1
|
Zivadinov R, Keenan AJ, Le HH, Ait-Tihyaty M, Gandhi K, Zierhut ML, Salvo-Halloran EM, Ramirez AO, Vuong V, Singh S, Hutton B. Brain volume loss in relapsing multiple sclerosis: indirect treatment comparisons of available disease-modifying therapies. BMC Neurol 2024; 24:378. [PMID: 39379875 PMCID: PMC11460132 DOI: 10.1186/s12883-024-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Brain volume loss (BVL) has been identified as a predictor of disability progression in relapsing multiple sclerosis (RMS). As many available disease-modifying treatments (DMTs) have shown an effect on slowing BVL, this is becoming an emerging clinical endpoint in RMS clinical trials. METHODS In this study, a systematic literature review was conducted to identify BVL results from randomized controlled trials of DMTs in RMS. Indirect treatment comparisons (ITCs) were conducted to estimate the relative efficacy of DMTs on BVL using two approaches: a model-based meta-analysis (MBMA) with adjustment for measurement timepoint and DMT dosage, and a network meta-analysis (NMA). RESULTS In the MBMA, DMTs associated with significantly reduced BVL versus placebo at two years included fingolimod (mean difference [MD] = 0.25; 95% confidence interval [CI] = 0.15 - 0.36), ozanimod (MD = 0.26; 95% CI = 0.12 - 0.41), teriflunomide (MD = 0.38; 95% CI = 0.20 - 0.55), alemtuzumab (MD = 0.38; 95% CI = 0.10 - 0.67) and ponesimod (MD = 0.71; 95% CI = 0.48 - 0.95), whereas interferons and natalizumab performed the most poorly. The results of NMA analysis were generally comparable with those of the MBMA. CONCLUSIONS Limitations of these analyses included the potential for confounding due to pseudoatrophy, and a lack of long-term clinical data for BVL. Our findings suggest that important differences in BVL may exist between DMTs. Continued investigation of BVL in studies of RMS is important to complement traditional disability endpoints, and to foster a better understanding of the mechanisms by which DMTs can slow BVL.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander J Keenan
- Janssen Scientific Affairs, Janssen Pharmaceuticals, Titusville, NJ, USA.
| | - Hoa H Le
- Janssen Scientific Affairs, Janssen Pharmaceuticals, Titusville, NJ, USA
| | | | | | | | | | | | - Vivian Vuong
- EVERSANA, Value & Evidence Services, Burlington, ON, Canada
| | - Sumeet Singh
- EVERSANA, Value & Evidence Services, Burlington, ON, Canada
| | - Brian Hutton
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
2
|
Pfaff L, Mondino M, Loeb Q, Noblet V, Berthe C, Kremer L, Bigaut K, Collongues N, De Seze J. Teriflunomide, cognition and MRI: A longitudinal study. Mult Scler Relat Disord 2024; 90:105793. [PMID: 39197351 DOI: 10.1016/j.msard.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND As cognitive impairment in multiple sclerosis (MS) is a frequent and disabling symptom, it is particularly important to identify treatments that have proven efficacy in this aspect of the disease. Several disease-modifying therapies for MS have been evaluated and shown to have a potential effect on cognition and its neurobiological correlates, but to date there is very little data on Teriflunomide (TRF). The aim of this study is to explore the influence of TRF on comprehensive cognitive function and its MRI correlations (global and focal brain volume) in relapsing-remitting multiple sclerosis (RRMS) after two years of therapy. METHODS Twenty-four patients with RRMS were evaluated at baseline and after two years of treatment with BCcogSEP, a French translation of the Brief Repeatable Battery (BRB-N) including 3 additional tests. We explored the performance evolution for each test and correlation with MRI data for all patients. We also differentiated MS patients with and without cognitive impairment. RESULTS After two years of treatment, an improvement is observed at the Selective Reminding Test for mean number of words (p = 0.044), learning (p = 0.018), and delayed recall (p = 0.002) and at GoNoGo task (p = 0.022). At MRI, the corpus callosum volume variation correlates positively with SRT total recall test (p = 0,047). Intergoup analysis shows that the evolution of group performance differs only for the SRT total recall test. The comparison of patients with or without cognitive impairment showed a clear difference in white matter substance volume (p = 0,003) and in the Percentage Brain Volume Change (p = 0,016). CONCLUSION Results suggest that TRF treatment in RRMS has a positive effect in cognitive function, and specifically on long term verbal memory and inhibition. Neuroimaging data suggest a link between cognition and global and focal white matter volume, particularly in the corpus callosum which is involved in anatomical disconnection syndrome and therefore brain plasticity capacities.
