gliovascular interface. We will also consider pathological situations involving astrocyte-specific autoimmunities. Finally, we will discuss the specific role of astroglial Cx43 and the physiological consequences of immune regulations taking place on inflammation, cognition and behavior in the absence of Cx43.
Collapse
Affiliation(s)
- Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, Paris F-75006, France; Université Paris Descartes, Faculté de Pharmacie, UMR-S 1144, 75006 Paris, France; Université Paris Diderot, UMR-S 1144, 75013 Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France.
| |
Collapse
|
38
|
Nishiyama S, Misu T, Nuriya M, Takano R, Takahashi T, Nakashima I, Yasui M, Itoyama Y, Aoki M, Fujihara K. Complement-dependent and -independent aquaporin 4-antibody-mediated cytotoxicity in human astrocytes: Pathogenetic implications in neuromyelitis optica. Biochem Biophys Rep 2016; 7:45-51. [PMID: 29114578 PMCID: PMC5627508 DOI: 10.1016/j.bbrep.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Background Neuromyelitis optica (NMO) is an inflammatory disease caused by the aquaporin (AQP)-4-antibody. Pathological studies on NMO have revealed extensive astrocytic damage, as evidenced by the loss of AQP4 and glial fibrillary acidic protein (GFAP), specifically in perivascular regions with immunoglobulin and complement depositions, although other pathological patterns, such as a loss of AQP4 without astrocyte destruction and clasmatodendrosis, have also been observed. Previous studies have shown that complement-dependent antibody-mediated astrocyte lysis is likely a major pathomechanism in NMO. However, there are also data to suggest antibody-mediated astrocyte dysfunction in the absence of complement. Thus, the importance of complement inhibitory proteins in complement-dependent AQP4-antibody-mediated astrocyte lysis in NMO is unclear. In most of the previous studies, the complement and target cells (astrocytes or AQP4-transfected cells) were derived from different species; however, the complement inhibitory proteins that are expressed on the cell surface cannot protect themselves against complement-dependent cytolysis unless the complements and complement inhibitory proteins are from the same species. To resolve these issues, we studied human astrocytes in primary culture treated with AQP4-antibody in the presence or absence of human complement and examined the effect of complement inhibitory proteins using small interfering RNA (siRNA). Methods Purified IgG (10 mg/mL) was obtained from 5 patients with AQP4-antibody-positive NMO, 3 patients with multiple sclerosis (MS), and 3 healthy controls. Confluent human astrocytes transfected with Venus-M1-AQP4-cDNA were incubated with IgG (5% volume). After washing, we cultured the cells with human complements with or without heat inactivation. We observed time-lapse morphological and immunohistochemical changes using a fluorescence microscope. We also evaluated cytotoxicity using a propidium iodide (PI) kit and the lactate dehydrogenase (LDH) assay. Result AQP4-antibody alone caused clustering and degradation followed by endocytosis of membraneous AQP4, thereby resulting in decreased cellular adherence and the shrinkage of astrocytic processes. However, these changes were partially reversed by the removal of IgG in culture. In contrast, following the application of AQP4-antibody and non-heated human complements, the cell bodies and nuclei started to swell. At 3 h, most of the astrocytes had lost mobility and adherence and were eventually destroyed or had swollen and were then destroyed. In addition, the remaining adherent cells were mostly PI-positive, indicating necrosis. Astrocyte lysis caused by rabbit complement occurred much faster than did cell lysis with human complement. However, the cell lysis was significantly enhanced by the transfection of astrocytes with siRNA against human CD55 and CD59, which are major complement inhibitory proteins on the astrocyte membrane. AQP4-antibody-negative IgG in MS or control did not induce such changes. Conclusion Taken together, these findings suggest that both complement-dependent and complement-independent AQP4-antibody-mediated astrocytopathies may operate in NMO, potentially contributing to diverse pathological patterns. Our results also suggest that the effect of complement inhibitory proteins should be considered when evaluating AQP4-antibody-mediated cytotoxicity in AQP4-expressing cells.
