1
|
Fadda G, Banwell B, Elliott C, Fetco D, Arnold DL, Waters P, Yeh EA, Marrie RA, Bar-Or A, Narayanan S. Slowly Expanding Lesions Differentiate Pediatric Multiple Sclerosis from Myelin Oligodendrocyte Glycoprotein Antibody Disease. Ann Neurol 2024. [PMID: 39243229 DOI: 10.1002/ana.27066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Slowly expanding lesions (SELs) in adults with multiple sclerosis (MS) indicate a progressive pathological process. Whether SELs are present in pediatric-onset MS (POMS) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is unknown. We studied 19 children with POMS and 14 with MOGAD (median age 14.3 and 9.4 years, respectively) recruited to the Canadian Pediatric Demyelinating Disease Study with: (1) ≥3 research scans 12 months apart; and (2) ≥1 T2-lesions on the earliest scan. A total of 70 SELs from 16 POMS participants and 1 SEL in the MOGAD group were detected. SELs are an early feature of POMS and essentially not a feature of MOGAD. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Giulia Fadda
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brenda Banwell
- Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dumitru Fetco
- NeuroRx Research, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - E Ann Yeh
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Ruth Ann Marrie
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sridar Narayanan
- NeuroRx Research, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
de Deus Vieira G, Antônio FF, Damasceno A. Enlargement of the choroid plexus in pediatric multiple sclerosis. Neuroradiology 2024; 66:1199-1202. [PMID: 38668802 DOI: 10.1007/s00234-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Some studies have suggested an inflammatory role of the choroid plexus (CP) in the pathophysiology of multiple sclerosis (MS), but mainly in adult patients. We aimed to evaluate clinical and MRI parameters in patients with pediatric-onset multiple sclerosis (POMS). We included 10 patients with POMS and 16 healthy controls (HC), evaluating clinical and neuroimaging variables (cerebral cortex, CP, deep gray matter structures, and demyelinating lesions). Most patients were girls (80%), with a mean age of 15.3 years. POMS individuals had a higher CP volume (p = 0.012) and lower thalamic volume (p = 0.038) compared to HC. This study shows an enlargement of the CP and lower thalamic volume in POMS patients compared to HC.
Collapse
Affiliation(s)
- Gabriel de Deus Vieira
- Department of Neuroimmunology, University of Campinas, Vital Brasil Street 251, Campinas, SP, Brazil.
| | - Fernanda Ferrão Antônio
- Department of Neuroimmunology, University of Campinas, Vital Brasil Street 251, Campinas, SP, Brazil
| | - Alfredo Damasceno
- Department of Neuroimmunology, University of Campinas, Vital Brasil Street 251, Campinas, SP, Brazil
| |
Collapse
|
3
|
Breu M, Sandesjö F, Milos R, Svoboda J, Salzer J, Schneider L, Reichelt JB, Bertolini A, Blaschek A, Fink K, Höftberger R, Lycke J, Rostásy K, Seidl R, Siegert S, Wickström R, Kornek B. Rituximab treatment in pediatric-onset multiple sclerosis. Eur J Neurol 2024; 31:e16228. [PMID: 38375947 PMCID: PMC11235651 DOI: 10.1111/ene.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND PURPOSE Rituximab (RTX) is frequently used off-label in multiple sclerosis. However, studies on the risk-benefit profile of RTX in pediatric-onset multiple sclerosis are scarce. METHODS In this multicenter retrospective cohort study, patients with pediatric-onset multiple sclerosis from Sweden, Austria and Germany, who received RTX treatment were identified by chart review. Annualized relapse rates, Expanded Disability Status Scale scores and magnetic resonance imaging parameters (new T2 lesions and contrast-enhancing lesions) were assessed before and during RTX treatment. The proportion of patients who remained free from clinical and disease activity (NEDA-3) during RTX treatment was calculated. Side effects such as infusion-related reactions, infections and laboratory abnormalities were assessed. RESULTS Sixty-one patients received RTX during a median (interquartile range) follow-up period of 20.9 (35.6) months. The annualized relapse rate decreased from 0.6 (95% confidence interval [CI] 0.38-0.92) to 0.03 (95% CI 0.02-0.14). The annual rate of new T2 lesions decreased from 1.25 (95% CI 0.70-2.48) to 0.08 (95% CI 0.03-0.25) and annual rates of new contrast-enhancing lesions decreased from 0.86 (95% CI 0.30-3.96) to 0. Overall, 70% of patients displayed no evidence of disease activity (NEDA-3). Adverse events were observed in 67% of patients. Six patients discontinued treatment due to ongoing disease activity or adverse events. CONCLUSION Our study provides class IV evidence that RTX reduces clinical and radiological activity in pediatric-onset multiple sclerosis.
Collapse
Affiliation(s)
- Markus Breu
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Fredrik Sandesjö
- Neuropediatric Unit, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Ruxandra‐Iulia Milos
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Jan Svoboda
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
| | - Jonatan Salzer
- Department of Clinical Science, NeurosciencesUmeå UniversityUmeåSweden
| | - Lisa Schneider
- Division of Infectious Diseases, Department of Internal Medicine IMedical University of ViennaViennaAustria
| | - Julian Benedikt Reichelt
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Annikki Bertolini
- Department of Pediatric NeurologyUniversity Witten/Herdecke, Children's Hospital DattelnDattelnGermany
| | - Astrid Blaschek
- Paediatric Neurology and Developmental MedicineLudwig Maximilian University of Munich, Dr. von Hauner Children's HospitalMunichGermany
| | - Katharina Fink
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kevin Rostásy
- Department of Pediatric NeurologyUniversity Witten/Herdecke, Children's Hospital DattelnDattelnGermany
| | - Rainer Seidl
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Sandy Siegert
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Ronny Wickström
- Neuropediatric Unit, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Bigi S. Frequency of an intrathecal IgM synthesis and MRZ reaction in children with MS. Eur J Paediatr Neurol 2024; 50:i. [PMID: 38782676 DOI: 10.1016/j.ejpn.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- Sandra Bigi
- Division Head of Child Neurology, Children's Hospital of Central Switzerland, Lucerne, Switzerland; Head of the Swiss Pediatric Inflammatory Brain Disease Cohort Study, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Mortazavi M, Ann Gerdes L, Hizarci Ö, Kümpfel T, Anslinger K, Padberg F, Stöcklein S, Keeser D, Ertl-Wagner B. Impact of adult-onset multiple sclerosis on MRI-based intracranial volume: A study in clinically discordant monozygotic twins. Neuroimage Clin 2024; 42:103597. [PMID: 38522363 PMCID: PMC10981084 DOI: 10.1016/j.nicl.2024.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Intracranial volume (ICV) represents the maximal brain volume for an individual, attained prior to late adolescence and remaining constant throughout life after. Thus, ICV serves as a surrogate marker for brain growth integrity. To assess the potential impact of adult-onset multiple sclerosis (MS) and its preceding prodromal subclinical changes on ICV in a large cohort of monozygotic twins clinically discordant for MS. METHODS FSL software was used to derive ICV estimates from 3D-T1-weighted-3 T-MRI images by using an atlas scaling factor method. ICV were compared between clinically affected and healthy co-twins. All twins were compared to a large healthy reference cohort using standardized ICV z-scores. Mixed models assessed the impact of age at MS diagnosis on ICV. RESULTS 54 twin-pairs (108 individuals/80female/42.45 ± 11.98 years), 731 individuals (375 non-twins, 109/69 monozygotic/dizygotic twin-pairs; 398female/29.18 ± 0.13 years) and 35 healthy local individuals (20male/31.34 ± 1.53 years). In 45/54 (83 %) twin-pairs, both clinically affected and healthy co-twins showed negative ICV z-scores, i.e., ICVs lower than the average of the healthy reference cohort (M = -1.53 ± 0.11, P<10-5). Younger age at MS diagnosis was strongly associated with lower ICVs (t = 3.76, P = 0.0003). Stratification of twin-pairs by age at MS diagnosis of the affected co-twin (≤30 versus > 30 years) yielded lower ICVs in those twin pairs with younger age at diagnosis (P = 0.01). Comparison within individual twin-pairs identified lower ICVs in the MS-affected co-twins with younger age at diagnosis compared to their corresponding healthy co-twins (P = 0.003). CONCLUSION We offer for the first-time evidence for strong associations between adult-onset MS and lower ICV, which is more pronounced with younger age at diagnosis. This suggests pre-clinical alterations in early neurodevelopment associated with susceptibility to MS both in individuals with and without clinical manifestation of the disease.