Collapse
Affiliation(s)
- L Pfaff
- University of Strasbourg, Strasbourg, Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, Strasbourg, France.
| | - M Mondino
- University of Strasbourg, CNRS UMR 7357, ICube, FMTS, Strasbourg, France
| | - Q Loeb
- University of Strasbourg, CNRS UMR 7357, ICube, FMTS, Strasbourg, France
| | - V Noblet
- University of Strasbourg, CNRS UMR 7357, ICube, FMTS, Strasbourg, France
| | - C Berthe
- University Hospitals of Strasbourg, CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, Strasbourg, France
| | - L Kremer
- University Hospitals of Strasbourg, CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, Strasbourg, France
| | - K Bigaut
- University Hospitals of Strasbourg, CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, Strasbourg, France
| | - N Collongues
- University Hospitals of Strasbourg, CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, Strasbourg, France
| | - J De Seze
- University Hospitals of Strasbourg, CIC (Clinical Investigation Centre) INSERM 1434 and Neurology Department, Strasbourg, France
| |
Collapse
|
3
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
4
|
Parast L, Tian L, Cai T. Assessing heterogeneity in surrogacy using censored data. Stat Med 2024; 43:3184-3209. [PMID: 38812276 DOI: 10.1002/sim.10122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
Determining whether a surrogate marker can be used to replace a primary outcome in a clinical study is complex. While many statistical methods have been developed to formally evaluate a surrogate marker, they generally do not provide a way to examine heterogeneity in the utility of a surrogate marker. Similar to treatment effect heterogeneity, where the effect of a treatment varies based on a patient characteristic, heterogeneity in surrogacy means that the strength or utility of the surrogate marker varies based on a patient characteristic. The few methods that have been recently developed to examine such heterogeneity cannot accommodate censored data. Studies with a censored outcome are typically the studies that could most benefit from a surrogate because the follow-up time is often long. In this paper, we develop a robust nonparametric approach to assess heterogeneity in the utility of a surrogate marker with respect to a baseline variable in a censored time-to-event outcome setting. In addition, we propose and evaluate a testing procedure to formally test for heterogeneity at a single time point or across multiple time points simultaneously. Finite sample performance of our estimation and testing procedure are examined in a simulation study. We use our proposed method to investigate the complex relationship between change in fasting plasma glucose, diabetes, and sex hormones using data from the diabetes prevention program study.
