1
|
Krämer J, Balloff C, Weise M, Koska V, Uthmeier Y, Esderts I, Nguyen-Minh M, Zimmerhof M, Hartmann A, Dietrich M, Ingwersen J, Lee JI, Havla J, Kümpfel T, Kerschensteiner M, Häußler V, Heesen C, Stellmann JP, Zimmermann HG, Oertel FC, Ringelstein M, Brandt AU, Paul F, Aktas O, Hartung HP, Wiendl H, Meuth SG, Albrecht P. Evolution of retinal degeneration and prediction of disease activity in relapsing and progressive multiple sclerosis. Nat Commun 2024; 15:5243. [PMID: 38897994 PMCID: PMC11187157 DOI: 10.1038/s41467-024-49309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Retinal optical coherence tomography has been identified as biomarker for disease progression in relapsing-remitting multiple sclerosis (RRMS), while the dynamics of retinal atrophy in progressive MS are less clear. We investigated retinal layer thickness changes in RRMS, primary and secondary progressive MS (PPMS, SPMS), and their prognostic value for disease activity. Here, we analyzed 2651 OCT measurements of 195 RRMS, 87 SPMS, 125 PPMS patients, and 98 controls from five German MS centers after quality control. Peripapillary and macular retinal nerve fiber layer (pRNFL, mRNFL) thickness predicted future relapses in all MS and RRMS patients while mRNFL and ganglion cell-inner plexiform layer (GCIPL) thickness predicted future MRI activity in RRMS (mRNFL, GCIPL) and PPMS (GCIPL). mRNFL thickness predicted future disability progression in PPMS. However, thickness change rates were subject to considerable amounts of measurement variability. In conclusion, retinal degeneration, most pronounced of pRNFL and GCIPL, occurs in all subtypes. Using the current state of technology, longitudinal assessments of retinal thickness may not be suitable on a single patient level.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Carolin Balloff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Margit Weise
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Valeria Koska
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yannik Uthmeier
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Isabell Esderts
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Mai Nguyen-Minh
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Moritz Zimmerhof
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | | - Michael Dietrich
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - John-Ih Lee
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University München, München, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University München, München, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University München, München, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University München, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Aix-Marseille University, CNRS-CRMBM, UMR, 7339, Marseille, France
- APHM La Timone, CEMEREM, Marseille, France
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike C Oertel
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Department of Neurology, Kliniken Maria Hilf, Mönchengladbach, Germany.
| |
Collapse
|
2
|
Bardel B, Ayache SS, Lefaucheur JP. The contribution of EEG to assess and treat motor disorders in multiple sclerosis. Clin Neurophysiol 2024; 162:174-200. [PMID: 38643612 DOI: 10.1016/j.clinph.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) can highlight significant changes in spontaneous electrical activity of the brain produced by altered brain network connectivity linked to inflammatory demyelinating lesions and neuronal loss occurring in multiple sclerosis (MS). In this review, we describe the main EEG findings reported in the literature to characterize motor network alteration in term of local activity or functional connectivity changes in patients with MS (pwMS). METHODS A comprehensive literature search was conducted to include articles with quantitative analyses of resting-state EEG recordings (spectrograms or advanced methods for assessing spatial and temporal dynamics, such as coherence, theory of graphs, recurrent quantification, microstates) or dynamic EEG recordings during a motor task, with or without connectivity analyses. RESULTS In this systematic review, we identified 26 original articles using EEG in the evaluation of MS-related motor disorders. Various resting or dynamic EEG parameters could serve as diagnostic biomarkers of motor control impairment to differentiate pwMS from healthy subjects or be related to a specific clinical condition (fatigue) or neuroradiological aspects (lesion load). CONCLUSIONS We highlight some key EEG patterns in pwMS at rest and during movement, both suggesting an alteration or disruption of brain connectivity, more specifically involving sensorimotor networks. SIGNIFICANCE Some of these EEG biomarkers of motor disturbance could be used to design future therapeutic strategies in MS based on neuromodulation approaches, or to predict the effects of motor training and rehabilitation in pwMS.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Samar S Ayache
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France; Gilbert and Rose-Marie Chagoury School of Medicine, Department of Neurology, 4504 Byblos, Lebanon; Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, F-75116 Paris, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France.
| |
Collapse
|
3
|
Karittevlis C, Papadopoulos M, Lima V, Orphanides GA, Tiwari S, Antonakakis M, Papadopoulou Lesta V, Ioannides AA. First activity and interactions in thalamus and cortex using raw single-trial EEG and MEG elicited by somatosensory stimulation. Front Syst Neurosci 2024; 17:1305022. [PMID: 38250330 PMCID: PMC10797085 DOI: 10.3389/fnsys.2023.1305022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction One of the primary motivations for studying the human brain is to comprehend how external sensory input is processed and ultimately perceived by the brain. A good understanding of these processes can promote the identification of biomarkers for the diagnosis of various neurological disorders; it can also provide ways of evaluating therapeutic techniques. In this work, we seek the minimal requirements for identifying key stages of activity in the brain elicited by median nerve stimulation. Methods We have used a priori knowledge and applied a simple, linear, spatial filter on the electroencephalography and magnetoencephalography signals to identify the early responses in the thalamus and cortex evoked by short electrical stimulation of the median nerve at the wrist. The spatial filter is defined first from the average EEG and MEG signals and then refined using consistency selection rules across ST. The refined spatial filter is then applied to extract the timecourses of each ST in each targeted generator. These ST timecourses are studied through clustering to quantify the ST variability. The nature of ST connectivity between thalamic and cortical generators is then studied within each identified cluster using linear and non-linear algorithms with time delays to extract linked and directional activities. A novel combination of linear and non-linear methods provides in addition discrimination of influences as excitatory or inhibitory. Results Our method identifies two key aspects of the evoked response. Firstly, the early onset of activity in the thalamus and the somatosensory cortex, known as the P14 and P20 in EEG and the second M20 for MEG. Secondly, good estimates are obtained for the early timecourse of activity from these two areas. The results confirm the existence of variability in ST brain activations and reveal distinct and novel patterns of connectivity in different clusters. Discussion It has been demonstrated that we can extract new insights into stimulus processing without the use of computationally costly source reconstruction techniques which require assumptions and detailed modeling of the brain. Our methodology, thanks to its simplicity and minimal computational requirements, has the potential for real-time applications such as in neurofeedback systems and brain-computer interfaces.
Collapse
Affiliation(s)
- Christodoulos Karittevlis
- AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
- Department of Computer Science, European University Cyprus, Nicosia, Cyprus
| | | | - Vinicius Lima
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Gregoris A. Orphanides
- AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Shubham Tiwari
- Department of Geography, Durham University, Durham, United Kingdom
| | - Marios Antonakakis
- School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
- Institute for Biomagnetism and Biosignal Analysis, Medicine Faculty, University of Münster, Münster, Germany
| | | | | |
Collapse
|
4
|
Režić Mužinić N, Markotić A, Pavelin S, Polančec D, Buljubašić Šoda M, Bralić A, Šoda J, Mastelić A, Mikac U, Jerković A, Rogić Vidaković M. Expression of CD40 and CD192 in Classical Monocytes in Multiple Sclerosis Patients Assessed with Transcranial Magnetic Stimulation. Biomedicines 2023; 11:2870. [PMID: 37893243 PMCID: PMC10603866 DOI: 10.3390/biomedicines11102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Expression of CD40 and CD192 markers in different monocyte subpopulations has been reported to be altered in people with MS (pwMS). Also, functional connectivity of the corticospinal motor system pathway alterations has been proved by transcranial magnetic stimulation (TMS). The study objective was to investigate the expression of CD40 and CD192 in classical (CD14++CD16-), intermediate CD14++CD16+ and non-classical (CD14+CD16++) blood monocyte subpopulations in pwMS, undergoing neurophysiological TMS assessment of the corticospinal tract integrity by recording motor-evoked potentials (MEPs). Radiological examination on lesion detection with MRI was performed for 23 patients with relapsing-remitting MS treated with teriflunomide. Then, immunological analysis was conducted on peripheral blood samples collected from the patients and 10 healthy controls (HC). The blood samples were incubated with anti-human CD14, CD16, CD40 and CD192 antibodies. Next, pwMS underwent neurological testing of functional disability (EDSS) and TMS assessment with recording MEPs from upper and lower extremity muscles. The results show that in comparison to HC subjects, both pwMS with normal and altered MEP findings (prolonged MEP latency or absent MEP response) had significantly decreased surface receptor expression measured (MFIs) of CD192 and increased CD40 MFI in classical monocytes, and significantly increased percentages of classical and total monocytes positive for CD40. Knowing CD40's pro-inflammatory action, and CD192 as a molecule that enables the passing of monocytes into the brain, decreased CD192 in classical monocytes could represent a beneficial anti-inflammatory parameter.
Collapse
Affiliation(s)
- Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia
| | | | | | - Antonia Bralić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia
| | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Una Mikac
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Jerković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
5
|
Huang-Link Y, Yang G, Gustafsson G, Gauffin H, Landtblom AM, Mirabelli P, Link H. The Importance of Optical Coherence Tomography in the Diagnosis of Atypical or Subclinical Optic Neuritis: A Case Series Study. J Clin Med 2023; 12:jcm12041309. [PMID: 36835847 PMCID: PMC9961647 DOI: 10.3390/jcm12041309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Optic neuritis (ON) is an inflammatory condition of the optic nerve. ON is associated with development of demyelinating diseases of the central nervous system (CNS). CNS lesions visualized by magnetic resonance imaging (MRI) and the finding of oligoclonal IgG bands (OB) in the cerebrospinal fluid (CSF) are used to stratify the risk of MS after a "first" episode of ON. However, the diagnosis of ON in absence of typical clinical manifestations can be challenging. Methods and Materials: Here we present three cases with changes in the optic nerve and ganglion cell layer in the retina over the disease course. (1) A 34-year-old female with a history of migraine and hypertension had suspect amaurosis fugax (transient vision loss) in the right eye. This patient developed MS four years later. Optical coherence tomography (OCT) showed dynamic changes of the thickness of peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) over time. (2) A 29-year-old male with spastic hemiparesis and lesions in the spinal cord and brainstem. Six years later he showed bilateral subclinical ON identified using OCT, visual evoked potentials (VEP) and MRI. The patient fulfilled diagnosis criteria of seronegative neuromyelitis optica (NMO). (3) A 23-year-old female with overweight and headache had bilateral optic disc swelling. With OCT and lumbar puncture, idiopathic intracranial hypertension (IIH) was excluded. Further investigation showed positive antibody for myelin oligodendrocyte glycoprotein (MOG). Conclusions: These three cases illustrate the importance of using OCT to facilitate quick, objective and accurate diagnosis of atypical or subclinical ON, and thus proper therapy.