Collapse
Affiliation(s)
- Matin Mortazavi
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Bezirkskrankenhaus Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany.
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital LMU, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Öznur Hizarci
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital LMU, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Katja Anslinger
- Department of Forensic Genetics, Institute of Legal Medicine, University Hospital LMU, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Division of Neuroradiology, The Hospital for Sick Children, Toronto
| |
Collapse
|
6
|
Abualhasan A, Naseer MA, Shalaby N, El-Jaafary SI, Farghaly M, Shehata HS, Doma ES, Al-Azayem SA. Reliability and validity of the Arabic version of brief international cognitive assessment for multiple sclerosis in Egyptian pediatric multiple sclerosis patients. Mult Scler Relat Disord 2024; 82:105374. [PMID: 38134604 DOI: 10.1016/j.msard.2023.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND & OBJECTIVES About one-third of pediatric-onset MS (POMS) patients report cognitive impairment. This case-control study aimed to assess the reliability and validity of the Arabic version of the Brief International Cognitive Assessment for MS (BICAMS) in Egyptian POMS patients. METHODS A case-control study was conducted on 30 POMS patients aged 9 to 17 years old and 30 healthy controls. Both groups underwent the following tests: neuropsychological testing using the BICAMS-validated Arabic version battery involving the Symbol Digit Modality Test (SDMT), California Verbal Learning Test 2nd edition (CVLT-II) and revised Brief Visuospatial Retention Test (BVRT-R). Test-retest data were obtained from MS patients and controls 2 weeks following the primary evaluation. Mean variances between both groups were evaluated, controlling for age, gender, and educational level. RESULTS MS patients scored significantly lower on the SDMT, CVLT-II, and BVMT-R tests than healthy controls (P-value <0.001). Test-retest reliability was satisfactory for SDMT, CVLT-II total, and BVRT-R in MS patients and controls with r values of 0.73, 0.83, and 0.80, respectively. CONCLUSION BICAMS is a feasible approach to cognitive screening in POMS and adults. The Arabic version of BICAMS is a reliable and valid tool for the cognitive assessment of pediatric MS patients in different clinical and research settings.
Collapse
Affiliation(s)
| | | | - Nevin Shalaby
- Department of Neurology, Cairo University, Cairo, Egypt
| | | | - Marwa Farghaly
- Department of Neurology, Cairo University, Cairo, Egypt.
| | | | - Ebtehal S Doma
- Department of Neurology, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
7
|
Huppke B, Reinert MC, Hummel-Abmeier H, Stark W, Gärtner J, Huppke P. Pretreatment Neurofilament Light Chain Serum Levels, Early Disease Severity, and Treatment Response in Pediatric Multiple Sclerosis. Neurology 2023; 101:e1873-e1883. [PMID: 37748882 PMCID: PMC10663003 DOI: 10.1212/wnl.0000000000207791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES High disease activity and frequent therapy failure in pediatric multiple sclerosis (MS) make prognostic biomarkers urgently needed. We investigated whether serum neurofilament light chain (sNfL) levels in treatment-naive pediatric patients with MS are associated with early disease severity and indicate treatment outcomes. METHODS A retrospective cohort study of patients seen in the Göttingen Center for MS in Childhood and Adolescence, Germany. Inclusion criteria were MS diagnosis according to the McDonald criteria, MS onset <18 years, and available pretreatment serum sample. sNfL levels were analyzed using a single-molecule array assay. Associations with clinical and MRI evidence of disease severity at sampling were evaluated using the Spearman correlations and nonparametric tests for group comparisons. Correlations between pretreatment sNfL and annualized relapse and new T2 lesion rate on first-line therapy, and odd ratios for switch to high-efficacy therapy were assessed. RESULTS A total of 178 patients (116 women [65%]) with a mean sampling age of 14.3 years were included in the study. Pretreatment sNfL levels were above the ≥90th percentile reported for healthy controls in 80% of patients (median 21.1 pg/mL) and correlated negatively with age, but no correlation was seen with sex, oligoclonal band status, or body mass index. High pretreatment sNfL levels correlated significantly with a high number of preceding relapses, a shorter first interattack interval, a high T2 lesion count, and recent gadolinium-enhancing lesions. Of interest, sNfL levels reflected more strongly MRI activity rather than clinical activity. Pretreatment sNfL levels also correlated significantly with the relapse rate and occurrence of new/enlarging T2 lesions while on first-line injectable therapy. Odds of future therapy escalation increased from 0.14 for sNfL below 7.5 pg/mL to 6.38 for sNfL above 15 pg/mL. In patients with a recent relapse, higher sNfL levels were associated with poorer recovery 3 months after attack. DISCUSSION The results of this study have 3 important implications: First, pretreatment sNfL levels are a valuable biomarker for underlying disease activity in pediatric patients with MS. Second, pretreatment sNfL levels in pediatric patients with MS have a predictive value for the response to first-line therapy and the necessity of future therapy escalation. Third, high sNfL levels during a relapse are associated with poor recovery in this age group.
Collapse
Affiliation(s)
- Brenda Huppke
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany.
| | - Marie-Christine Reinert
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Hannah Hummel-Abmeier
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Wiebke Stark
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Jutta Gärtner
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Peter Huppke
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany.
| |
Collapse
|
8
|
Castillo Villagrán D, Yeh EA. Pediatric Multiple Sclerosis: Changing the Trajectory of Progression. Curr Neurol Neurosci Rep 2023; 23:657-669. [PMID: 37792206 DOI: 10.1007/s11910-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is a chronic inflammatory disease of the central nervous system. When seen in children and adolescents, crucial stages of brain development and maturation may be affected. Prompt recognition of multiple sclerosis in this population is essential, as early intervention with disease-modifying therapies may change developmental trajectories associated with the disease. In this paper, we will review diagnostic criteria for pediatric multiple sclerosis, outcomes, differential diagnosis, and current therapeutic approaches. RECENT FINDINGS Recent studies have demonstrated the utility of newer structural and functional metrics in facilitating early recognition and diagnosis of pediatric MS. Knowledge about disease-modifying therapies in pediatric multiple sclerosis has expanded in recent years: important developmental impacts of earlier therapeutic intervention and use of highly effective therapies have been demonstrated. Pediatric MS is characterized by highly active disease and high disease burden. Advances in knowledge have led to early identification, diagnosis, and treatment. Lifestyle-related interventions and higher efficacy therapies are currently undergoing investigation.
Collapse
Affiliation(s)
- Daniela Castillo Villagrán
- Department of Pediatrics (Neurology), SickKids Research Institute, Division of Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada
| | - E Ann Yeh
- Department of Pediatrics (Neurology), SickKids Research Institute, Division of Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada.