Collapse
Affiliation(s)
- S. Nishiyama
- Departments of Neurology Tohoku University Graduate School of Medicine, Sendai, Japan
- Correspondence to: Department of Neurology, Tohoku University Graduate School of Medicine, 1–1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.Department of Neurology, Tohoku University Graduate School of Medicine1–1 Seiryo-machiAoba-kuSendai980-8574Japan
| | - T. Misu
- Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M. Nuriya
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - R. Takano
- Departments of Neurology Tohoku University Graduate School of Medicine, Sendai, Japan
| | - T. Takahashi
- Departments of Neurology Tohoku University Graduate School of Medicine, Sendai, Japan
| | - I. Nakashima
- Departments of Neurology Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M. Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Y. Itoyama
- Departments of Neurology Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M. Aoki
- Departments of Neurology Tohoku University Graduate School of Medicine, Sendai, Japan
| | - K. Fujihara
- Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
Hokari M, Yokoseki A, Arakawa M, Saji E, Yanagawa K, Yanagimura F, Toyoshima Y, Okamoto K, Ueki S, Hatase T, Ohashi R, Fukuchi T, Akazawa K, Yamada M, Kakita A, Takahashi H, Nishizawa M, Kawachi I. Clinicopathological features in anterior visual pathway in neuromyelitis optica. Ann Neurol 2016; 79:605-24. [PMID: 26836302 DOI: 10.1002/ana.24608] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Neuromyelitis optica spectrum disorder (NMOsd) is an autoimmune disorder of the central nervous system characterized by aquaporin-4 (AQP4) autoantibodies. The aim of this study was to elucidate the characteristics of involvement of the anterior visual pathway (AVP) and neurodegeneration via glia-neuron interaction in NMOsd. METHODS Thirty Japanese patients with serologically verified NMOsd were assessed with a neuro-ophthalmological study. Using 27 tissue blocks from 13 other cases of NMOsd, we performed neuropathological analysis of glial and neuroaxonal involvement in the AVP. RESULTS The AVP involvement in NMOsd was characterized by the following, compared to multiple sclerosis: (1) longitudinally extensive optic neuritis (ON); (2) more severe visual impairment and worse prognosis for ON; (3) unique AQP4 dynamics, including loss of AQP4 immunoreactivity on astrocytes with complement activation in ON lesions, loss of AQP4 immunoreactivity on Müller cells with no deposition of complement in the retinas, and densely packed AQP4 immunoreactivity on astrocytes in gliosis of secondary anterograde/retrograde degeneration in the optic nerves and retinal nerve fiber layer (RNFL); and (4) more severe neurodegeneration, including axonal accumulation of degenerative mitochondria and transient receptor potential melastatin 4 channel with complement-dependent astrocyte pathology in ON lesions, mild loss of horizontal cells, and RNFL thinning and loss of ganglion cells with abundance of AQP4(+) astrocytes, indicating secondary retrograde degeneration after ON. INTERPRETATION Severe and widespread neuroaxonal damage and unique dynamics of astrocytes/Müller cells with alterations of AQP4 were prominent in the AVP and may be associated with poor visual function and prognosis in NMOsd.
Collapse
Affiliation(s)
- Mariko Hokari
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Akiko Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Musashi Arakawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Kaori Yanagawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Fumihiro Yanagimura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, Niigata
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata
| | - Satoshi Ueki
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata
| | | | - Riuko Ohashi
- Department of Pathology, Niigata University Medical and Dental Hospital, Niigata
| | - Takeo Fukuchi
- Department of Ophthalmology, Niigata University, Niigata
| | - Kohei Akazawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, Niigata
| | - Mitsunori Yamada
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata
| |
Collapse
|
40
|
Uzawa A, Mori M, Uchida T, Masuda H, Ohtani R, Kuwabara S. Increased levels of CSF CD59 in neuromyelitis optica and multiple sclerosis. Clin Chim Acta 2015; 453:131-3. [PMID: 26686775 DOI: 10.1016/j.cca.2015.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Complement activation is important in multiple sclerosis (MS) and is essential for anti-aquaporin 4 antibodies to damage the central nervous system in neuromyelitis optica (NMO). Little is known about the role of cerebrospinal fluid (CSF) regulators of complement activation in NMO and MS. We determined whether CSF CD59, which is a complement regulator and C5b-9 formation inhibitor, is involved in the pathogenesis of NMO and MS. METHODS We analyzed CSF levels of CD59 in 30 patients with NMO, 22 patients with MS, and 24 patients with non-inflammatory neurological disorders (NINDs). Possible correlations between CSF CD59 levels and the clinical and laboratory variables in patients with NMO and MS were also reviewed. RESULTS CSF CD59 levels in patients with NMO and MS were higher than those in patients with NINDs (p<0.001), and those in patients with NMO decreased after treatment. No significant correlations were found between CSF CD59 levels and clinical and laboratory parameters in NMO and MS. CONCLUSION High CSF CD59 levels in NMO and MS may reflect inflammation, damage, and/or complement activation in the central nervous system.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan.