Collapse
Affiliation(s)
- Yumin Huang-Link
- Division of Neurology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
- Correspondence: ; Tel.: +46-72-463-8760
| | - Ge Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Greta Gustafsson
- Division of Neurophysiology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Helena Gauffin
- Division of Neurology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Anne-Marie Landtblom
- Division of Neurology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
- Division of Neurology, Department of Medical Sciences, Uppsala University, 752 36 Uppsala, Sweden
| | - Pierfrancesco Mirabelli
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Hans Link
- Department of Neurosciences, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Wooliscroft L, McCoy S, Hildebrand A, Rooney W, Oken BS, Spain RI, Kuehl KS, Bourdette D, Cameron M. Protocol for an exploratory, randomised, single-blind clinical trial of aerobic exercise to promote remyelination in multiple sclerosis. BMJ Open 2023; 13:e061539. [PMID: 36596632 PMCID: PMC9814998 DOI: 10.1136/bmjopen-2022-061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION There is an urgent need for remyelinating therapies that restore function in people with multiple sclerosis (pwMS). Aerobic exercise is a promising remyelinating strategy because it promotes remyelination in animal models both independently and synergistically with medications. Here, in this study, we present an innovative, randomised, single-blind, clinical trial designed to explore: the relationship between demyelination and mobility (part 1), and if 24 weeks of aerobic exercise promotes remyelination in pwMS (part 2). METHODS AND ANALYSIS Sedentary participants (n=60; aged 18-64 years) with stable MS will undergo a baseline visit with the following outcomes to assess associations between demyelination and mobility (part 1): spinal cord demyelination (somatosensory-evoked potentials, SSEPs), mobility (6-Minute Timed Walk, Timed 25-Foot Walk, Timed Up and Go, 9-Hole Peg Test) and patient-reported outcomes (PROs). After baseline testing, participants with significantly prolonged SSEP latency will advance to the clinical exercise trial (part 2) and will be randomised 1:1 to active or control conditions for 24 weeks. The active condition will be aerobic stationary cycling three times per week with graded virtual supervision. The control condition will be monthly virtual MS symptom education groups (six sessions). SSEP latency (remyelination endpoint), mobility outcomes and PROs will be measured at 12 and 24 weeks in all clinical trial participants. A subset of 11 active and 11 control participants will undergo a brain MRI with quantitative T1 myelin water fraction at baseline and 24 weeks (exploratory remyelination endpoint). ETHICS AND DISSEMINATION Ethical approval was obtained from the Oregon Health & Science University Institutional Review Board (#21045). Dissemination of findings will include peer-reviewed publications, conference presentations and media releases. The proposed study will inform the feasibility, study design and sample size for a fully powered clinical trial of aerobic exercise to promote remyelination in pwMS. TRIAL REGISTRATION NUMBER NCT04539002.
Collapse
Affiliation(s)
- Lindsey Wooliscroft
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Neurology, Portland VA Medical Center, Portland, Oregon, USA
| | - Sharon McCoy
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea Hildebrand
- Biostatistics and Design Program Core, Oregon Health & Science University, Portland, Oregon, USA
| | - William Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Barry S Oken
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rebecca Irene Spain
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Neurology, Portland VA Medical Center, Portland, Oregon, USA
| | - Kerry S Kuehl
- School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Dennis Bourdette
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Michelle Cameron
- Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Neurology, Portland VA Medical Center, Portland, Oregon, USA
| |
Collapse
|
7
|
Van Wijmeersch B, Hartung HP, Vermersch P, Pugliatti M, Pozzilli C, Grigoriadis N, Alkhawajah M, Airas L, Linker R, Oreja-Guevara C. Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front Immunol 2022; 13:991291. [PMID: 36238285 PMCID: PMC9551305 DOI: 10.3389/fimmu.2022.991291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is highly variable among patients, thus creating important challenges for the neurologist to appropriately treat and monitor patient progress. Despite some patients having apparently similar symptom severity at MS disease onset, their prognoses may differ greatly. To this end, we believe that a proactive disposition on the part of the neurologist to identify prognostic “red flags” early in the disease course can lead to much better long-term outcomes for the patient in terms of reduced disability and improved quality of life. Here, we present a prognosis tool in the form of a checklist of clinical, imaging and biomarker parameters which, based on consensus in the literature and on our own clinical experiences, we have established to be associated with poorer or improved clinical outcomes. The neurologist is encouraged to use this tool to identify the presence or absence of specific variables in individual patients at disease onset and thereby implement sufficiently effective treatment strategies that appropriately address the likely prognosis for each patient.
Collapse
Affiliation(s)
- Bart Van Wijmeersch
- Universitair Multiple Sclerosis (MS) Centrum, Hasselt-Pelt, Belgium
- Noorderhart, Revalidatie & Multiple Sclerosis (MS), Pelt, Belgium
- REVAL & BIOMED, Hasselt University, Hasselt, Belgium
- *Correspondence: Bart Van Wijmeersch,
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
| | - Patrick Vermersch
- University Lille, Inserm U1172 LilNCog, Centre Hospitalier Universitaire (CHU) Lille, Fédératif Hospitalo-Universitaire (FHU) Precise, Lille, France
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Unit of Clinical Neurology, San Anna University Hospital, Ferrara, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mona Alkhawajah
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laura Airas
- Turku University Hospital and University of Turku, Turku, Finland
| | - Ralf Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Cliínico San Carlos (IDISSC), Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Hamann J, Ettrich B, Hoffman KT, Then Bergh F, Lobsien D. Somatosensory evoked potentials and their relation to microstructural damage in patients with multiple sclerosis—A whole brain DTI study. Front Neurol 2022; 13:890841. [PMID: 36105776 PMCID: PMC9465089 DOI: 10.3389/fneur.2022.890841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Somatosensory evoked potentials (SSEP) play a pivotal role in the diagnosis and disease monitoring of multiple sclerosis (MS). Delayed latencies are a surrogate for demyelination along the sensory afference. This study aimed to evaluate if SSEP latencies are representative of demyelination of the brain overall, by correlating with cerebral microstructural integrity as measured by Magnetic resonance (MR) diffusion tensor imaging (DTI). Analysis was performed in a hypothesis-free whole brain approach using tract-based spatial statistics (TBSS). Material and methods A total of 46 patients with MS or clinically isolated syndrome were included in the study. Bilateral SSEPs of the median nerve measuring mean N20 latencies (mN20) and Central Conduction Time (CCT), were acquired. MRI scans were performed at 3T. DTI acquisition was done with a single-shot echoplanar imaging technique with 80 diffusion directions. The FSL software package was used to process the DTI datasets and to calculate maps of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). These maps were then further analyzed using the TBSS module. The mean N20 and CCT and the right- and left-sided N20 and CCT were separately correlated to FA, AD, and RD, controlled for age, gender, and EDSS as variables of non-interest. Results Widespread negative correlations of SSEP latencies with FA (p = 0.0005) and positive correlations with RD (p = 0.0003) were measured in distinct white matter tracts, especially the optic tracts, corpus callosum, and posterior corona radiata. No correlation with AD was found in any white matter tract. Conclusion Highly significant correlations of FA and RD to SSEPs suggest that their latency is representative of widespread microstructural change, and especially demyelination in patients suffering from MS, reaching beyond the classic somatosensory regions. This points to the usefulness of SSEPs as a non-invasive tool in the evaluation of microstructural damage to the brain.
Collapse
Affiliation(s)
- Jan Hamann
- Institute of Neuroradiology, University of Leipzig, Leipzig, Germany
- *Correspondence: Jan Hamann
| | - Barbara Ettrich
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | | | | | - Donald Lobsien
- Institute of Neuroradiology, University of Leipzig, Leipzig, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Helios Klinikum Erfurt, Erfurt, Germany
| |
Collapse
|
9
|
Kolcava J, Rajdova A, Vlckova E, Stourac P, Bednarik J. Relapsing MRI-negative myelitis associated with myelin-oligodendrocyte glycoprotein autoantibodies: a case report. BMC Neurol 2022; 22:313. [PMID: 36002821 PMCID: PMC9400333 DOI: 10.1186/s12883-022-02837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
Background Serum antibodies to myelin-oligodendrocyte glycoprotein (MOG) are biomarkers of MOG-IgG-associated disorder (MOGAD), a demyelinating disease distinct from both multiple sclerosis and aquaporin-4-IgG neuromyelitis optica spectrum disorder. The phenotype of MOGAD is broad and includes optic neuritis, transverse myelitis, and acute demyelinating encephalomyelitis. Myelitis is common with MOGAD and typically results in acute and severe disability, although prospects for recovery are often favorable with prompt immunotherapy. Case presentation This contribution presents a unique case report of a young male patient exhibiting relapsing myelitis with normal spinal cord and brain magnetic resonance imaging. Comprehensive diagnostic assessment revealed myelin-oligodendrocyte glycoprotein-IgG-associated disorder. Conclusion MOGAD is one of the conditions which should be considered in MRI-negative myelitis. The diagnosis, however, may prove difficult, especially if the patient is not exhibiting other neurological symptoms of MOGAD. Conus or epiconus involvement is common in MOGAD; the patient reported herein exhibited incomplete rostral epiconus symptoms which, together with somatosensory evoked potential abnormalities, led to the diagnosis.
Collapse
Affiliation(s)
- Jan Kolcava
- Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic. .,Department of Neurology, University Hospital Brno, Brno, Czech Republic.