| |
Collapse
|
9
|
Fadda G, Cardenas de la Parra A, O'Mahony J, Waters P, Yeh EA, Bar-Or A, Marrie RA, Narayanan S, Arnold DL, Collins DL, Banwell B. Deviation From Normative Whole Brain and Deep Gray Matter Growth in Children With MOGAD, MS, and Monophasic Seronegative Demyelination. Neurology 2023; 101:e425-e437. [PMID: 37258297 PMCID: PMC10435061 DOI: 10.1212/wnl.0000000000207429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/04/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pediatric-acquired demyelination of the CNS associated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG; MOG antibody-associated disease [MOGAD]) occurs as a monophasic or relapsing disease and with variable but often extensive T2 lesions in the brain. The impact of MOGAD on brain growth during maturation is unknown. We quantified the effect of pediatric MOGAD on brain growth trajectories and compared this with the growth trajectories of age-matched and sex-matched healthy children and children with multiple sclerosis (MS, a chronic relapsing disease known to lead to failure of normal brain growth and to loss of brain volume) and monophasic seronegative demyelination. METHODS We included children enrolled at incident attack in the prospective longitudinal Canadian Pediatric Demyelinating Disease Study who were recruited at the 3 largest enrollment sites, underwent research brain MRI scans, and were tested for serum MOG-IgG. Children seropositive for MOG-IgG were diagnosed with MOGAD. MS was diagnosed per the 2017 McDonald criteria. Monophasic seronegative demyelination was confirmed in children with no clinical or MRI evidence of recurrent demyelination and negative results for MOG-IgG and aquaporin-4-IgG. Whole and regional brain volumes were computed through symmetric nonlinear registration to templates. We computed age-normalized and sex-normalized z scores for brain volume using a normative dataset of 813 brain MRI scans obtained from typically developing children and used mixed-effect models to assess potential deviation from brain growth trajectories. RESULTS We assessed brain volumes of 46 children with MOGAD, 26 with MS, and 51 with monophasic seronegative demyelinating syndrome. Children with MOGAD exhibited delayed (p < 0.001) age-expected and sex-expected growth of thalamus, caudate, and globus pallidus, normalized for the whole brain volume. Divergence from expected growth was particularly pronounced in the first year postonset and was detected even in children with monophasic MOGAD. Thalamic volume abnormalities were less pronounced in children with MOGAD compared with those in children with MS. DISCUSSION The onset of MOGAD during childhood adversely affects the expected trajectory of growth of deep gray matter structures, with accelerated changes in the months after an acute attack. Further studies are required to better determine the relative impact of monophasic vs relapsing MOGAD and whether relapsing MOGAD with attacks isolated to the optic nerves or spinal cord affects brain volume over time.
Collapse
Affiliation(s)
- Giulia Fadda
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Alonso Cardenas de la Parra
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Julia O'Mahony
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Patrick Waters
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - E Ann Yeh
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Amit Bar-Or
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Ruth Ann Marrie
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Sridar Narayanan
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Douglas L Arnold
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - D Louis Collins
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Brenda Banwell
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania.
| |
Collapse
|
10
|
Barbuti E, Nistri R, Ianniello A, Pozzilli C, Ruggieri S. Should we treat pediatric radiologically isolated syndrome? An 18-year follow-up case report. Front Neurol 2023; 14:1145260. [PMID: 37090972 PMCID: PMC10117757 DOI: 10.3389/fneur.2023.1145260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundRadiologically isolated syndrome (RIS) describes asymptomatic individuals with incidental radiologic abnormalities suggestive of multiple sclerosis (MS). Much of RIS literature is about adult-onset cases. Treatment of RIS is controversial, especially in pediatric age, but early treatment in selected patients might improve long-term outcomes.Case presentationWe report a single RIS patient who followed up for 18 years in our MS center. At first, she was only monitored with follow-up MRIs. Then, as the lesion load increased, she was treated with a first-line disease-modifying treatment (DMT) reaching MRI stability.ConclusionThis report highlights how treatment can be an appropriate choice in pediatric forms of RIS.
Collapse
Affiliation(s)
- Elena Barbuti
- MS Center, S'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Elena Barbuti
| | - Riccardo Nistri
- MS Center, S'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Ianniello
- MS Center, S'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Pozzilli
- MS Center, S'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
11
|
Bartels F, Baumgartner B, Aigner A, Cooper G, Blaschek A, Wendel EM, Bertolini A, Karenfort M, Baumann M, Cleaveland R, Wegener-Panzer A, Leiz S, Salandin M, Krieg P, Reindl T, Reindl M, Finke C, Rostásy K. Impaired Brain Growth in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Acute Disseminated Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/2/e200066. [PMID: 36754833 PMCID: PMC9909582 DOI: 10.1212/nxi.0000000000200066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/10/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Acute disseminated encephalomyelitis (ADEM) is the most common phenotype in pediatric myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease. A previous study demonstrated impaired brain growth in ADEM. However, the effect of MOG antibodies on brain growth remains unknown. Here, we performed brain volume analyses in MOG-positive and MOG-negative ADEM at onset and over time. METHODS In this observational cohort study, we included a total of 62 MRI scans from 24 patients with ADEM (54.2% female; median age 5 years), of which 16 (66.7%) were MOG positive. Patients were compared with healthy controls from the NIH pediatric MRI data repository and a matched local cohort. Mixed-effect models were applied to assess group differences and other relevant factors, including relapses. RESULTS At baseline and before any steroid treatment, patients with ADEM, irrespective of MOG antibody status, showed reduced brain volume compared with matched controls (median [interquartile range] 1,741.9 cm3 [1,645.1-1,805.2] vs 1,810.4 cm3 [1,786.5-1,836.2]). Longitudinal analysis revealed reduced brain growth for both MOG-positive and MOG-negative patients with ADEM. However, MOG-negative patients showed a stronger reduction (-138.3 cm3 [95% CI -193.6 to -82.9]) than MOG-positive patients (-50.0 cm3 [-126.5 to -5.2]), independent of age, sex, and treatment. Relapsing patients (all MOG positive) showed additional brain volume loss (-15.8 cm3 [-68.9 to 37.3]). DISCUSSION Patients with ADEM exhibit brain volume loss and failure of age-expected brain growth. Importantly, MOG-negative status was associated with a more pronounced brain volume loss compared with MOG-positive patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kevin Rostásy
- From the Department of Neurology (F.B., G.C., C.F.), Charité-Universitätsmedizin Berlin; Berlin Institute of Health at Charité-Universitätsmedizin Berlin (F.B.); Berlin School of Mind and Brain (F.B., C.F.), Humboldt-Universität zu Berlin; Witten/Herdecke University (B.B., Annikki Bertolini, K.R.), Department of Pediatric Neurology, Children's Hospital Datteln; Charité-Universitätsmedizin Berlin (A.A.), Institute of Biometry and Clinical Epidemiology; Department of Pediatric Neurology and Developmental Medicine (Astrid Blaschek), LMU, Dr. von Hauner Children's Hospital, Munich; Department of Pediatric Neurology (E.M.W.), Olgahospital/Klinikum Stuttgart; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty (M.K.), Heinrich-Heine-University Düsseldorf, Germany; Department of Pediatric I, Pediatric Neurology (M.B.), Medical University of Innsbruck, Austria; Department of Radiology (R.C., A.W.-P.), Children's Hospital Datteln, Witten/Herdecke University, Germany; Department of Pediatrics and Adolescent Medicine (S.L.), Hospital Dritter Orden, Munich, Germany; Department Neuropediatrics (M.S.), Regional Hospital of Bolzano, Italy; Department of Pediatrics (P.K.), Städtisches Klinikum Karlsruhe, Germany; Department of Pediatrics, Brandenburg (T.R.), Helios Klinik Hohenstücken, Germany; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Skarlis C, Markoglou N, Gontika M, Bougea A, Katsavos S, Artemiadis A, Chrousos G, Dalakas M, Stefanis L, Anagnostouli M. First-line disease modifying treatments in pediatric-onset multiple sclerosis in Greece: therapy initiation at more advanced age is the main cause of treatment failure, in a retrospective observational study, with a cohort from a single Multiple Sclerosis Center. Neurol Sci 2023; 44:693-701. [PMID: 36197577 PMCID: PMC9842569 DOI: 10.1007/s10072-022-06431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Long-term immunomodulatory therapy of pediatric onset-multiple sclerosis (POMS) is based mainly on published case series and internationally agreed guidelines. Relevant studies in the Greek population are absent from the literature. The purpose of this study is to present data on the efficacy and safety of the 1st line immunomodulatory drugs in the treatment of POMS patients. MATERIALS AND METHODS The present study included 27 patients meeting the IPMSSG criteria for POMS and who are monitored at the outpatient clinic of the Multiple Sclerosis and Demyelinating Diseases Unit (MSDDU), of the 1st Neurological Department, University Hospital of Aeginition. All patients received 1st line immunomodulatory drugs as initial therapy. Clinical, laboratory, and imaging parameters of the disease were recorded before and after treatment. RESULTS Post-treatment, a significant reduction of the relapse number (mean ± SD: 2.0 ± 1.0 vs 1.2 ± 1.6, p = 0.002), EDSS progression (mean ± SD: 1.5 ± 0.8 vs 0.9 ± 0.7, p = 0.005) and ARR (mean ± SD: 1.5 ± 0.7 vs 0.4 ± 0.5, p = 0.0001) was observed, while no changes were observed in the EDSS score, (mean ± SD: 1.8 ± 0.6 vs 1.9. 0.6, p = 0.60). Advanced age at treatment initiation increased the risk for drug discontinuation before 24 months of therapy (HR = 0.6, 95% CI (0.35-0.99), p = 0.04). CONCLUSIONS Most pediatric patients are forced to switch to either more efficacious 1st line or 2nd line drugs. Additionally, our study suggests that older age at the time of the 1st line treatment initiation, contributes to earlier drug discontinuation.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Research Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece
| | - Nikolaos Markoglou
- Research Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece
| | - Maria Gontika
- Research Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece
| | - Anastasia Bougea
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition University Hospital, Vassilisis Sofias Ave 72-74, 11528 Athens, Greece
| | - Serafeim Katsavos
- Research Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece
| | - Artemios Artemiadis
- Research Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece
| | - George Chrousos
- Aghia Sophia Children’s Hospital, University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair On Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Marinos Dalakas
- Neuroimmunology Unit, Department of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece ,Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - Leonidas Stefanis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition University Hospital, Vassilisis Sofias Ave 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece ,1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition University Hospital, Vassilisis Sofias Ave 72-74, 11528 Athens, Greece ,Multiple Sclerosis and Demyelinating Diseases Unit, 1st, Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, Athens, Greece
| |
Collapse
|
13
|
Bruijstens AL, Stingl C, Güzel C, Stoop MP, Wong YYM, van Pelt ED, Banwell BL, Bar-Or A, Luider TM, Neuteboom RF. Neurodegeneration and humoral response proteins in cerebrospinal fluid associate with pediatric-onset multiple sclerosis and not monophasic demyelinating syndromes in childhood. Mult Scler 2023; 29:52-62. [PMID: 36154753 PMCID: PMC9896265 DOI: 10.1177/13524585221125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pediatric-onset multiple sclerosis (POMS) represents the earliest stage of disease pathogenesis. Investigating the cerebrospinal fluid (CSF) proteome in POMS may provide novel insights into early MS processes. OBJECTIVE To analyze CSF obtained from children at time of initial central nervous system (CNS) acquired demyelinating syndrome (ADS), to compare CSF proteome of those subsequently ascertained as having POMS versus monophasic acquired demyelinating syndrome (mADS). METHODS Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry (LC-MS) was performed in a Dutch discovery cohort (POMS n = 28; mADS n = 39). Parallel reaction monitoring-mass spectrometry (PRM-MS) was performed on selected proteins more abundant in POMS in a combined Dutch and Canadian validation cohort (POMS n = 48; mADS n = 106). RESULTS Discovery identified 5580 peptides belonging to 576 proteins; 58 proteins were differentially abundant with ⩾2 peptides between POMS and mADS, of which 28 more abundant in POMS. Fourteen had increased abundance in POMS with ⩾8 unique peptides. Five selected proteins were all confirmed within validation. Adjusted for age, 2 out of 5 proteins remained more abundant in POMS, that is, Carboxypeptidase E (CPE) and Semaphorin-7A (SEMA7A). CONCLUSION This exploratory study identified several CSF proteins associated with POMS and not mADS, potentially reflecting neurodegeneration, compensatory neuroprotection, and humoral response in POMS. The proteins associated with POMS highly correlated with age at CSF sampling.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- AL Bruijstens Department of Neurology, Erasmus University Medical Center, Room Ee-2230, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yu Yi M Wong
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Wendel EM, Thonke HS, Bertolini A, Baumann M, Blaschek A, Merkenschlager A, Karenfort M, Kornek B, Lechner C, Pohl D, Pritsch M, Schanda K, Schimmel M, Thiels C, Waltz S, Wiegand G, Anlar B, Barisic N, Blank C, Breu M, Broser P, Della Marina A, Diepold K, Eckenweiler M, Eisenkölbl A, Freilinger M, Gruber-Sedlmayr U, Hackenberg A, Iff T, Knierim E, Koch J, Kutschke G, Leiz S, Lischetzki G, Nosadini M, Pschibul A, Reiter-Fink E, Rohrbach D, Salandin M, Sartori S, Schlump JU, Stoffels J, Strautmanis J, Tibussek D, Tüngler V, Utzig N, Reindl M, Rostásy K. Temporal Dynamics of MOG Antibodies in Children With Acquired Demyelinating Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200035. [PMID: 36229191 PMCID: PMC9562044 DOI: 10.1212/nxi.0000000000200035] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective The spectrum of myelin oligodendrocyte glycoprotein (MOG) antibody–associated disorder (MOGAD) comprises monophasic diseases such as acute disseminated encephalomyelitis (ADEM), optic neuritis (ON), and transverse myelitis and relapsing courses of these presentations. Persistently high MOG antibodies (MOG immunoglobulin G [IgG]) are found in patients with a relapsing disease course. Prognostic factors to determine the clinical course of children with a first MOGAD are still lacking. The objective of the study is to assess the clinical and laboratory prognostic parameters for a risk of relapse and the temporal dynamics of MOG‐IgG titers in children with MOGAD in correlation with clinical presentation and disease course. Methods In this prospective multicenter hospital-based study, children with a first demyelinating attack and complete data set comprising clinical and radiologic findings, MOG-IgG titer at onset, and clinical and serologic follow-up data were included. Serum samples were analyzed by live cell-based assay, and a titer level of ≥1:160 was classified as MOG-IgG–positive. Results One hundred sixteen children (f:m = 57:59) with MOGAD were included and initially diagnosed with ADEM (n = 59), unilateral ON (n = 12), bilateral ON (n = 16), myelitis (n = 6), neuromyelitis optica spectrum disorder (n = 8) or encephalitis (n = 6). The median follow-up time was 3 years in monophasic and 5 years in relapsing patients. There was no significant association between disease course and MOG-IgG titers at onset, sex, age at presentation, or clinical phenotype. Seroconversion to MOG-IgG–negative within 2 years of the initial event showed a significant risk reduction for a relapsing disease course. Forty-two/one hundred sixteen patients (monophasic n = 26, relapsing n = 16) had serial MOG-IgG testing in years 1 and 2 after the initial event. In contrast to relapsing patients, monophasic patients showed a significant decrease of MOG-IgG titers during the first and second years, often with seroconversion to negative titers. During the follow-up, MOG-IgG titers were persistently higher in relapsing than in monophasic patients. Decrease in MOG-IgG of ≥3 dilution steps after the first and second years was shown to be associated with a decreased risk of relapses. In our cohort, no patient experienced a relapse after seroconversion to MOG-IgG–negative. Discussion In this study, patients with declining MOG-IgG titers, particularly those with seroconversion to MOG-IgG–negative, are shown to have a significantly reduced relapse risk.
Collapse
|
15
|
Wendel EM, Bertolini A, Kousoulos L, Rauchenzauner M, Schanda K, Wegener-Panzer A, Baumann M, Reindl M, Otto M, Rostásy K. Serum neurofilament light-chain levels in children with monophasic myelin oligodendrocyte glycoprotein-associated disease, multiple sclerosis, and other acquired demyelinating syndrome. Mult Scler 2022; 28:1553-1561. [DOI: 10.1177/13524585221081090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: To assess the diagnostic and prognostic potential of serum neurofilament light chain (sNfL) in children with first acquired demyelinating syndrome (ADS). Methods: We selected 129 children with first ADS including 19 children with myelin oligodendrocyte glycoprotein (MOG)-antibody associated disease (MOGAD), 36 MOG/AQP4-seronegative ADS, and 74 with multiple sclerosis (MS) from the BIOMARKER study cohort. All children had a complete set of clinical, radiological, laboratory data and serum for NfL measurement using a highly sensitive digital ELISA (SIMOA). A control group of 35 children with non-inflammatory neurological diseases was included. sNfL levels were compared across patient groups according to clinical, laboratory, neuroradiological features and outcome after 2 years. Results: sNfL levels were significantly increased in MOGAD, seronegative ADS and MS compared to controls ( p-value < 0.001), in particular in children with an acute disseminated encephalomyelitis (ADEM)-like magnetic resonance imaging (MRI) pattern ( p < 0.001) or longitudinally extensive myelitis ( p < 0.01). In pediatric MS, elevated sNfL levels were significantly associated with higher numbers of cerebral ( p < 0.001) and presence of spinal ( p < 0.05) MRI lesions at baseline and predicted a higher number of relapses ( p < 0.05). Conclusion: sNfL levels are significantly elevated in all three studied pediatric ADS subtypes indicating neuroaxonal injury. In pediatric MS high levels of sNfL are associated with risk factors for disease progression.