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Tomohiko Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Ryohei Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
41
|
He D, Li Y, Dai Q, Zhang Y, Xu Z, Li Y, Cai G, Chu L. Myopathy associated with neuromyelitis optica spectrum disorders. Int J Neurosci 2015; 126:863-6. [PMID: 26514543 DOI: 10.3109/00207454.2015.1113175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ya Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qingqing Dai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yifan Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhu Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yuan Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Gang Cai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
42
|
Applying complement therapeutics to rare diseases. Clin Immunol 2015; 161:225-40. [PMID: 26341313 DOI: 10.1016/j.clim.2015.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023]
Abstract
Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis.
Collapse
|
43
|
Melamed E, Levy M, Waters PJ, Sato DK, Bennett JL, John GR, Hooper DC, Saiz A, Bar-Or A, Kim HJ, Pandit L, Leite MI, Asgari N, Kissani N, Hintzen R, Marignier R, Jarius S, Marcelletti J, Smith TJ, Yeaman MR, Han MH, Aktas O, Apiwattanakul M, Banwell B, Bichuetti D, Broadley S, Cabre P, Chitnis T, De Seze J, Fujihara K, Greenberg B, Hellwig K, Iorio R, Jarius S, Klawiter E, Kleiter I, Lana-Peixoto M, Nakashima, O'Connor K, Palace J, Paul F, Prayoonwiwat N, Ruprecht K, Stuve O, Tedder T, Tenembaum S, Garrahan JP, Aires B, van Herle K, van Pelt D, Villoslada P, Waubant E, Weinshenker B, Wingerchuk D, Würfel J, Zamvil S. Update on biomarkers in neuromyelitis optica. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e134. [PMID: 26236760 PMCID: PMC4516398 DOI: 10.1212/nxi.0000000000000134] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO.
Collapse
Affiliation(s)
- Esther Melamed
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Michael Levy
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Patrick J Waters
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Douglas Kazutoshi Sato
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Jeffrey L Bennett
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Gareth R John
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Douglas C Hooper
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Albert Saiz
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Amit Bar-Or
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Ho Jin Kim
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Lakha Pandit
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Maria Isabel Leite
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Nasrin Asgari
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Najib Kissani
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Rogier Hintzen
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Romain Marignier
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Sven Jarius
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - John Marcelletti
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Terry J Smith
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - Michael R Yeaman
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | - May H Han
- Stanford University (E.M., M.H.H.), Stanford, CA; Johns Hopkins University (M.L.), Baltimore, MD; University of Oxford (P.J.W.), UK; Tohoku University (D.K.S.), Sendai, Japan; University of São Paulo (D.K.S.), Brazil; University of Colorado (J.L.B.), Denver; Mt. Sinai University (G.R.J.), New York, NY; Thomas Jefferson University (D.C.H.), Philadelphia, PA; IDIBAPS (A.S.), Barcelona, Spain; Montreal Neurological Institute and Hospital (A.B.-O.), McGill University, Montreal, Quebec, Canada; Research Institute and Hospital of National Cancer Center (H.J.K.), Goyang, Korea; KS Hegde Medical Academy (L.P.), Nitte University, Mangalore, India; Oxford University Hospital (M.I.L.), Oxford, UK; University of Southern Denmark (N.A.), Odense; Vejle Hospital (N.A.), Denmark; University Hospital (N.K.), Marrakech, Morocco; MS Center (R.H.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Service de Neurologie A (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; Molecular Neuroimmunology (S.J.), Department of Neurology, University Hospital Heidelberg, Germany; Tandem Labs (J.M.), San Diego, CA; University of Michigan Medical School (T.J.S.), Ann Arbor, MI; and David Geffen School of Medicine (M.R.Y.), University of California, Los Angeles
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pittock SJ, Lucchinetti CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad Sci 2015. [PMID: 26096370 DOI: 10.1111/nyas.12794.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4), as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease (IDD), has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SDs) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy.
Collapse
Affiliation(s)
- Sean J Pittock
- Department of Laboratory Medicine/Pathology, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
45
|
Pittock SJ, Lucchinetti CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad Sci 2015; 1366:20-39. [PMID: 26096370 DOI: 10.1111/nyas.12794] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4), as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease (IDD), has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SDs) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy.
Collapse
Affiliation(s)
- Sean J Pittock
- Department of Laboratory Medicine/Pathology, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | | |
Collapse
|