| | - Aneta Rajdova
- Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, Brno, Czech Republic.,ERN Neuromuscular Center: Euro-NMD, University Hospital Brno, Jihlavská 340/20, 625 00 Brno-Stary Liskovec, Brno-Bohunice, Czech Republic
| | - Eva Vlckova
- Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, Brno, Czech Republic.,ERN Neuromuscular Center: Euro-NMD, University Hospital Brno, Jihlavská 340/20, 625 00 Brno-Stary Liskovec, Brno-Bohunice, Czech Republic
| | - Pavel Stourac
- Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Josef Bednarik
- Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, Brno, Czech Republic.,ERN Neuromuscular Center: Euro-NMD, University Hospital Brno, Jihlavská 340/20, 625 00 Brno-Stary Liskovec, Brno-Bohunice, Czech Republic
| |
Collapse
|
10
|
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23115877. [PMID: 35682558 PMCID: PMC9180348 DOI: 10.3390/ijms23115877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Maysa Hamade
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qi Wu
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qin Wang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Robert Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Yang Mao-Draayer
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-615-5635
| |
Collapse
|
11
|
Motor evoked potentials for multiple sclerosis, a multiyear follow-up dataset. Sci Data 2022; 9:207. [PMID: 35577808 PMCID: PMC9110383 DOI: 10.1038/s41597-022-01335-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease affecting millions of people worldwide. Through the demyelinating and axonal pathology of MS, the signal conduction in the central nervous system is affected. Evoked potential measurements allow clinicians to monitor this process and can be used for decision support. We share a dataset that contains motor evoked potential (MEP) measurements, in which the brain is stimulated and the resulting signal is measured in the hands and feet. This results in time series of 100 milliseconds long. Typically, both hands and feet are measured in one hospital visit. The dataset contains 5586 visits of 963 patients, performed in day-to-day clinical care over a period of 6 years. The dataset consists of approximately 100,000 MEP. Clinical metadata such as the expanded disability status scale, sex, and age is also available. This dataset can be used to explore the role of evoked potentials in MS research and patient care. It may also be used as a benchmark for time series analysis and predictive modelling. Measurement(s) | Abnormal upper-limb motor evoked potentials • Abnormal lower-limb motor evoked potentials • Kurtzke Expanded Disability Status Scale Clinical Classification | Technology Type(s) | Transcranial Magnetic Stimulation • performing a clinical assessment | Factor Type(s) | Date of birth • Sex • Measurement date | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | Belgium |
Collapse
|
12
|
Klistorner A, Klistorner S, You Y, Graham SL, Yiannikas C, Parratt J, Barnett M. Long-term Effect of Permanent Demyelination on Axonal Survival in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1155. [PMID: 35241572 PMCID: PMC8893590 DOI: 10.1212/nxi.0000000000001155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
Background and Objectives To investigate the long-term effect of permanent demyelination on axonal attrition by examining an association between intereye asymmetry of the multifocal visual evoked potential (mfVEP) latency delay and subsequent thinning of retinal ganglion cell axons in patients with a long-standing history of unilateral optic neuritis (ON). Methods Only patients with a significant degree of chronic demyelination (intereye latency asymmetry >5 ms) were included in this study. The level of optic nerve demyelination was estimated at baseline by the latency delay of mfVEP, while the degree of axonal loss was assessed by thinning of the retinal nerve fiber layer (RNFL) thickness between baseline and follow-up visits. Low-contrast visual acuity (LCVA) was also evaluated at baseline and follow-up. Patients were examined twice with an average interval of 6.1 ± 1.4 years. Results From 85 examined patients with multiple sclerosis, 28 satisfied inclusion criteria. Latency of the mfVEP was delayed, and RNFL thickness was reduced in ON eyes compared with fellow eyes at both visits. There was significant correlation between latency asymmetry and baseline or follow-up intereye RNFL thickness asymmetry. Intereye asymmetry of LCVA at baseline correlated with baseline latency asymmetry of mfVEP and baseline asymmetry of RNFL thickness. Latency of the mfVEP in ON eyes improved slightly during the follow-up period, whereas latency of the fellow eye remained stable. By contrast, RNFL thickness significantly declined in both ON and fellow eyes during the follow-up period. The rate of RNFL thinning in ON eyes, however, was more than 2 times faster compared with the fellow eyes (p < 0.001). Furthermore, baseline latency asymmetry significantly correlated with the rate of RNFL thinning in ON eyes during the follow-up (p < 0.001), explaining almost half of the variability of temporal RNFL progression. For each millisecond of latency delay (i.e., ∼0.5 mm of demyelination along the optic nerve), temporal RNFL thickness was annually reduced by 0.05%. Discussion Our study provides clear in vivo evidence that chronic demyelination significantly accelerates axonal loss. However, because this process is slow and its effect is mild, long-term monitoring is required to establish and confidently measure the neurodegenerative consequences of demyelination.
Collapse
Affiliation(s)
- Alexandr Klistorner
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia.
| | - Samuel Klistorner
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia.
| | - Yuyi You
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia
| | - Stuart L Graham
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia
| | - Con Yiannikas
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia
| | - John Parratt
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia
| | - Michael Barnett
- From the Save Sight Institute (A.K., S.K., and Y.Y.), Sydney Medical School, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health Sciences (A.K., Y.Y., and S.L.G.), Macquarie University, Sydney, New South Wales, Australia; Royal North Shore Hospital (S.K., C.Y., and J.P.), Sydney, New South Wales, Australia; Brain and Mind Centre (M.B.), University of Sydney, New South Wales, Australia; and Sydney Neuroimaging Analysis Centre (M.B.), Camperdown, New South Wales, Australia
| |
Collapse
|
13
|
Dubbioso R, Bove M, Boccia D, D'Ambrosio V, Nolano M, Manganelli F, Iodice R. Neurophysiological and behavioural correlates of ocrelizumab therapy on manual dexterity in patients with primary progressive multiple sclerosis. J Neurol 2022; 269:4791-4801. [PMID: 35419681 PMCID: PMC9363320 DOI: 10.1007/s00415-022-11114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
Background Hand dexterity impairment is a key feature of disability in people with primary progressive multiple sclerosis (PPMS). So far, ocrelizumab, a recombinant humanized monoclonal antibody that selectively depletes CD20-expressing B cells, is the only therapy approved for PPMS and recent analysis reported its ability to reduce the risk of upper limb disability progression. However, the neural mechanisms underlying hand impairment in PPMS and the brain networks behind the effect of ocrelizumab on manual dexterity are not fully understood. Objective Main aims of our study were: (i) to investigate neurophysiological and behavioural correlates of hand function impairment in subjects with PPMS, and (ii) to use neurophysiologic and behavioural measures to track the effects of ocrelizumab therapy on manual dexterity. Methods Seventeen PPMS patients and 17 healthy-controls underwent routine neurophysiological protocols assessing the integrity of cortico-spinal and somatosensory pathways and advanced transcranial magnetic stimulation (TMS) protocols evaluating inhibitory (short and long interval intracortical inhibition, short-latency afferent inhibition) and facilitatory (motor thresholds, intracortical facilitation, short-interval intracortical facilitation) circuits in the primary motor cortex. All subjects also underwent behavioural analysis of hand dexterity by means of nine-hole peg test and finger movement analysis, and hand strength with handgrip and three-point pinch test. Neurophysiological and clinical assessments of hand functionality were also performed after 1 year of ocrelizumab therapy. Results At baseline PPMS patients displayed a significant impairment of hand dexterity and strength compared to healthy controls (all p < 0.03). Neurophysiological study disclosed prolonged latencies of standard somatosensory and motor evoked potentials (all p < 0.025) and an overall reduction of intracortical excitability at TMS protocols, involving both excitatory and inhibitory circuits. Importantly, hand dexterity impairment, indexed by delayed 9HPT, correlated with TMS protocols investigating cortical sensorimotor integration (short-latency afferent inhibition, SAI), p = 0.009. Both parameters, 9HPT (p = 0.01) and SAI (p = 0.01), displayed a significant improvement after 1 year of therapy with ocrelizumab. Conclusion Intracortical sensorimotor networks are involved in hand dexterity dysfunction of PPMS. Ocrelizumab therapy displays a beneficial effect on hand dexterity impairment most likely through intracortical networks implicated in fast sensorimotor integration.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy.
| | - Marco Bove
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Section of Human Physiology, Department of Experimental Medicine, Università Degli Studi Di Genova, 16132, Genoa, Italy
| | - Daniele Boccia
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience Genetics, Maternal and Child Health (DINOGMI)Center of Excellence for Biomedical Research (CEBR), University of Genoa, RehabilitationGenoa, Ophthalmology, Italy
| | - Vincenzo D'Ambrosio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy.,Department of Neurology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy
| |
Collapse
|
14
|
Balraj A, Clarkson-Paredes C, Pajoohesh-Ganji A, Kay MW, Mendelowitz D, Miller RH. Refinement of axonal conduction and myelination in the mouse optic nerve indicate an extended period of postnatal developmental plasticity. Dev Neurobiol 2022; 82:308-325. [PMID: 35403346 PMCID: PMC9128412 DOI: 10.1002/dneu.22875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Retinal ganglion cells generate a pattern of action potentials to communicate visual information from the retina to cortical areas. Myelin, an insulating sheath, wraps axonal segments to facilitate signal propagation and when deficient, can impair visual function. Optic nerve development and initial myelination has largely been considered complete by the fifth postnatal week. However, the relationship between the extent of myelination and axonal signaling in the maturing optic nerve is not well characterized. Here, we examine the relationship between axon conduction and elements of myelination using extracellular nerve recordings, immunohistochemistry, western blot analysis, scanning electron microscopy, and simulations of nerve responses. Comparing compound action potentials from mice aged 4-12 weeks revealed five functional distinct axonal populations, an increase in the number of functional axons, and shifts toward fast-conducting axon populations at 5 and 8 weeks postnatal. At these ages, our analysis revealed increased myelin thickness, lower g-ratios and changes in the 14 kDa MBP isoform, while the density of axons and nodes of Ranvier remained constant. At 5 postnatal weeks, axon diameter increased, while at 8 weeks, increased expression of a mature sodium ion channel subtype, Nav 1.6, was observed at nodes of Ranvier. A simulation model of nerve conduction suggests that ion channel subtype, axon diameter, and myelin thickness are more likely to be key regulators of nerve function than g-ratio. Such refinement of axonal function and myelin rearrangement identified an extended period of maturation in the normal optic nerve that may facilitate the development of visual signaling patterns. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Annika Balraj
- Department of Anatomy, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Cheryl Clarkson-Paredes
- Nanofabrication and Imaging Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Matthew W. Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Robert H. Miller
- Department of Anatomy, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Rovira À, Traboulsee A, Reich DS, Wattjes MP. The reality of multiple sclerosis assessment in middle-income countries – Authors' reply. Lancet Neurol 2022; 21:215-216. [DOI: 10.1016/s1474-4422(22)00041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
16
|
Abramov DM, de Silva DS, Salles TRS, Galhanone PR, Lazarev VV. The reality of multiple sclerosis assessment in middle-income countries. Lancet Neurol 2022; 21:215. [DOI: 10.1016/s1474-4422(22)00042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
|
17
|
Prognostic biomarkers in primary progressive multiple sclerosis: validating and scrutinizing multimodal evoked potentials. Clin Neurophysiol 2022; 137:152-158. [DOI: 10.1016/j.clinph.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/20/2022]
|
18
|
Dziadkowiak E, Wieczorek M, Zagrajek M, Chojdak-Łukasiewicz J, Gruszka E, Budrewicz S, Pokryszko-Dragan A. Multimodal Evoked Potentials as Potential Biomarkers of Disease Activity in Patients With Clinically Isolated Syndrome. Front Neurol 2022; 12:678035. [PMID: 35211070 PMCID: PMC8860823 DOI: 10.3389/fneur.2021.678035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Objective There is an ongoing search for markers useful in monitoring and predicting disease activity at the early stage of multiple sclerosis (MS). The goals of this study were to prospectively evaluate the changes in parameters of multimodal evoked potentials (EP) and cognition within a 3-year follow-up period in patients with clinically isolated syndrome (CIS), and to assess the prognostic value of baseline findings with regard to the disease outcomes. Methods In 29 patients (20 women, nine men, mean age 31.1) multimodal (visual, brainstem auditory, somatosensory, event-related) EP and neuropsychological tests (NT) were performed at baseline (T0) and after 1 (T1) and 3 (T3) years. Their results were compared longitudinally between baseline, T1, and T3. Baseline results confirmed conversion of CIS into multiple sclerosis (MS) and disability level at T1 and T3 using multiple comparisons and a logistic regression model. Results Apart from mean N13/P16 SEP (somatosensory evoked potentials) amplitude (lower at T1 and T3 than at baseline (T0 1.02 ± 0.37 μV, T1 0.90 ± 0.26 μV, T3 0.74 ± 0.32 μV, p < 0.05 for both comparisons), no significant changes of EP or NT parameters were found in longitudinal assessment. Baseline P300 Pz latency was longer for the patients with MS than for those with CIS at T1 (352.69 vs. 325.56 ms). No predictive value was shown for any of the analyzed baseline variables with regard to conversion from CIS into MS. Significance Baseline ERP abnormalities were associated with their short-term conversion into MS. ERP are worth considering in multimodal EP evaluation at the early stage of MS.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wrocław, Poland
| | - Mieszko Zagrajek
- Department of Neurology, Wrocław Medical University, Wrocław, Poland
| | | | - Ewa Gruszka
- Department of Neurology, Wrocław Medical University, Wrocław, Poland
| | | | | |
Collapse
|
19
|
Thompson AJ, Carroll W, Ciccarelli O, Comi G, Cross A, Donnelly A, Feinstein A, Fox RJ, Helme A, Hohlfeld R, Hyde R, Kanellis P, Landsman D, Lubetzki C, Marrie RA, Morahan J, Montalban X, Musch B, Rawlings S, Salvetti M, Sellebjerg F, Sincock C, Smith KE, Strum J, Zaratin P, Coetzee T. Charting a global research strategy for progressive MS-An international progressive MS Alliance proposal. Mult Scler 2021; 28:16-28. [PMID: 34850641 PMCID: PMC8688983 DOI: 10.1177/13524585211059766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Progressive forms of multiple sclerosis (MS) affect more than 1 million individuals globally. Recent approvals of ocrelizumab for primary progressive MS and siponimod for active secondary progressive MS have opened the therapeutic door, though results from early trials of neuroprotective agents have been mixed. The recent introduction of the term 'active' secondary progressive MS into the therapeutic lexicon has introduced potential confusion to disease description and thereby clinical management. OBJECTIVE This paper reviews recent progress, highlights continued knowledge and proposes, on behalf of the International Progressive MS Alliance, a global research strategy for progressive MS. METHODS Literature searches of PubMed between 2015 and May, 2021 were conducted using the search terms "progressive multiple sclerosis", "primary progressive multiple sclerosis", "secondary progressive MS". Proposed strategies were developed through a series of in-person and virtual meetings of the International Progressive MS Alliance Scientific Steering Committee. RESULTS Sustaining and accelerating progress will require greater understanding of underlying mechanisms, identification of potential therapeutic targets, biomarker discovery and validation, and conduct of clinical trials with improved trial design. Encouraging developments in symptomatic and rehabilitative interventions are starting to address ongoing challenges experienced by people with progressive MS. CONCLUSION We need to manage these challenges and realise the opportunities in the context of a global research strategy, which will improve quality of life for people with progressive MS.