Collapse
Affiliation(s)
- Eva-Maria Wendel
- Department of Pediatrics, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Annikki Bertolini
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Lampros Kousoulos
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Markus Rauchenzauner
- Department of Pediatrics and Neonatology, Kliniken Ostallgäu-Kaufbeuren, Kaufbeuren, Germany/Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Wegener-Panzer
- Department of Pediatric Radiology, Children`s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Otto
- Department of Neurology, University Hospital of Ulm, Ulm, Germany; Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children’s Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| |
Collapse
|
16
|
Jakimovski D, Awan S, Eckert SP, Farooq O, Weinstock-Guttman B. Multiple Sclerosis in Children: Differential Diagnosis, Prognosis, and Disease-Modifying Treatment. CNS Drugs 2022; 36:45-59. [PMID: 34940954 PMCID: PMC8697541 DOI: 10.1007/s40263-021-00887-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Pediatric-onset multiple sclerosis (POMS) is a rare neuroinflammatory and neurodegenerative disease that has a significant impact on long-term physical and cognitive patient outcomes. A small percentage of multiple sclerosis (MS) diagnoses occur before the age of 18 years. Before treatment initiation, a careful differential diagnosis and exclusion of other similar acquired demyelinating syndromes such as anti-aquaporin-4-associated neuromyelitis optica spectrum disorder (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein antibody spectrum disorder (MOGSD) is warranted. The recent 2017 changes to the McDonald criteria can successfully predict up to 71% of MS diagnoses and have good specificity of 95% and sensitivity of 71%. Additional measures such as the presence of T1-weighted hypointense lesions and/or contrast-enhancing lesions significantly increase the accuracy of diagnosis. In adults, early use of disease-modifying therapies (DMTs) is instrumental to a better long-term prognosis, including lower rates of relapse and disability worsening, and numerous FDA-approved therapies for adult-onset MS are available. However, unlike their adult counterparts, the development, testing, and regulatory approval of POMS treatments have been significantly slower and hindered by logistic and/or ethical considerations. Currently, only two MS DMTs (fingolimod and teriflunomide) have been tested in large phase III trials and approved by regulatory agencies for use in POMS. First-line therapies not approved by the FDA for use in children (interferon-β and glatiramer acetate) are also commonly used and result in a significant reduction in inflammatory activity when compared with non-treated POMS patients. An increasing number of POMS patients are now treated with moderate efficacy therapies such as dimethyl fumarate and high-efficacy therapies such as natalizumab, anti-CD20 monoclonal antibodies, anti-CD52 monoclonal antibodies, and/or autologous hematopoietic stem cell transplantation. These high-efficacy DMTs generally provide additional reduction in inflammatory activity when compared with the first-line medications (up to 62% of relapse-rate reduction). Therefore, a number of phase II and III trials are currently investigating their efficacy and safety in POMS patients. In this review, we discuss potential changes in the regulatory approval process for POMS patients that are recommended for DMTs already approved for the adult MS population, including smaller sample size for pharmacokinetic/pharmacodynamic studies, MRI-centered primary outcomes, and/or inclusion of teenagers in the adult trials.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Science, University of Buffalo, 1010 Main Street, Buffalo, NY 14202 USA ,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY USA
| | - Samreen Awan
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Science, University of Buffalo, 1010 Main Street, Buffalo, NY 14202 USA
| | - Svetlana P. Eckert
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Science, University of Buffalo, 1010 Main Street, Buffalo, NY 14202 USA
| | - Osman Farooq
- Division of Pediatric Neurology, Oishei Children’s Hospital of Buffalo, Buffalo, NY USA ,Department of Neurology, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, NY USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Science, University of Buffalo, 1010 Main Street, Buffalo, NY, 14202, USA.
| |
Collapse
|
17
|
Bartels F, Lu A, Oertel FC, Finke C, Paul F, Chien C. Clinical and neuroimaging findings in MOGAD-MRI and OCT. Clin Exp Immunol 2021; 206:266-281. [PMID: 34152000 PMCID: PMC8561692 DOI: 10.1111/cei.13641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) are rare in both children and adults, and have been recently suggested to be an autoimmune neuroinflammatory group of disorders that are different from aquaporin-4 autoantibody-associated neuromyelitis optica spectrum disorder and from classic multiple sclerosis. In-vivo imaging of the MOGAD patient central nervous system has shown some distinguishing features when evaluating magnetic resonance imaging of the brain, spinal cord and optic nerves, as well as retinal imaging using optical coherence tomography. In this review, we discuss key clinical and neuroimaging characteristics of paediatric and adult MOGAD. We describe how these imaging techniques may be used to study this group of disorders and discuss how image analysis methods have led to recent insights for consideration in future studies.
Collapse
Affiliation(s)
- Frederik Bartels
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainBerlin Institute of Health at Charité – Universitätsmedizin Berlin andHumboldt‐Universität zu BerlinBerlinGermany
| | - Angelo Lu
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Frederike Cosima Oertel
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainBerlin Institute of Health at Charité – Universitätsmedizin Berlin andHumboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Claudia Chien
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
- Department for Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
18
|
Affiliation(s)
- Yael Hacohen
- From the Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (Y.H., A.E.), and Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E.), University College London; and Department of Neurology (Y.H.), Great Ormond Street Hospital for Children, London, UK.
| | - Arman Eshaghi
- From the Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (Y.H., A.E.), and Centre for Medical Image Computing (CMIC), Department of Computer Science (A.E.), University College London; and Department of Neurology (Y.H.), Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
19
|
Sandesjö F, Wassmer E, Deiva K, Amato MP, Chitnis T, Hemingway C, Krupp L, Pohl D, Rostasy K, Waubant E, Banwell B, Wickström R. Current international trends in the treatment of multiple sclerosis in children-Impact of the COVID-19 pandemic. Mult Scler Relat Disord 2021; 56:103277. [PMID: 34624643 PMCID: PMC8474759 DOI: 10.1016/j.msard.2021.103277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Only recently has the first disease-modifying therapy been approved for children with multiple sclerosis (MS) and practice patterns including substantial off-label use have evolved. Understanding attitudes towards treatment of paediatric MS and whether this has changed due to the ongoing COVID-19 pandemic is vital to guide future therapeutic trials and for developing guidelines that reflect practice. METHODS We performed an online survey within the International Paediatric Multiple Sclerosis Study Group between July and September 2020. The survey was sent to 130 members from 25 countries and consisted of five sections: demographic data, treatment, disease modifying therapies and COVID-19, outcome and three patient cases. RESULTS The survey was completed by 66 members (51%), both paediatric neurologists and adult neurologists. Fingolimod and β-interferons were the most frequently used disease-modifying therapies, especially among paediatric neurologists. Almost a third (31%) of respondents had altered their prescribing practice due to COVID-19, in particular at the beginning of the pandemic. CONCLUSIONS The survey results indicate a tendency of moving from the traditional escalation therapy starting with injectables towards an early start with newer, highly effective disease modifying therapies. The COVID-19 pandemic only slightly affected prescribing patterns and treatment choices in paediatric MS.
Collapse
Affiliation(s)
- Fredrik Sandesjö
- Neuropediatric Unit, Department of Women´s and Children´s Health, Karolinska Institutet, Sweden
| | - Evangeline Wassmer
- Birmingham Women and Children's Hospital, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Kumaran Deiva
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital, Pediatric Neurology Departement, and National Referral Center for rare inflammatory brain and spinal diseases, Le Kremlin-Bicêtre, France
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Italy, IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tanuja Chitnis
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Cheryl Hemingway
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Lauren Krupp
- NYU MS Comprehensive Care Center, Grossman School of Medicine, New York University, New York City, NY, USA
| | - Daniela Pohl
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Germany
| | - Emanuelle Waubant
- UCSF Regional Pediatric MS clinic, Department of Neurology, San Francisco, CA 94158, USA
| | - Brenda Banwell
- The Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, PA, USA; University of Pennsylvania, Departments of Neurology and Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ronny Wickström
- Neuropediatric Unit, Department of Women´s and Children´s Health, Karolinska Institutet, Sweden.
| |
Collapse
|
20
|
de Chalus A, Taveira M, Deiva K. Pediatric onset multiple sclerosis: Future challenge for early diagnosis and treatment. Presse Med 2021; 50:104069. [PMID: 34265375 DOI: 10.1016/j.lpm.2021.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis is a major socio-economical burden as it represents the most common cause of non-traumatic neurological disability in young adults [1]. It affects also children with a lower prevalence and incidence but remains a major concern as disability may occur later during their adulthood. Therefore, there is an absolute need for earlier diagnosis and treatment. In this review, we would focus on how these objectives can be achieved.
Collapse
Affiliation(s)
- Aliénor de Chalus
- University Hospitals Paris Saclay, Bicêtre Hospital, Pediatric Neurology Department, France.
| | - Mélanie Taveira
- University Hospitals Paris Saclay, Bicêtre Hospital, Pediatric Neurology Department, France
| | - Kumaran Deiva
- University Hospitals Paris Saclay, Bicêtre Hospital, Pediatric Neurology Department, France
| |
Collapse
|
21
|
Abdel-Mannan OA, Manchoon C, Rossor T, Southin JC, Tur C, Brownlee W, Byrne S, Chitre M, Coles A, Forsyth R, Kneen R, Mankad K, Ram D, West S, Wright S, Wassmer E, Lim M, Ciccarelli O, Hemingway C, Hacohen Y. Use of Disease-Modifying Therapies in Pediatric Relapsing-Remitting Multiple Sclerosis in the United Kingdom. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/4/e1008. [PMID: 34021056 PMCID: PMC8143699 DOI: 10.1212/nxi.0000000000001008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
Objectives To compare the real-world effectiveness of newer disease-modifying therapies (DMTs) vs injectables in children with relapsing-remitting multiple sclerosis (RRMS). Methods In this retrospective, multicenter study, from the UK Childhood Inflammatory Demyelination Network, we identified children with RRMS receiving DMTs from January 2012 to December 2018. Clinical and paraclinical data were retrieved from the medical records. Annualized relapse rates (ARRs) before and on treatment, time to relapse, time to new MRI lesions, and change in Expanded Disability Status Scale (EDSS) score were calculated. Results Of 103 children treated with DMTs, followed up for 3.8 years, relapses on treatment were recorded in 53/89 (59.5%) on injectables vs 8/54 (15%) on newer DMTs. The ARR was reduced from 1.9 to 1.1 on injectables (p < 0.001) vs 1.6 to 0.3 on newer DMTs (p = 0.002). New MRI lesions occurred in 77/89 (86.5%) of patients on injectables vs 26/54 (47%) on newer DMTs (p = 0.0001). Children on newer DMTs showed longer time to relapse, time to switch treatment, and time to new radiologic activity than patients on injectables (log-rank p < 0.01). After adjustment for potential confounders, multivariable analysis showed that injectables were associated with 12-fold increased risk of clinical relapse (adjusted hazard ratio [HR] = 12.12, 95% CI = 1.64–89.87, p = 0.015) and a 2-fold increased risk of new radiologic activity (adjusted HR = 2.78, 95% CI = 1.08–7.13, p = 0.034) compared with newer DMTs. At 2 years from treatment initiation, 38/103 (37%) patients had MRI activity in the absence of clinical relapses. The EDSS score did not change during the follow-up, and only 2 patients had cognitive impairment. Conclusion Newer DMTs were associated with a lower risk of clinical and radiologic relapses in patients compared with injectables. Our study adds weight to the argument for an imminent shift in practice toward the use of newer, more efficacious DMTs in the first instance. Classification of Evidence This study provides Class IV evidence that newer DMTs (oral or infusions) are superior to injectables (interferon beta/glatiramer acetate) in reducing both clinical relapses and radiologic activity in children with RRMS.
Collapse
Affiliation(s)
- Omar A Abdel-Mannan
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Celeste Manchoon
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Thomas Rossor
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Justine-Clair Southin
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Carmen Tur
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Wallace Brownlee
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Susan Byrne
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Manali Chitre
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Alasdair Coles
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Rob Forsyth
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Rachel Kneen
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Kshitij Mankad
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Dipak Ram
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Siobhan West
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Sukhvir Wright
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Evangeline Wassmer
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Ming Lim
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Olga Ciccarelli
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Cheryl Hemingway
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.)
| | - Yael Hacohen
- From the Queen Square MS Centre (O.A.A., W.B., O.C., C.H., Y.H.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; Department of Neurology (O.A.A., O.C., C.H., Y.H.), Great Ormond Street Hospital for Children, London; Children's Neurosciences (C.M.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation; Department of Paediatric Neurology (T.R., M.C.), Addenbrooke's Hospital, Cambridge; Department of Neurology (J.-C.S., R.K.), Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Queen Square Institute of Neurology (C.T.), Faculty of Brain Sciences, University College London; Multiple Sclerosis Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Spain; Children's Neurosciences (S.B.), Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London; Department of Clinical Neurosciences (A.C.), Addenbrooke's Hospital, Cambridge; Translational and Clinical Research Institute (R.F.), Newcastle University; Department of Neuroradiology (K.M.), Great Ormond Street Hospital for Children, London; Department of Neurology (D.R., S. West), Royal Manchester Children's Hospital, Manchester; Department of Neurology (S. Wright, E.W.), Birmingham Children's Hospital, Birmingham; Aston Neuroscience Institute (S. Wright, E.W.), College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Evelina London Children's Hospital (M.L.), Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; and NIHR University College London Hospitals Biomedical Research Centre (O.C.).
| | | |
Collapse
|
22
|
Fadda G, Armangue T, Hacohen Y, Chitnis T, Banwell B. Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care. Lancet Neurol 2021; 20:136-149. [PMID: 33484648 DOI: 10.1016/s1474-4422(20)30432-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
The field of acquired CNS neuroimmune demyelination in children is transforming. Progress in assay development, refinement of diagnostic criteria, increased biological insights provided by advanced neuroimaging techniques, and high-level evidence for the therapeutic efficacy of biological agents are redefining diagnosis and care. Three distinct neuroimmune conditions-multiple sclerosis, myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (AQP4-NMOSD)-can now be distinguished, with evidence from humans and animal models supporting distinct pathobiological disease mechanisms. The development of highly effective therapies for adult-onset multiple sclerosis and AQP4-NMOSD that suppress relapse rate by more than 90% has motivated advocacy for trials in children. However, doing clinical trials is challenging because of the rarity of these conditions in the paediatric age group, necessitating new approaches to trial design, including age-based trajectory modelling based on phase 3 studies in adults. Despite these limitations, the future for children and adolescents living with multiple sclerosis, MOGAD, or AQP4-NMOSD is far brighter than in years past, and will be brighter still if successful therapies to promote remyelination, enhance neuroprotection, and remediate cognitive deficits can be further accelerated.
Collapse
Affiliation(s)
- Giulia Fadda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thais Armangue
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, University of Barcelona, Barcelona, Spain; Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona, Barcelona, Spain
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, UK; Paediatric Neurology, Great Ormond Street Hospital, London, UK
| | - Tanuja Chitnis
- Department of Neurology, Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Troche SJ, Kapanci T, Rammsayer TH, Kesseler CPA, Häusler MG, Geis T, Schimmel M, Elpers C, Kreth JH, Thiels C, Rostásy K. Interval Timing in Pediatric Multiple Sclerosis: Impaired in the Subsecond Range but Unimpaired in the One-Second Range. Front Neurol 2020; 11:575780. [PMID: 33193026 PMCID: PMC7606509 DOI: 10.3389/fneur.2020.575780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: For adult multiple sclerosis (MS) patients, impaired temporal processing of simultaneity/successiveness has been frequently reported although interval timing has been investigated in neither adult nor pediatric MS patients. We aim to extend previous research in two ways. First, we focus on interval timing (instead of simultaneity/successiveness) and differentiate between sensory-automatic processing of intervals in the subsecond range and cognitive processing of intervals in the one-second range. Second, we investigate whether impaired temporal information processing would also be observable in pediatric MS patients' interval timing in the subsecond and one-second ranges. Methods: Participants were 22 pediatric MS patients and 22 healthy controls, matched for age, gender, and psychometric intelligence as measured by the Culture Fair Test 20-R. They completed two auditory interval-timing tasks with stimuli in the subsecond and one-second ranges, respectively, as well as a frequency discrimination task. Results: Pediatric MS patients showed impaired interval timing in the subsecond range compared to healthy controls with a mean difference of the difference limen (DL) of 6.3 ms, 95% CI [1.7, 10.9 ms] and an effect size of Cohen's d = 0.830. The two groups did not differ significantly in interval timing in the one-second range (mean difference of the DL = 26.9 ms, 95% CI [−14.2, 67.9 ms], Cohen's d = 0.399) or in frequency discrimination (mean difference of the DL = 0.4 Hz, 95% CI [−1.1, 1.9 Hz], Cohen's d = 0.158). Conclusion: The results indicate that, in particular, the sensory-automatic processing of intervals in the subsecond range but not the cognitive processing of longer intervals is impaired in pediatric MS patients. This differential pattern of results is unlikely to be explained by general deficits of auditory information processing. A tentative explanation, to be tested in future studies, points to subcortical deficits in pediatric MS patients, which might also underlie deficits in speech and visuomotor coordination typically reported in pediatric MS patients.