Collapse
Affiliation(s)
| | | | | | | | - Anne Cross
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Reinhard Hohlfeld
- Munich Cluster for Systems Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | | | | | - Xavier Montalban
- Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy/Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Finn Sellebjerg
- Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | | | | | - Jon Strum
- International Progressive MS Alliance, Los Angeles, CA, USA
| | | | | |
Collapse
|
20
|
López-Dorado A, Pérez J, Rodrigo M, Miguel-Jiménez J, Ortiz M, de Santiago L, López-Guillén E, Blanco R, Cavalliere C, Morla EMS, Boquete L, Garcia-Martin E. Diagnosis of multiple sclerosis using multifocal ERG data feature fusion. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2021; 76:157-167. [PMID: 34867127 PMCID: PMC8475498 DOI: 10.1016/j.inffus.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/15/2020] [Accepted: 05/17/2021] [Indexed: 05/16/2023]
Abstract
The purpose of this paper is to implement a computer-aided diagnosis (CAD) system for multiple sclerosis (MS) based on analysing the outer retina as assessed by multifocal electroretinograms (mfERGs). MfERG recordings taken with the RETI-port/scan 21 (Roland Consult) device from 15 eyes of patients diagnosed with incipient relapsing-remitting MS and without prior optic neuritis, and from 6 eyes of control subjects, are selected. The mfERG recordings are grouped (whole macular visual field, five rings, and four quadrants). For each group, the correlation with a normative database of adaptively filtered signals, based on empirical model decomposition (EMD) and three features from the continuous wavelet transform (CWT) domain, are obtained. Of the initial 40 features, the 4 most relevant are selected in two stages: a) using a filter method and b) using a wrapper-feature selection method. The Support Vector Machine (SVM) is used as a classifier. With the optimal CAD configuration, a Matthews correlation coefficient value of 0.89 (accuracy = 0.95, specificity = 1.0 and sensitivity = 0.93) is obtained. This study identified an outer retina dysfunction in patients with recent MS by analysing the outer retina responses in the mfERG and employing an SVM as a classifier. In conclusion, a promising new electrophysiological-biomarker method based on feature fusion for MS diagnosis was identified.
Collapse
Affiliation(s)
- A. López-Dorado
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - J. Pérez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
| | - M.J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - J.M. Miguel-Jiménez
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - M. Ortiz
- School of Physics, University of Melbourne, VIC 3010, Australia
| | - L. de Santiago
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - E. López-Guillén
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - R. Blanco
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - C. Cavalliere
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - E. Mª Sánchez Morla
- Department of Psychiatry, Hospital 12 de Octubre Research Institute (i+12), 28041 Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERSAM: Biomedical Research Networking Centre in Mental Health, 28029 Madrid, Spain
| | - L. Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - E. Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| |
Collapse
|
21
|
Mamoei S, Jensen HB, Pedersen AK, Nygaard MKE, Eskildsen SF, Dalgas U, Stenager E. Clinical, Neurophysiological, and MRI Markers of Fampridine Responsiveness in Multiple Sclerosis-An Explorative Study. Front Neurol 2021; 12:758710. [PMID: 34764932 PMCID: PMC8576138 DOI: 10.3389/fneur.2021.758710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023] Open
Abstract
Objective: Persons with multiple sclerosis (PwMS), already established as responders or non-responders to Fampridine treatment, were compared in terms of disability measures, physical and cognitive performance tests, neurophysiology, and magnetic resonance imaging (MRI) outcomes in a 1-year explorative longitudinal study. Materials and Methods: Data from a 1-year longitudinal study were analyzed. Examinations consisted of the timed 25-foot walk test (T25FW), six spot step test (SSST), nine-hole peg test (9-HPT), five times sit-to-stand test (5-STS), symbol digit modalities test (SDMT), transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEP) examining central motor conduction times (CMCT), peripheral motor conduction times (PMCT) and their amplitudes, electroneuronography (ENG) of the lower extremities, and brain structural MRI measures. Results: Forty-one responders and eight non-responders to Fampridine treatment were examined. There were no intergroup differences except for the PMCT, where non-responders had prolonged conduction times compared to responders to Fampridine. Six spot step test was associated with CMCT throughout the study. After 1 year, CMCT was further prolonged and cortical MEP amplitudes decreased in both groups, while PMCT and ENG did not change. Throughout the study, CMCT was associated with the expanded disability status scale (EDSS) and 12-item multiple sclerosis walking scale (MSWS-12), while SDMT was associated with number of T2-weighted lesions, lesion load, and lesion load normalized to brain volume. Conclusions: Peripheral motor conduction time is prolonged in non-responders to Fampridine when compared to responders. Transcranial magnetic stimulation-elicited MEPs and SDMT can be used as markers of disability progression and lesion activity visualized by MRI, respectively. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03401307.
Collapse
Affiliation(s)
- Sepehr Mamoei
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, University Hospital of Southern Jutland, Sønderborg, Denmark
- Open Patient Data Explorative Network, Odense, Denmark
- Neurological Research Unit, MS Clinics of Southern Jutland (Sønderborg, Esbjerg, Kolding), University Hospital of Southern Jutland, Aabenraa, Denmark
| | - Henrik Boye Jensen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Open Patient Data Explorative Network, Odense, Denmark
- Department of Brain and Nerve Diseases, University Hospital of Lillebælt, Kolding, Denmark
| | | | - Mikkel Karl Emil Nygaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Egon Stenager
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, University Hospital of Southern Jutland, Sønderborg, Denmark
- Neurological Research Unit, MS Clinics of Southern Jutland (Sønderborg, Esbjerg, Kolding), University Hospital of Southern Jutland, Aabenraa, Denmark
| |
Collapse
|
22
|
Scheuren PS, David G, Kramer JLK, Jutzeler CR, Hupp M, Freund P, Curt A, Hubli M, Rosner J. Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure-Function Paradox in Cervical Myelopathy. Neurology 2021; 97:e1512-e1522. [PMID: 34380751 DOI: 10.1212/wnl.0000000000012643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To explore the so-called structure-function paradox in individuals with focal spinal lesions by means of tract-specific MRI coupled with multimodal evoked potentials and quantitative sensory testing. METHODS Individuals with signs and symptoms attributable to cervical myelopathy (i.e., no evidence of competing neurologic diagnoses) were recruited at the Balgrist University Hospital, Zurich, Switzerland, between February 2018 and March 2019. We evaluated the relationship between the extent of structural damage within spinal nociceptive pathways (i.e., dorsal horn, spinothalamic tract, anterior commissure) assessed with atlas-based MRI and (1) the functional integrity of spinal nociceptive pathways measured with contact heat-, cold-, and pinprick-evoked potentials and (2) clinical somatosensory phenotypes assessed with quantitative sensory testing. RESULTS Sixteen individuals (mean age 61 years) with either degenerative (n = 13) or posttraumatic (n = 3) cervical myelopathy participated in the study. Most individuals presented with mild myelopathy (modified Japanese Orthopaedic Association score >15; n = 13). A total of 71% of individuals presented with structural damage within spinal nociceptive pathways on MRI. However, 50% of these individuals presented with complete functional sparing (i.e., normal contact heat-, cold-, and pinprick-evoked potentials). The extent of structural damage within spinal nociceptive pathways was not associated with functional integrity of thermal (heat: p = 0.57; cold: p = 0.49) and mechano-nociceptive pathways (p = 0.83) or with the clinical somatosensory phenotype (heat: p = 0.16; cold: p = 0.37; mechanical: p = 0.73). The amount of structural damage to the spinothalamic tract did not correlate with spinothalamic conduction velocity (p > 0.05; ρ = -0.11). DISCUSSION Our findings provide neurophysiologic evidence to substantiate that structural damage in the spinal cord does not equate to functional somatosensory deficits. This study recognizes the pronounced structure-function paradox in cervical myelopathies and underlines the inevitable need for a multimodal phenotyping approach to reveal the eloquence of lesions within somatosensory pathways.
Collapse
Affiliation(s)
- Paulina Simonne Scheuren
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Gergely David
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - John Lawrence Kipling Kramer
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Catherine Ruth Jutzeler
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Markus Hupp
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Patrick Freund
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Armin Curt
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Michèle Hubli
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Jan Rosner
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland.
| |
Collapse
|
23
|
Weise D, Groiss SJ, Klinker F, Mess WH, Milnik V, Zeller D. Evozierte Potenziale – Reminder und Update. KLIN NEUROPHYSIOL 2021. [DOI: 10.1055/a-1416-3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mit Hilfe der evozierten Potenziale und der magnetisch evozierten motorischen Potenziale können verlängerte Latenzen zentraler Leitungsbahnen und peripherer Nerven nachgewiesen oder ausgeschlossen werden. Somit können Symptome objektiviert und quantifiziert sowie Läsionen lokalisiert werden. In diesem Beitrag werden Durchführung und Indikationen der einzelnen Modalitäten zusammengefasst und Neuerungen berichtet.
Collapse
|
24
|
Khan H, Sami MB, Litvak V. The utility of Magnetoencephalography in multiple sclerosis - A systematic review. NEUROIMAGE-CLINICAL 2021; 32:102814. [PMID: 34537682 PMCID: PMC8455859 DOI: 10.1016/j.nicl.2021.102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023]
Abstract
We conducted a Systematic Review of studies, looking at 30 studies from 13 centres. MS patients had reduced power in some induced responses (motor beta, visual gamma). Increased latency and reduced connectivity were seen for somatosensory evoked fields. There was an association between upper alpha connectivity and cognitive function. MEG shows promise, although work is too preliminary to recommend current clinical use.
Introduction Magnetoencephalography (MEG), allows for a high degree temporal and spatial accuracy in recording cortical oscillatory activity and evoked fields. To date, no review has been undertaken to synthesise all MEG studies in Multiple Sclerosis (MS). We undertook a Systematic Review of the utility of MEG in MS. Methods We identified MEG studies carried out in MS using EMBASE, Medline, Cochrane, TRIP and Psychinfo databases. We included original research articles with a cohort of minimum of five multiple sclerosis patients and quantifying of at least one MEG parameter. We used a modified version of the JBI (mJBI) for case-control studies to assess for risk of bias. Results We identified 30 studies from 13 centres involving at least 433 MS patients and 347 controls. We found evidence that MEG shows perturbed activity (most commonly reduced power modulations), reduced connectivity and association with altered clinical function in Multiple Sclerosis. Specific replicated findings were decreased motor induced responses in the beta band, diminished increase of gamma power after visual stimulation, increased latency and reduced connectivity for somatosensory evoked fields. There was an association between upper alpha connectivity and cognitive measures in people with MS. Overall studies were of moderate quality (mean mJBI score 6.7). Discussion We find evidence for the utility of MEG in Multiple Sclerosis. Event-related designs are of particular value and show replicability between centres. At this stage, it is not clear whether these changes are specific to Multiple Sclerosis or are also observable in other diseases. Further studies should look to explore cognitive control in more depth using in-task designs and undertake longitudinal studies to determine whether these changes have prognostic value.
Collapse
Affiliation(s)
- H Khan
- UCL Queen's Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Queen's Medical Centre Nottingham, Clifton Boulevard, Derby Rd, Nottingham NG7 2UH, United Kingdom.
| | - M B Sami
- Institute of Mental Health, Jubilee Campus, University of Nottingham Innovation Park, Triumph Road, Nottingham NG7 2TU, United Kingdom
| | - V Litvak
- UCL Queen's Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
25
|
Abstract
Multiple sclerosis (MS) is a neurological inflammatory disorder known to attack the heavily myelinated regions of the nervous system including the optic nerves, cerebellum, brainstem and spinal cord. This review will discuss the clinical manifestations and investigations for MS and other similar neurological inflammatory disorders affecting vision, as well as the effects of MS treatments on vision. Assessment of visual pathways is critical, considering MS can involve multiple components of the visual pathway, including optic nerves, uvea, retina and occipital cortex. Optical coherence tomography is increasingly being recognised as a highly sensitive tool in detecting subclinical optic nerve changes. Magnetic resonance imaging (MRI) is critical in MS diagnosis and in predicting long-term disability. Optic neuritis in MS involves unilateral vision loss, with characteristic pain on eye movement. The visual loss in neuromyelitis optica spectrum disorder tends to be more severe with preferential altitudinal field loss, chiasmal and tract lesions are also more common. Other differential diagnoses include chronic relapsing inflammatory optic neuropathy and giant cell arteritis. Leber's hereditary optic neuropathy affects young males and visual loss tends to be painless and subacute, typically involving both optic nerves. MS lesions in the vestibulocerebellum, brainstem, thalamus and basal ganglia may lead to abnormalities of gaze, saccades, pursuit and nystagmus which can be identified on eye examination. Medial longitudinal fasciculus lesions can cause another frequent presentation of MS, internuclear ophthalmoplegia, with failure of ipsilateral eye adduction and contralateral eye abduction nystagmus. Treatments for MS include high-dose corticosteroids for acute relapses and disease-modifying medications for relapse prevention. These therapies may also have adverse effects on vision, including central serous retinopathy with corticosteroid therapy and macular oedema with fingolimod.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- Prince of Wales Clinical School, University of New South Wales Sydney, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
26
|
Multimodal Evoked Potentials as Candidate Prognostic and Response Biomarkers in Clinical Trials of Multiple Sclerosis. J Clin Neurophysiol 2021; 38:171-180. [PMID: 33958567 DOI: 10.1097/wnp.0000000000000723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Evoked potentials (EPs) measure quantitatively and objectively the alterations of central signal propagation in multiple sclerosis and have long been used for diagnosis. More recently, their utility for prognosis has been demonstrated in several studies, summarizing multiple EP modalities in a single score. In particular, visual, somatosensory, and motor EPs are useful because of their sensitivity to pathology in the frequently affected optic nerve, somatosensory tract, and pyramidal system. Quantitative EP scores show higher sensitivity to change than clinical assessment and may be used to monitor disease progression. Visual EP and the visual system have served as a model to study remyelinating therapies in the setting of acute and chronic optic neuritis. This review presents rationale and evidence for using multimodal EP as prognostic and response biomarkers in clinical trials, targeting remyelination or halting disease progression in multiple sclerosis.
Collapse
|
27
|
Natural history of relapsing remitting multiple sclerosis in a long-lasting cohort from a tertiary MS centre in Portugal. Mult Scler Relat Disord 2021; 54:103091. [PMID: 34246020 DOI: 10.1016/j.msard.2021.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Several disease-modifying therapies (DMTs) have emerged in the last two decades for the treatment of multiple sclerosis (MS). The increasing use of these therapies has enhanced the need to study its impact on long-term disease progression and on the natural history of MS. This study aimed to characterize a Portuguese MS patient cohort in what concerns the natural history of disease by exploring differences throughout 3 decades. METHODS Longitudinal, retrospective, non-interventional study. Patients aged ≥ 18 years old, with confirmed diagnosis of relapsing-remitting MS (RRMS), were included. Biodemographic and clinical characteristics (MS diagnosis, patient follow-up, relapses, treatment, and exams) were assessed and compared according to the first appointment date throughout 10-year spans (1987-1996; 1997-2006; 2007-2016). RESULTS 548 patients were included in this analysis. Significant differences were observed between decades for evoked potential (EP) and cerebrospinal fluid (CSF) exams conducted at diagnosis, the first with less expression on the last decade; the median number of relapses per year (higher in the subgroup 07-16); EDSS at baseline and at last appointment (both higher in the subgroup 87-96); and the percentage of patients achieving EDSS 3.0 and EDSS 6.0 (increased in the subgroup 87-96). Additionally, time from diagnosis to first treatment was significantly lower in patients from the most recent decade, and a greater percentage of such patients, compared to the other two subgroups, was, at last appointment, under a second line DMT. CONCLUSION In general, our study reflects findings from longitudinal studies on MS progression already published in the literature. In recent years, the growing number of more effective DMTs, along with earlier disease detection, and improvements in access to healthcare appear to have had a positive impact on patients' access to treatment and, consequently, disease progression. Additional studies, with increased follow up time, are needed to further investigate the effect of treatment improvement in the natural history of MS.
Collapse
|
28
|
The Use of Evoked Potentials in Multiple Sclerosis Clinical Trials. J Clin Neurophysiol 2021; 38:161. [PMID: 33958564 DOI: 10.1097/wnp.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Fernández V. The Use of Motor-Evoked Potentials in Clinical Trials in Multiple Sclerosis. J Clin Neurophysiol 2021; 38:166-170. [PMID: 33958566 DOI: 10.1097/wnp.0000000000000734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Motor-evoked potentials (MEPs) can be used to assess the integrity of the descending corticospinal tract in the laboratory. Evoked potentials (EPs) have been widely used in the past for the diagnosis of multiple sclerosis (MS), but they are now becoming more useful in assessing the prognosis of the disease. Motor-evoked potentials have been included in EP scales that have demonstrated good correlations with clinical disability. Soon after the onset of MS, it is possible to detect an ongoing process of neurodegeneration and axonal loss. Axonal loss is probably responsible for the disability and disease progression that occurs in MS. Given the good correlations of EPs in detecting disease progression in MS, they have been used to monitor the effects of drugs used to treat the disease. Several clinical trials used MEPs as part of their EP evaluation, but MEPs have never been used as a measure of efficacy in clinical trials testing neuroprotective agents, although MEPs could be a very promising tool to measure neuroprotection and remyelination resulting from these drugs. To be used in multicenter clinical trials, MEP readings should be comparable between centers. Standardized multicenter EP assessment with central reading has been demonstrated to be feasible and reliable. Although MEP measurements have been correlated with clinical scores and other measures of neurodegeneration, further validation of MEP amplitude measurements is needed regarding their validity, reliability, and sensitivity before they can be routinely used in clinical drug trials in MS.
Collapse
Affiliation(s)
- Victoria Fernández
- Service of Clinical Neurophysiology, University Regional Hospital of Malaga, Malaga, Spain
| |
Collapse
|
30
|
Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. J Neurol 2021; 268:30-44. [PMID: 31190170 PMCID: PMC7815564 DOI: 10.1007/s00415-019-09421-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The greatest unmet need in multiple sclerosis (MS) are treatments that delay, prevent or reverse progression. One of the most tractable strategies to achieve this is to therapeutically enhance endogenous remyelination; doing so restores nerve conduction and prevents neurodegeneration. The biology of remyelination-centred on the activation, migration, proliferation and differentiation of oligodendrocyte progenitors-has been increasingly clearly defined and druggable targets have now been identified in preclinical work leading to early phase clinical trials. With some phase 2 studies reporting efficacy, the prospect of licensed remyelinating treatments in MS looks increasingly likely. However, there remain many unanswered questions and recent research has revealed a further dimension of complexity to this process that has refined our view of the barriers to remyelination in humans. In this review, we describe the process of remyelination, why this fails in MS, and the latest research that has given new insights into this process. We also discuss the translation of this research into clinical trials, highlighting the treatments that have been tested to date, and the different methods of detecting remyelination in people.