Collapse
Affiliation(s)
- Stefan J Troche
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Tugba Kapanci
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | | | - Carl P A Kesseler
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | - Martin Georg Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Tobias Geis
- Department of Pediatric Neurology, Klinik St. Hedwig, University Children's Hospital Regensburg (Kinder-Universitätsklinik Ostbayern KUNO), Regensburg, Germany
| | - Mareike Schimmel
- Pediatric Neurology, Children's Hospital, University Hospital Augsburg, Augsburg, Germany
| | - Christiane Elpers
- Neuropediatric Department, Children's University Hospital Muenster, Muenster, Germany
| | - Jonas H Kreth
- Department of Pediatric Neurology, Hospital for Children and Adolescents, Klinikum Leverkusen, Leverkusen, Germany
| | - Charlotte Thiels
- Department of Pediatrics and Pediatric Neurology, Ruhr University Bochum, Bochum, Germany
| | - Kevin Rostásy
- Pediatric Neurology, University of Witten/Herdecke, Children's Hospital Datteln, Datteln, Germany
| |
Collapse
|
24
|
Baumann M, Bartels F, Finke C, Adamsbaum C, Hacohen Y, Rostásy K. E.U. paediatric MOG consortium consensus: Part 2 - Neuroimaging features of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol 2020; 29:14-21. [PMID: 33158737 DOI: 10.1016/j.ejpn.2020.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Imaging plays a crucial role in differentiating the spectrum of paediatric acquired demyelinating syndromes (ADS), which apart from myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) includes paediatric multiple sclerosis (MS), aquaporin-4 antibody neuromyelitis optica spectrum disorders (NMOSD) and unclassified patients with both monophasic and relapsing ADS. In contrast to the imaging characteristics of children with MS, children with MOGAD present with diverse imaging patterns which correlate with the main demyelinating phenotypes as well as age at presentation. In this review we describe the common neuroradiological features of children with MOGAD such as acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, AQP4 negative NMOSD. In addition, we report newly recognized presentations also associated with MOG-ab such as the 'leukodystophy-like' phenotype and autoimmune encephalitis with predominant involvement of cortical and deep grey matter structures. We further delineate the features, which may help to distinguish MOGAD from other ADS and discuss the future role of MR-imaging in regards to treatment decisions and prognosis in children with MOGAD. Finally, we propose an MRI protocol for routine examination and discuss new imaging techniques, which may help to better understand the neurobiology of MOGAD.
Collapse
Affiliation(s)
- Matthias Baumann
- Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria.
| | - Frederik Bartels
- Department of Neurology, Charité - Universitätsmedizin Berlin / Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin / Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Catherine Adamsbaum
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Paediatric Radiology Department, Le Kremlin-Bicêtre, France
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology / Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kevin Rostásy
- Department of Paediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Germany
| | | |
Collapse
|
25
|
Hacohen Y, Banwell B, Ciccarelli O. What does first-line therapy mean for paediatric multiple sclerosis in the current era? Mult Scler 2020; 27:1970-1976. [PMID: 32633605 DOI: 10.1177/1352458520937644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paediatric multiple sclerosis (MS) is associated with higher relapse rate, rapid magnetic resonance imaging lesion accrual early in the disease course and worse cognitive outcome and physical disability in the long term compared to adult-onset disease. Current treatment strategies are largely centre-specific and reliant on adult protocols. The aim of this review is to examine which treatment options should be considered first line for paediatric MS and we attempt to answer the question if injectable first-line disease-modifying therapies (DMTs) are still an optimal option. To answer this question, we review the effects of early onset disease on clinical course and outcomes, with specific considerations on risks and benefits of treatments for paediatric MS. Considering the impact of disease activity on brain atrophy, cognitive impairment and development of secondary progressive MS at a younger age, we would recommend treating paediatric MS as a highly active disease, favouring the early use of highly effective DMTs rather than injectable DMTs.
Collapse
Affiliation(s)
- Yael Hacohen
- Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK/Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Brenda Banwell
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA/Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK/NIHR UCLH Biomedical Research Centre, London, UK
| |
Collapse
|
26
|
Ghezzi A, Amato MP, Edan G, Hartung HP, Havrdová EK, Kappos L, Montalban X, Pozzilli C, Sorensen PS, Trojano M, Vermersch P, Comi G. The introduction of new medications in pediatric multiple sclerosis: Open issues and challenges. Mult Scler 2020; 27:479-482. [PMID: 32539596 DOI: 10.1177/1352458520930620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disease-modifying drugs (DMDs) for multiple sclerosis (MS) have been evaluated in pediatric patients in observational studies demonstrating a similar, even better clinical effect compared to adults, with a similar safety. Only fingolimod has been tested in a randomized controlled trial (RCT) and is approved for pediatric multiple sclerosis (ped-MS). Numerous methodological, practical, and ethical issues underline that RCTs are difficult to conduct in ped-MS. This also creates a lack of safety information. To facilitate the availability of new agents in ped-MS, we encourage to develop a different approach based on pharmacokinetic/pharmacodynamic studies to yield information on optimal doses and implementation of obligatory registries to obtain information on safety as primary endpoint.
Collapse
Affiliation(s)
- Angelo Ghezzi
- Centro Studi Sclerosi Multipla, Ospedale di Gallarate, Gallarate, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gilles Edan
- CIC 1414 INSERM, Department of Neurology, CHU Rennes, Rennes, France
| | - Hans-Peter Hartung
- Department of Neurology, UKD and Center of Neurology and Neuropsychiatry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eva Kubala Havrdová
- Department of Neurology and Center for Clinical Neuroscience, First Medical Faculty, Charles University, Prague, Czech Republic
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Xavier Montalban
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada; Department of Neurology, Cemcat, Hospital Vall d'Hebron, Barcelona, Spain
| | - Carlo Pozzilli
- Multiple Sclerosis Center, Sant' Andrea Hospital, Rome, Italy
| | - Per Soelber Sorensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University and Rigshospitalet, Copenhagen, Denmark
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Patrich Vermersch
- University of Lille, INSERM UMR-S1172, CHU Lille, FHU Imminent, Lille, France
| | - Giancarlo Comi
- Istituto di Neurologia Sperimentale (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
27
|
Bartels F, Krohn S, Nikolaus M, Johannsen J, Wickström R, Schimmel M, Häusler M, Berger A, Breu M, Blankenburg M, Stoffels J, Hendricks O, Bernert G, Kurlemann G, Knierim E, Kaindl A, Rostásy K, Finke C. Clinical and Magnetic Resonance Imaging Outcome Predictors in Pediatric Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Ann Neurol 2020; 88:148-159. [PMID: 32314416 DOI: 10.1002/ana.25754] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate disease symptoms, and clinical and magnetic resonance imaging (MRI) findings and to perform longitudinal volumetric MRI analyses in a European multicenter cohort of pediatric anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) patients. METHODS We studied 38 children with NMDARE (median age = 12.9 years, range =1-18) and a total of 82 MRI scans for volumetric MRI analyses compared to matched healthy controls. Mixed-effect models and brain volume z scores were applied to estimate longitudinal brain volume development. Ordinal logistic regression and ordinal mixed models were used to predict disease outcome and severity. RESULTS Initial MRI scans showed abnormal findings in 15 of 38 (39.5%) patients, mostly white matter T2/fluid-attenuated inversion recovery hyperintensities. Volumetric MRI analyses revealed reductions of whole brain and gray matter as well as hippocampal and basal ganglia volumes in NMDARE children. Longitudinal mixed-effect models and z score transformation showed failure of age-expected brain growth in patients. Importantly, patients with abnormal MRI findings at onset were more likely to have poor outcome (Pediatric Cerebral Performance Category score > 1, incidence rate ratio = 3.50, 95% confidence interval [CI] = 1.31-9.31, p = 0.012) compared to patients with normal MRI. Ordinal logistic regression models corrected for time from onset confirmed abnormal MRI at onset (odds ratio [OR] = 9.90, 95% CI = 2.51-17.28, p = 0.009), a presentation with sensorimotor deficits (OR = 13.71, 95% CI = 2.68-24.73, p = 0.015), and a treatment delay > 4 weeks (OR = 5.15, 95% CI = 0.47-9.82, p = 0.031) as independent predictors of poor clinical outcome. INTERPRETATION Children with NMDARE exhibit significant brain volume loss and failure of age-expected brain growth. Abnormal MRI findings, a clinical presentation with sensorimotor deficits, and a treatment delay > 4 weeks are associated with worse clinical outcome. These characteristics represent promising prognostic biomarkers in pediatric NMDARE. ANN NEUROL 2020 ANN NEUROL 2020;88:148-159.
Collapse
Affiliation(s)
- Frederik Bartels
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan Krohn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marc Nikolaus
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Mareike Schimmel
- Department of Pediatric Neurology, University Children's Hospital Augsburg, Augsburg, Germany
| | - Martin Häusler
- Department of Pediatrics, Division of Neuropediatric and Social Pediatrics, Medical University Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Andrea Berger
- Division of Pediatric Neurology, Department of Pediatrics, München Klinik Harlaching, Munich, Germany.,Division of Pediatric Neurology, Department of Pediatrics, Klinikum Weiden, Weiden, Germany
| | - Markus Breu
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Blankenburg
- Department of Pediatric Neurology, Olgahospital Stuttgart, Stuttgart, Germany.,Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Johannes Stoffels
- Department of Pediatric Neurology, Children's Hospital Neuburg, Neuburg, Germany
| | - Oliver Hendricks
- Department of Pediatrics, Marienhospital Bottrop, Bottrop, Germany
| | - Günther Bernert
- Department of Pediatrics, Gottfried von Preyer's Children's Hospital, Vienna, Austria
| | - Gerd Kurlemann
- Division of Pediatric Neurology, Department of Pediatrics, Medical University Münster, Münster, Germany
| | - Ellen Knierim
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Angela Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
28
|
Arnold DL, Banwell B, Bar-Or A, Ghezzi A, Greenberg BM, Waubant E, Giovannoni G, Wolinsky JS, Gärtner J, Rostásy K, Krupp L, Tardieu M, Brück W, Stites TE, Pearce GL, Häring DA, Merschhemke M, Chitnis T. Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: results from the phase 3 PARADIG MS study. J Neurol Neurosurg Psychiatry 2020; 91:483-492. [PMID: 32132224 PMCID: PMC7231437 DOI: 10.1136/jnnp-2019-322138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE PARADIGMS demonstrated superior efficacy and comparable safety of fingolimod versus interferon β-1a (IFN β-1a) in paediatric-onset multiple sclerosis (PoMS). This study aimed to report all predefined MRI outcomes from this study. METHODS Patients with multiple sclerosis (MS) (aged 10-<18 years) were randomised to once-daily oral fingolimod (n=107) or once-weekly intramuscular IFN β-1a (n=108) in this flexible duration study. MRI was performed at baseline and every 6 months for up to 2 years or end of the study (EOS) in case of early treatment discontinuation/completion. Key MRI endpoints included the annualised rate of formation of new/newly enlarging T2 lesions, gadolinium-enhancing (Gd+) T1 lesions, new T1 hypointense lesions and combined unique active (CUA) lesions (6 months onward), changes in T2 and Gd+ T1 lesion volumes and annualised rate of brain atrophy (ARBA). RESULTS Of the randomised patients, 107 each were treated with fingolimod and IFN β-1a for up to 2 years. Fingolimod reduced the annualised rate of formation of new/newly enlarging T2 lesions (52.6%, p<0.001), number of Gd+ T1 lesions per scan (66.0%, p<0.001), annualised rate of new T1 hypointense lesions (62.8%, p<0.001) and CUA lesions per scan (60.7%, p<0.001) versus IFN β-1a at EOS. The percent increases from baseline in T2 (18.4% vs 32.4%, p<0.001) and Gd+ T1 (-72.3% vs 4.9%, p=0.001) lesion volumes and ARBA (-0.48% vs -0.80%, p=0.014) were lower with fingolimod versus IFN β-1a, the latter partially due to accelerated atrophy in the IFN β-1a group. CONCLUSION Fingolimod significantly reduced MRI activity and ARBA for up to 2 years versus IFN β-1a in PoMS.
Collapse
Affiliation(s)
- Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada .,NeuroRx Research, Montreal, Quebec, Canada
| | - Brenda Banwell
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amit Bar-Or
- Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania, USA, Montreal, Quebec, Canada.,Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada, Philadephia, Pennsylvania, USA
| | - Angelo Ghezzi
- Centro Studi Sclerosi Multipla, Ospedale di Gallarate, Gallarate, Italy
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California, San Francisco, California, USA
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UK
| | - Jerry S Wolinsky
- McGovern Medical School, Department of Neurology, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA, Houston, Texas, USA
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent Medicine, German Centre for Multiple Sclerosis in Childhood and Adolescence, University Medical Centre, Göttingen, Germany
| | - Kevin Rostásy
- Division of Paediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Lauren Krupp
- Department of Neurology; Pediatric MS Center, NYU Langone Health, New York, NY USA, USA, New York, USA
| | - Marc Tardieu
- Hôpitaux universitaires Paris Sud, Paediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Paris France, Paris, France
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Centre, Göttingen, Germany
| | - Tracy E Stites
- Neuroscience TA, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | | | | | - Tanuja Chitnis
- Partners Pediatric Multiple Sclerosis Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
29
|
Associations between cognitive impairment at onset and disability accrual in young people with multiple sclerosis. Sci Rep 2019; 9:18074. [PMID: 31792347 PMCID: PMC6889418 DOI: 10.1038/s41598-019-54153-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Differently from the adult multiple sclerosis (MS) population, the predictive value of cognitive impairment in early-onset MS is still unknown. We aim to evaluate whether cognitive performances at disease onset predict disease progression in young people with MS. This is a retrospective study on early onset (<25 years) MS patients, who had a baseline cognitive evaluation at disease onset. Demographic and longitudinal clinical data were collected up to 7 years follow up. Cognitive abilities were assessed at baseline through the Brief Repeatable Battery. Associations between cognitive abilities and clinical outcomes (occurrence of a relapse, and 1-point EDSS progression) were evaluated with stepwise logistic and Cox regression models. We included 51 patients (26 females), with a mean age at MS onset of 17.2 ± 3.9 years, and an EDSS of 2.5 (1.0–6.0). Over the follow-up, twenty-five patients had at least one relapse, and 7 patients had 1-point EDSS progression. Relapse occurrence was associated with lower 10/36 SPART scores (HR = 0.92; p = 0.002) and higher WLG scores (HR = 1.05; p = 0.01). EDSS progression was associated with lower SDMT score (OR: 0.70; p = 0.04). Worse visual memory and attention/information processing were associated with relapses and with increased motor disability after up to 7-years follow-up. Therefor, specific cognitive subdomains might better predict clinical outcomes than the overall cognitive impairment in early-onset MS.
Collapse
|
30
|
Banwell B. Are children with multiple sclerosis really "old" adults. Mult Scler 2019; 25:888-890. [PMID: 30945591 DOI: 10.1177/1352458519841505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Brenda Banwell
- Chief of Child Neurology, Children's Hospital of Philadelphia Professor of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|