Collapse
Affiliation(s)
- Nick Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
A cross-sectional comparison of performance, neurophysiological and MRI outcomes of responders and non-responders to fampridine treatment in multiple sclerosis - An explorative study. J Clin Neurosci 2020; 82:179-185. [PMID: 33317729 DOI: 10.1016/j.jocn.2020.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/10/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To compare baseline physical and cognitive performance, neurophysiological, and magnetic resonance imaging (MRI) outcomes and examinetheir interrelationship inparticipants with Multiple Sclerosis (MS), already established aseither responder or non-responder to Fampridine treatment, andto examine associationswiththe expanded disability status scale (EDSS) and 12-item MS walking scale (MSWS-12). METHODS Baseline data from an explorative longitudinal observational study were analyzed. Participants underwent the Timed 25-Foot Walk Test (T25FW), Six Spot Step Test (SSST), Nine-Hole Peg Test, Five Times Sit-to-Stand Test, Symbol Digit Modalities Test (SDMT), neurophysiological testing, including central motor conduction time (CMCT), peripheral motor conduction time (PMCT), motor evoked potential (MEP) amplitudesand electroneuronographyof the lower extremities, and brain MRI (brain volume, number and volume of T2-weighted lesions and lesion load normalized to brain volume). RESULTS 41 responders and 8 non-responders were examined. There were no intergroup differences inphysical performance, cognitive, neurophysiological, andMRI outcomes (p > 0.05).CMCT was associated withT25FW, SSST, EDSS, and MSWS-12,(p < 0.05). SDMT was associated with the number and volume of T2-weighted lesions, and lesion load normalized to brain volume (p < 0.05). CONCLUSION No differences were identified between responders and non-responders to Fampridine treatment regarding physical and cognitive performance, neurophysiological or MRI outcomes. The results call for cautious interpretation and further large-scale studies are needed to expand ourunderstanding of underlying mechanisms discriminating Fampridine responders and non-responders.CMCT may be used as a marker of disability and walking impairment, while SDMT was associated with white matter lesions estimated by MRI. ClinicalTrials.gov identifier: NCT03401307.
Collapse
|
32
|
Mohy AB, Hatem AK, Kadoori HG, Hamdan FB. Motor disability in patients with multiple sclerosis: transcranial magnetic stimulation study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS.
Objectives
The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability.
Patients and methods
Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated.
Results
TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not.
Conclusion
TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.
Collapse
|
33
|
Mamoei S, Hvid LG, Boye Jensen H, Zijdewind I, Stenager E, Dalgas U. Neurophysiological impairments in multiple sclerosis-Central and peripheral motor pathways. Acta Neurol Scand 2020; 142:401-417. [PMID: 32474916 DOI: 10.1111/ane.13289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/09/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022]
Abstract
A systematic review of the literature was conducted comparing neurophysiological outcomes in persons with multiple sclerosis (PwMS) to healthy controls (HC), in studies of the central nervous system (CNS) function comprising motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) and in studies of the peripheral nervous system (PNS) function comprising electroneuronography (ENG) outcomes elicited by peripheral nerve stimulation. Studies comparing neuromuscular function, assessed during maximal voluntary contraction (MVC) of muscle, were included if they reported muscle strength along with muscle activation by use of electromyography (EMG) and/or interpolated twitch technique (ITT). Studies investigating CNS function showed prolonged central motor conduction times, asymmetry of nerve conduction motor pathways, and prolonged latencies in PwMS when compared to HC. Resting motor threshold, amplitude, and cortical silent periods showed conflicting results. CNS findings generally correlated with disabilities. Studies of PNS function showed near significant prolongation in motor latency of the median nerve, reduced nerve conduction velocities in the tibial and peroneal nerves, and decreased compound muscle action potential amplitudes of the tibial nerve in PwMS. ENG findings did not correlate with clinical severity of disabilities. Studies of neuromuscular function showed lower voluntary muscle activation and increased central fatigue in PwMS, whereas EMG showed divergent muscle activation (ie, EMG amplitude) during MVC. When comparing the existing literature on neurophysiological motor examinations in PwMS and HC, consistent and substantial impairments of CNS function were seen in PwMS, whereas impairments of the PNS were less pronounced and inconsistent. In addition, impairments in muscle activation were observed in PwMS.
Collapse
Affiliation(s)
- Sepehr Mamoei
- Department of Regional Health Research University of Southern Denmark Odense Denmark
- Denmark/MS‐Clinic of Southern Jutland (Sønderborg, Kolding, Esbjerg) Department of Neurology University Hospital of Southern Jutland Sønderborg Denmark
| | - Lars G. Hvid
- Exercise Biology Department of Public Health Aarhus University Aarhus C Denmark
| | - Henrik Boye Jensen
- Department of Regional Health Research University of Southern Denmark Odense Denmark
- Department of Neurology Kolding Sygehus Kolding Denmark
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems UMCG University of Groningen Groningen The Netherlands
| | - Egon Stenager
- Department of Regional Health Research University of Southern Denmark Odense Denmark
- Denmark/MS‐Clinic of Southern Jutland (Sønderborg, Kolding, Esbjerg) Department of Neurology University Hospital of Southern Jutland Sønderborg Denmark
| | - Ulrik Dalgas
- Exercise Biology Department of Public Health Aarhus University Aarhus C Denmark
| |
Collapse
|
34
|
Pisa M, Chieffo R, Congiu M, Dalla Costa G, Esposito F, Romeo M, Comola M, Comi G, Leocani L. Intracortical motor conduction is associated with hand dexterity in progressive multiple sclerosis. Mult Scler 2020; 27:1222-1229. [PMID: 32975472 DOI: 10.1177/1352458520960374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hand dexterity dysfunction is a key feature of disability in people with progressive multiple sclerosis (PMS). It underlies corticospinal tract (CST) and cerebellar integrity, as well as disruption of cortical networks, which are hardly assessed by standard techniques. Transcranial magnetic stimulation is a promising tool for evaluating the integrity of intracortical motor pathways. OBJECTIVE To investigate neurophysiological correlates of motor hand impairment in PMS. METHODS Antero-posterior (AP) stimulation of the primary motor cortex activates the CST indirectly through polysynaptic pathways, while a direct CST activation occurs with latero-medial (LM) directed current. Thirty PMS and 15 healthy controls underwent dominant hand motor evoked potentials (MEP) using AP and LM-directed stimulation, and a clinical assessment of dexterity (nine-hole peg test) and strength (MRC scale, grip and pinch). RESULTS PMS with AP-LM latency difference 2.5 standard deviation above the mean of controls (33%) showed worse dexterity but no difference in upper limb strength. Accordingly, AP-LM latency shortening predicted dexterity (R2 = 0.538, p < 0.001), but not strength impairment. On the contrary, absolute MEP latencies only correlated with strength (grip: R2 = 0.381, p = 0.014; MRC: R2 = 0.184, p = 0.041). CONCLUSION AP-LM latency shortening may be used to assess the integrity polysynaptic intracortical networks implicated in dexterity impairment.
Collapse
Affiliation(s)
- Marco Pisa
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Chieffo
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Martina Congiu
- Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Esposito
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marzia Romeo
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mauro Comola
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giancarlo Comi
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Letizia Leocani
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
35
|
Hardmeier M, Schindler C, Kuhle J, Fuhr P. Validation of Quantitative Scores Derived From Motor Evoked Potentials in the Assessment of Primary Progressive Multiple Sclerosis: A Longitudinal Study. Front Neurol 2020; 11:735. [PMID: 32793104 PMCID: PMC7393441 DOI: 10.3389/fneur.2020.00735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the sensitivity to change of differently calculated quantitative scores from motor evoked potentials (MEP) in patients with primary progressive multiple sclerosis (PPMS). Methods: Twenty patients with PPMS had MEP to upper and lower limbs at baseline, years 1 and 2 measured in addition to clinical assessment [Expanded Disability Status Scale (EDSS), ambulation score]; a subsample (n = 9) had a nine-hole peg test (NHPT) and a timed 25-foot walk (T25FW). Quantitative MEP scores for upper limbs (qMEP-UL), lower limbs (qMEP-LL), and all limbs (qMEP) were calculated in three different ways, based on z-transformed central motor conduction time (CMCT), shortest corticomuscular latency (CxM-sh), and mean CxM (CxM-mn). Changes in clinical measures and qMEP metrics were analyzed by repeated-measures analysis of variance (rANOVA), and a factor analysis was performed on change in qMEP metrics. Results: Expanded Disability Status Scale and ambulation score progressed in the rANOVA model (p < 0.05; post-hoc comparison baseline-year 2, p < 0.1). Lower limb and combined qMEP scores showed significant deterioration of latency (p < 0.01, MEP-LL_CxM-sh: p < 0.05) and in post-hoc comparisons (baseline-year 2, p < 0.05), qMEP_CxM-mn even over 1 year (p < 0.05). Effect sizes were higher for qMEP scores than for clinical measures, and slightly but consistently higher when based on CxM-mn compared to CxM-sh or CMCT. Subgroup analysis yielded no indication of higher sensitivity of timed clinical measures over qMEP scores. Two independent factors were detected, the first mainly associated with qMEP-LL, the second with qMEP-UL, explaining 65 and 29% of total variability, respectively. Conclusions: Deterioration in qMEP scores occurs earlier than EDSS progression in patients with PPMS. Upper and lower limb qMEP scores contribute independently to measuring change, and qMEP scores based on mean CxM are advantageous. The capability to detect subclinical changes longitudinally is a unique property of EP and complementary to clinical assessment. These features underline the role of EP as candidate biomarkers to measure effects of therapeutic interventions in PPMS.
Collapse
Affiliation(s)
- Martin Hardmeier
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute (Swiss TPH), University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Fuhr
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Thabit MN, Farouk MM, Awni M, Mohamed AAB. Early disability in ambulatory patients with multiple sclerosis: optical coherence tomography versus visual evoked potentials, a comparative study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Kolčava J, Kočica J, Hulová M, Dušek L, Horáková M, Keřkovský M, Stulík J, Dostál M, Kuhn M, Vlčková E, Bednařík J, Benešová Y. Conversion of clinically isolated syndrome to multiple sclerosis: a prospective study. Mult Scler Relat Disord 2020; 44:102262. [PMID: 32570179 DOI: 10.1016/j.msard.2020.102262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) begins with an acute clinical attack (clinically isolated syndrome) in approximately 85% of patients. The conversion rate from clinically isolated syndrome to multiple sclerosis has been documented at 30% to 82% in previous studies. When an individual presents for evaluation after a single episode of inflammation of the CNS, several decisions regarding follow-up in subsequent years need to be made, including that of whether or not to start a therapy. There is, therefore, an emerging need to identify the predictive factors that anticipate conversion from CIS to MS. METHODS This paper presents a single-center prospective longitudinal study aimed at identification of the most powerful independent predictors for conversion from CIS to MS, utilizing the 2010 McDonald MS criteria and focusing on selected demographic, clinical, radiographical (magnetic resonance imaging - MRI), cerebrospinal fluid (predominantly oligoclonal bands - OCB) and electrophysiological parameters (multimodal sensory and motor-evoked potentials - EP). Two independent outcomes meeting MS criteria are evaluated: development of second clinical relapse (clinically definite multiple sclerosis) and progression in magnetic resonance imaging (based on new MRI T2 brain and/or spinal cord lesions). CIS patients were followed clinically and MRI was repeated at one and two years within the course of a follow-up period of at least 24 months (median 27, range 24-36 months). RESULTS Of the 64 CIS patients enrolled who completed at least a 2-year follow-up period (42 women and 22 men, median age 36.5, range 22-66 years), 45 (70.3%) (29 women and 16 men, median age 38; range 22-66 years) fulfilled the 2010 McDonald criteria for MS by dissemination in space (DIS) and time (DIT) over the follow-up period. Twenty-nine CIS patients converted to MS through a clinically symptomatic attack, and 16 CIS patients developed new T2 lesions on MRI, while 19 patients without progression remained stable as CIS. Confirmed among potential predictors for the conversion of CIS patients to MS were increased (>10) baseline MRI T2-hyperintense lesions (odds ratio (OR) 3.107, p = 0.046), OCB positivity (OR 5.958, p = 0.003) and subclinical EP abnormality (OR 14.400, p = 0.003). Multivariate statistical models (logistic regression and Cox proportional hazards regression models) confirmed these parameters as independent predictors of high sensitivity (84%) and acceptable specificity (63%). CONCLUSION In addition to accepted predictors for the conversion of CIS to MS (i.e. baseline MRI T2 lesion load and OCB positivity), already implemented in current diagnostic criteria for MS, this study demonstrates, in addition, the high predictive value of subclinical multimodal evoked potential abnormalities.
Collapse
Affiliation(s)
- Jan Kolčava
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic
| | - Jan Kočica
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic
| | - Monika Hulová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magda Horáková
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital, Brno and Masaryk University, Brno, Czech Republic
| | - Jakub Stulík
- Department of Radiology and Nuclear Medicine, University Hospital, Brno and Masaryk University, Brno, Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital, Brno and Masaryk University, Brno, Czech Republic; Department of Biophysics, Masaryk University, Brno, Czech Republic
| | - Matyas Kuhn
- Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic; Behavioural and Social Neuroscience, CEITEC MU, Brno, Czech Republic
| | - Eva Vlčková
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic
| | - Josef Bednařík
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic
| | - Yvonne Benešová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, University Hospital Brno, Czech Republic.
| |
Collapse
|
38
|
A Lead Field Two-Domain Model for Longitudinal Neural Tracts-Analytical Framework and Implications for Signal Bandwidth. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:5436807. [PMID: 32565881 PMCID: PMC7275970 DOI: 10.1155/2020/5436807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022]
Abstract
Somatosensory evoked potentials are a well-established tool for assessing volley conduction in afferent neural pathways. However, from a clinical perspective, recording of spinal signals is still a demanding task due to the low amplitudes compared to relevant noise sources. Computer modeling is a powerful tool for gaining insight into signal genesis and, thus, for promoting future innovations in signal extraction. However, due to the complex structure of neural pathways, modeling is computationally demanding. We present a theoretical framework which allows computing the electric potential generated by a single axon in a body surface lead by the convolution of the neural lead field function with a propagating action potential term. The signal generated by a large cohort of axons was obtained by convoluting a single axonal signal with the statistical distribution of temporal dispersion of individual axonal signals. For establishing the framework, analysis was based on an analytical model. Our approach was further adopted for a numerical computation of body surface neuropotentials employing the lead field theory. Double convolution allowed straightforward analysis in the frequency domain. The highest frequency components occurred at the cellular membrane. A bandpass type spectral shape and a peak frequency of 1800 Hz was observed. The volume conductor transmitting the signal to the recording lead acted as an additional bandpass reducing the axonal peak frequency from 200 Hz to 500 Hz. The superposition of temporally dispersed axonal signals acted as an additional low-pass filter further reducing the compound action potential peak frequency from 90 Hz to 170 Hz. Our results suggest that the bandwidth of spinal evoked potentials might be narrower than the bandwidth requested by current clinical guidelines. The present findings will allow the optimization of noise suppression. Furthermore, our theoretical framework allows the adaptation in numerical methods and application in anatomically realistic geometries in future studies.
Collapse
|
39
|
Rooney S, Albalawi H, Paul L. Exercise in the management of multiple sclerosis relapses: current evidence and future perspectives. Neurodegener Dis Manag 2020; 10:103-115. [PMID: 32352357 DOI: 10.2217/nmt-2019-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relapses are a common feature of multiple sclerosis; however, recovery from relapses is often incomplete, with up to half of people experiencing residual disabilities postrelapse. Therefore, treatments are required to promote recovery of function and reduce the extent of residual disabilities postrelapse. Accordingly, this Perspective article explores the role of exercise in relapse management. Current evidence from two studies suggests that exercise in combination with steroid therapy improves disability and quality of life postrelapse, and may be more beneficial in promoting relapse recovery than steroid therapy alone. However, given the small number of studies and methodological limitations, further studies are required to understand the effects of exercise in relapse management and the mechanism through which exercise influences relapse recovery.
Collapse
Affiliation(s)
- Scott Rooney
- School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom, G4 0BA
| | - Hani Albalawi
- College of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia, 47713
| | - Lorna Paul
- School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom, G4 0BA
| |
Collapse
|
40
|
Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis. BMC Neurol 2020; 20:105. [PMID: 32199461 PMCID: PMC7085864 DOI: 10.1186/s12883-020-01672-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Background Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few variables from the EPs, which are often further condensed into a single variable: the EP score. We perform a machine learning analysis of motor EP that uses the whole time series, instead of a few variables, to predict disability progression after two years. Obtaining realistic performance estimates of this task has been difficult because of small data set sizes. We recently extracted a dataset of EPs from the Rehabiliation & MS Center in Overpelt, Belgium. Our data set is large enough to obtain, for the first time, a performance estimate on an independent test set containing different patients. Methods We extracted a large number of time series features from the motor EPs with the highly comparative time series analysis software package. Mutual information with the target and the Boruta method are used to find features which contain information not included in the features studied in the literature. We use random forests (RF) and logistic regression (LR) classifiers to predict disability progression after two years. Statistical significance of the performance increase when adding extra features is checked. Results Including extra time series features in motor EPs leads to a statistically significant improvement compared to using only the known features, although the effect is limited in magnitude (ΔAUC = 0.02 for RF and ΔAUC = 0.05 for LR). RF with extra time series features obtains the best performance (AUC = 0.75±0.07 (mean and standard deviation)), which is good considering the limited number of biomarkers in the model. RF (a nonlinear classifier) outperforms LR (a linear classifier). Conclusions Using machine learning methods on EPs shows promising predictive performance. Using additional EP time series features beyond those already in use leads to a modest increase in performance. Larger datasets, preferably multi-center, are needed for further research. Given a large enough dataset, these models may be used to support clinicians in their decision making process regarding future treatment.
Collapse
|
41
|
Pisa M, Chieffo R, Giordano A, Gelibter S, Comola M, Comi G, Leocani L. Upper limb motor evoked potentials as outcome measure in progressive multiple sclerosis. Clin Neurophysiol 2020; 131:401-405. [DOI: 10.1016/j.clinph.2019.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
|
42
|
Abstract
Multiple sclerosis (MS) is a common cause of neurologic disease in young adults that is primarily treated with disease-modifying therapies which target the immune and inflammatory responses. Promotion of remyelination has opened a new therapeutic avenue, but how best to determine efficacy of remyelinating drugs remains unresolved. Although prolongation and then shortening of visual evoked potential (VEP) latencies in optic neuritis in MS may identify demyelination and remyelination, this has not been directly confirmed. We recorded VEPs in a model in which there is complete demyelination of the optic nerve, with subsequent remyelination. We examined the optic nerves microscopically during active disease and recovery, and quantitated both demyelination and remyelination along the length of the nerves. Latencies of the main positive component of the control VEP demonstrated around 2-fold prolongation during active disease. VEP waveforms were nonrecordable in a few subjects or exhibited a broadened profile which precluded peak identification. As animals recovered neurologically, the VEP latencies decreased in association with complete remyelination of the optic nerve but remained prolonged relative to controls. Thus, it has been directly confirmed that VEP latencies reflect the myelin status of the optic nerve and will provide a surrogate marker in future remyelination clinical trials.
Collapse
|
43
|
Boquete L, López-Guillén E, Vilades E, Miguel-Jiménez JM, Pablo LE, De Santiago L, Ortiz del Castillo M, Alonso-Rodríguez MC, Morla EMS, López-Dorado A, Garcia-Martin E. Diagnostic ability of multifocal electroretinogram in early multiple sclerosis using a new signal analysis method. PLoS One 2019; 14:e0224500. [PMID: 31703082 PMCID: PMC6839873 DOI: 10.1371/journal.pone.0224500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To determine if a novel analysis method will increase the diagnostic value of the multifocal electroretinogram (mfERG) in diagnosing early-stage multiple sclerosis (MS). METHODS We studied the mfERG signals of OD (Oculus Dexter) eyes of fifteen patients diagnosed with early-stage MS (in all cases < 12 months) and without a history of optic neuritis (ON) (F:M = 11:4), and those of six controls (F:M = 3:3). We obtained values of amplitude and latency of N1 and P1 waves, and a method to assess normalized root-mean-square error (FNRMSE) between model signals and mfERG recordings was used. Responses of each eye were analysed at a global level, and by rings, quadrants and hemispheres. AUC (area under the ROC curve) is used as discriminant factor. RESULTS The standard method of analysis obtains further discrimination between controls and MS in ring R3 (AUC = 0.82), analysing N1 waves amplitudes. In all of the retina analysis regions, FNRMSE value shows a greater discriminating power than the standard method. The highest AUC value (AUC = 0.91) was in the superior temporal quadrant. CONCLUSION By analysing mfERG recordings and contrasting them with those of healthy controls it is possible to detect early-stage MS in patients without a previous history of ON.
Collapse
Affiliation(s)
- L. Boquete
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain
| | - E. López-Guillén
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - E. Vilades
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain
| | - J. M. Miguel-Jiménez
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - L. E. Pablo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain
| | - L. De Santiago
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M. Ortiz del Castillo
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M. C. Alonso-Rodríguez
- Physics and Mathematics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | - A. López-Dorado
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - E. Garcia-Martin
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
44
|
Crnošija L, Gabelić T, Barun B, Adamec I, Krbot Skorić M, Habek M. Evoked potentials can predict future disability in people with clinically isolated syndrome. Eur J Neurol 2019; 27:437-444. [DOI: 10.1111/ene.14100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/07/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Affiliation(s)
- L. Crnošija
- Department of Neurology Referral Center for Autonomic Nervous System Disorders University Hospital Center Zagreb ZagrebCroatia
| | - T. Gabelić
- Department of Neurology Referral Center for Autonomic Nervous System Disorders University Hospital Center Zagreb ZagrebCroatia
- School of Medicine University of Zagreb ZagrebCroatia
| | - B. Barun
- Department of Neurology Referral Center for Autonomic Nervous System Disorders University Hospital Center Zagreb ZagrebCroatia
- School of Medicine University of Zagreb ZagrebCroatia
| | - I. Adamec
- Department of Neurology Referral Center for Autonomic Nervous System Disorders University Hospital Center Zagreb ZagrebCroatia
| | - M. Krbot Skorić
- Department of Neurology Referral Center for Autonomic Nervous System Disorders University Hospital Center Zagreb ZagrebCroatia
- Faculty of Electrical Engineering and Computing University of Zagreb Zagreb Croatia
| | - M. Habek
- Department of Neurology Referral Center for Autonomic Nervous System Disorders University Hospital Center Zagreb ZagrebCroatia
- School of Medicine University of Zagreb ZagrebCroatia
| |
Collapse
|
45
|
McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. J Neurol Neurosurg Psychiatry 2019; 90:1011-1020. [PMID: 30760643 PMCID: PMC6820156 DOI: 10.1136/jnnp-2018-319581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Advanced neuroimaging has increased understanding of the pathogenesis and spread of disease, and offered new therapeutic targets. MRI and positron emission tomography have shown that neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), Parkinson's disease (PD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are associated with changes in brain networks. However, the underlying neurophysiological pathways driving pathological processes are poorly defined. The gap between what imaging can discern and underlying pathophysiology can now be addressed by advanced techniques that explore the cortical neural synchronisation, excitability and functional connectivity that underpin cognitive, motor, sensory and other functions. Transcranial magnetic stimulation can show changes in focal excitability in cortical and transcortical motor circuits, while electroencephalography and magnetoencephalography can now record cortical neural synchronisation and connectivity with good temporal and spatial resolution.Here we reflect on the most promising new approaches to measuring network disruption in AD, LBD, PD, FTD, MS, and ALS. We consider the most groundbreaking and clinically promising studies in this field. We outline the limitations of these techniques and how they can be tackled and discuss how these novel approaches can assist in clinical trials by predicting and monitoring progression of neurophysiological changes underpinning clinical symptomatology.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Muthuraman Muthuraman
- Department of Neurology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Claudio Babiloni
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Roma, Italy
- Istituto di Ricovero e Cura San Raffaele Cassino, Cassino, Italy
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Sydney, Sydney, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Sydney, Australia
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
46
|
Napoli V, Berchiolli R, Carboncini MC, Sartucci F, Marconi M, Bocci T, Perrone O, Mannoni N, Congestrì C, Benedetti R, Morganti R, Caramella D, Cioni R, Ferrari M. Percutaneous Venous Angioplasty in Patients with Multiple Sclerosis and Chronic Cerebrospinal Venous Insufficiency: A Randomized Wait List Control Study. Ann Vasc Surg 2019; 62:275-286. [PMID: 31445091 DOI: 10.1016/j.avsg.2019.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Venous percutaneous transluminal angioplasty (vPTA) in patients with multiple sclerosis (MS) and chronic cerebrospinal venous insufficiency (CCSVI) have shown contradictory results. The aim of the study is to evaluate the efficacy of the procedure in a randomized wait list control study. METHODS 66 adults with neurologist-confirmed diagnosis of MS and sonographic diagnosis of CCSVI were allocated into vPTA-yes group (n = 31) or vPTA-not group (n = 35, control group). vPTA was performed immediately 15 days after randomization in the PTA-yes group and 6 months later in the control group. Evoked potentials (EPs), clinical-functional measures (CFMs), and upper limb kinematic measures (ULKMs) were measured at baseline (T0) and six months after in both groups, just before the venous angioplasty in the vPTA-not group (T1). RESULTS Comparing the vPTA-yes and vPTA-not group, the CFM-derived composite functional outcome showed 11 (37%) versus 7 (20%) improved, 1 (3%) versus 3 (8%) stable, 0 versus 7 (20%) worsened, and 19 (61%) versus 18 (51%) mixed patients (χ2 = 8.71, df = 3, P = 0.03). Unadjusted and adjusted (for baseline confounding variables) odds ratio at 95% confidence interval were, respectively, 1.93 (1.3-2.8), P value 0.0007, and 1.85 (1.2-1.7), P value 0.002. EP- and ULKM-derived composite functional outcome showed no significant difference between the two groups. CONCLUSIONS Venous angioplasty can positively impact a few CFMs especially for the quality of life but achieving disability improvement is unlikely.
Collapse
Affiliation(s)
- Vinicio Napoli
- Unit of Diagnostic and Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Raffaella Berchiolli
- Unit of Vascular Surgery, Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maria Chiara Carboncini
- Section of Severe Acquired Brain Injuries, Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Ferdinando Sartucci
- Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Michele Marconi
- Unit of Vascular Surgery, Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.
| | - Tommaso Bocci
- Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Orsola Perrone
- Unit of Diagnostic and Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Nicola Mannoni
- Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Claudia Congestrì
- Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Roberta Benedetti
- Section of Severe Acquired Brain Injuries, Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | | | - Davide Caramella
- Unit of Diagnostic Radiology, Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Roberto Cioni
- Unit of Diagnostic and Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Mauro Ferrari
- Unit of Vascular Surgery, Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
47
|
Macaron G, Ontaneda D. Diagnosis and Management of Progressive Multiple Sclerosis. Biomedicines 2019; 7:E56. [PMID: 31362384 PMCID: PMC6784028 DOI: 10.3390/biomedicines7030056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system that results in varying degrees of disability. Progressive multiple sclerosis, characterized by a steady increase in neurological disability independently of relapses, can occur from onset (primary progressive) or after a relapsing-remitting course (secondary progressive). As opposed to active inflammation seen in the relapsing-remitting phases of the disease, the gradual worsening of disability in progressive multiple sclerosis results from complex immune mechanisms and neurodegeneration. A few anti-inflammatory disease-modifying therapies with a modest but significant effect on measures of disease progression have been approved for the treatment of progressive multiple sclerosis. The treatment effect of anti-inflammatory agents is particularly observed in the subgroup of patients with younger age and evidence of disease activity. For this reason, a significant effort is underway to develop molecules with the potential to induce myelin repair or halt the degenerative process. Appropriate trial methodology and the development of clinically meaningful disability outcome measures along with imaging and biological biomarkers of progression have a significant impact on the ability to measure the efficacy of potential medications that may reverse disease progression. In this issue, we will review current evidence on the physiopathology, diagnosis, measurement of disability, and treatment of progressive multiple sclerosis.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
48
|
Chieffo R. Changes in cortical motor outputs after a motor relapse of multiple sclerosis. Mult Scler J Exp Transl Clin 2019; 5:2055217319866480. [PMID: 31598329 PMCID: PMC6764060 DOI: 10.1177/2055217319866480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/08/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Motor recovery following a multiple sclerosis (MS) relapse depends on mechanisms of tissue repair but also on the capacity of the central nervous system for compensating of permanent damage. OBJECTIVES We aimed to investigate changes in corticospinal plasticity and interhemispheric connections after a relapse of MS using transcranial magnetic stimulation (TMS). METHODS Twenty healthy and 13 relapsing-remitting MS subjects with a first motor relapse were included. TMS mapping and ipsilateral silent period (iSP) were performed after relapse and at 6-month follow-up. RESULTS Strength and dexterity of the paretic hand were impaired at baseline and improved over time. After relapse, mapamplitude and mapdensity were decreased for the ipsilesional-corticospinal tract (IL-CST) while expanded for the contralesional-CST (CL-CST). At follow-up, map parameters normalized for the CL-CST independently from recovery while the increase of outputs from the IL-CST was associated with straight and dexterity improvement. iSP measurements were impaired in MS irrespective of the phase of the disease. Prolonged iSPduration at baseline was associated with less dexterity recovery. CONCLUSIONS After a motor relapse, TMS mapping shows acute changes in corticospinal excitability and rearrangements of motor outputs. iSP is less influenced by the phase of disease but may better predict recovery, possibly reflecting the integrity of interhemispheric motor networks.
Collapse
Affiliation(s)
- Raffaella Chieffo
- Department of Neurorehabilitation and Department of Clinical
Neurophysiology, Hospital San Raffaele, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology
(INSPE), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
49
|
Manjaly ZM, Harrison NA, Critchley HD, Do CT, Stefanics G, Wenderoth N, Lutterotti A, Müller A, Stephan KE. Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:642-651. [PMID: 30683707 PMCID: PMC6581095 DOI: 10.1136/jnnp-2018-320050] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Fatigue is one of the most common symptoms in multiple sclerosis (MS), with a major impact on patients' quality of life. Currently, treatment proceeds by trial and error with limited success, probably due to the presence of multiple different underlying mechanisms. Recent neuroscientific advances offer the potential to develop tools for differentiating these mechanisms in individual patients and ultimately provide a principled basis for treatment selection. However, development of these tools for differential diagnosis will require guidance by pathophysiological and cognitive theories that propose mechanisms which can be assessed in individual patients. This article provides an overview of contemporary pathophysiological theories of fatigue in MS and discusses how the mechanisms they propose may become measurable with emerging technologies and thus lay a foundation for future personalised treatments.
Collapse
Affiliation(s)
- Zina-Mary Manjaly
- Department of Neurology, Schulthess Clinic, Zürich, Switzerland .,Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Neil A Harrison
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Cao Tri Do
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gabor Stefanics
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Laboratory for Social and Neural Systems Research (SNS), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Andreas Lutterotti
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Alfred Müller
- Department of Neurology, Schulthess Clinic, Zürich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
50
|
Hardmeier M, Jacques F, Albrecht P, Bousleiman H, Schindler C, Leocani L, Fuhr P. Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis: reliability and implications for clinical trials. Mult Scler J Exp Transl Clin 2019; 5:2055217319844796. [PMID: 31069107 PMCID: PMC6495443 DOI: 10.1177/2055217319844796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Motor and sensory evoked potentials (EP) are potential candidate biomarkers for clinical trials in multiple sclerosis. Objective To determine test -retest reliability of motor EP (MEP) and sensory EP (SEP) and associated EP-scores in patients with multiple sclerosis. Methods In three centres, 16 relapsing and five progressive multiple sclerosis patients had MEPs and SEPs 1-29 days apart. Five neurophysiologists independently marked latencies by central reading. By variance component analysis, we estimated the critical difference (absolute reliability) for cross-sectional group comparison, comparison of longitudinal group changes, within-subject minimal detectable change and defined within-subject improvement. Results Cortical SEP responses and cortico-muscular MEP latencies were more reliable than central conduction times. For comparison of 20 subjects per arm, cross-sectional group difference ranged from 0.7 to 3.9 ms and 1.1 to 1.7, group difference in longitudinal changes from 0.4 to 1.8 ms and 0.36 to 0.62, within-subject minimal detectable change from 1.2 to 5.8 ms and 1.2 to 2.0, within-subject improvement from 0.8 to 3.8ms and 0.8 to 1.3, for single EP modalities and EP scores, respectively. Conclusions Multicentre EP assessment with central EP reading is feasible and reliable. The critical difference is reasonably low to detect significant group changes and to define responders. The results support the concept of using EP and EP-scores as candidate response biomarkers for quantification of disease progression and for studying remyelination in multiple sclerosis.
Collapse
Affiliation(s)
- Martin Hardmeier
- Department of Neurology, Hospital of the University of Basel, Switzerland
| | | | - Philipp Albrecht
- Department of Neurology, Heinrich Heine University Düsseldorf, Germany
| | - Habib Bousleiman
- Department of Neurology, Hospital of the University of Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, University of Basel, Switzerland
| | - Letizia Leocani
- Departments of Neurology and Neurorehabilitation, Ospedale San Raffaele, Milano, Italy
| | - Peter Fuhr
- Department of Neurology, Hospital of the University of Basel, Switzerland
| |
Collapse
|