Collapse
Affiliation(s)
- Layla Parast
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Tianxi Cai
- Department of Biostatistics, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
5
|
Parast L, Tian L, Cai T, Palaniappan L. Statistical Methods to Evaluate Surrogate Markers. Med Care 2024; 62:102-108. [PMID: 38079232 PMCID: PMC10842261 DOI: 10.1097/mlr.0000000000001956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
BACKGROUND There is tremendous interest in evaluating surrogate markers given their potential to decrease study time, costs, and patient burden. OBJECTIVES The purpose of this statistical workshop article is to describe and illustrate how to evaluate a surrogate marker of interest using the proportion of treatment effect (PTE) explained as a measure of the quality of the surrogate marker for: (1) a setting with a general fully observed primary outcome (eg, biopsy score); and (2) a setting with a time-to-event primary outcome which may be censored due to study termination or early drop out (eg, time to diabetes). METHODS The methods are motivated by 2 randomized trials, one among children with nonalcoholic fatty liver disease where the primary outcome was a change in biopsy score (general outcome) and another study among adults at high risk for Type 2 diabetes where the primary outcome was time to diabetes (time-to-event outcome). The methods are illustrated using the Rsurrogate package with a detailed R code provided. RESULTS In the biopsy score outcome setting, the estimated PTE of the examined surrogate marker was 0.182 (95% confidence interval [CI]: 0.121, 0.240), that is, the surrogate explained only 18.2% of the treatment effect on the biopsy score. In the diabetes setting, the estimated PTE of the surrogate marker was 0.596 (95% CI: 0.404, 0.760), that is, the surrogate explained 59.6% of the treatment effect on diabetes incidence. CONCLUSIONS This statistical workshop provides tools that will support future researchers in the evaluation of surrogate markers.
Collapse
Affiliation(s)
- Layla Parast
- Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Tianxi Cai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Latha Palaniappan
- Department of Medicine, Stanford University, School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
6
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA. Is it ethical to use teriflunomide as an active comparator in phase 3 trials? Mult Scler Relat Disord 2023; 78:104911. [PMID: 37582327 DOI: 10.1016/j.msard.2023.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Ethical concerns have been raised about the practice of using teriflunomide, an oral licensed disease-modifying therapy, as an active comparator in phase 3 multiple sclerosis (MS) trials. The assumption is based on the perceived low efficacy of teriflunomide as judged by its effect on relapses and focal MRI activity. However, when you look beyond focal inflammation, teriflunomide has a robust impact on disability progression and a similar effect to the anti-CD20 monoclonal antibody therapies on slowing down the accelerated brain volume loss associated with MS. Teriflunomide is also more effective when used second or third line. The other classes of disease-modifying therapies have problems with their use as active comparators in clinical trials. Using a non-inferiority or equivalence trial design has its own unique set of regulatory and ethical challenges and is not necessarily a solution. There are also economic, altruistic and pragmatic reasons for continuing to use teriflunomide as an active comparator in MS clinical trials. An online survey indicates that the majority of the MS community feels it is still ethical to randomise subjects to teriflunomide and that procedures can be put in place to protect trial subjects randomised to teriflunomide. Therefore, we still have equipoise, and teriflunomide comparator trials are ethical.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Michael Levy
- Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - E Ann Yeh
- Department of Paediatrics, Dalla Lana School of Public Health, University of Toronto, Canada
| |
Collapse
|
7
|
Parast L, Tian L, Cai T, Palaniappan LP. Can earlier biomarker measurements explain a treatment effect on diabetes incidence? A robust comparison of five surrogate markers. BMJ Open Diabetes Res Care 2023; 11:e003585. [PMID: 37907279 PMCID: PMC10619035 DOI: 10.1136/bmjdrc-2023-003585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION We measured and compared five individual surrogate markers-change from baseline to 1 year after randomization in hemoglobin A1c (HbA1c), fasting glucose, 2-hour postchallenge glucose, triglyceride-glucose index (TyG) index, and homeostatic model assessment of insulin resistance (HOMA-IR)-in terms of their ability to explain a treatment effect on reducing the risk of type 2 diabetes mellitus at 2, 3, and 4 years after treatment initiation. RESEARCH DESIGN AND METHODS Study participants were from the Diabetes Prevention Program study, randomly assigned to either a lifestyle intervention (n=1023) or placebo (n=1030). The surrogate markers were measured at baseline and 1 year, and diabetes incidence was examined at 2, 3, and 4 years postrandomization. Surrogacy was evaluated using a robust model-free estimate of the proportion of treatment effect explained (PTE) by the surrogate marker. RESULTS Across all time points, change in fasting glucose and HOMA-IR explained higher proportions of the treatment effect than 2-hour glucose, TyG index, or HbA1c. For example, at 2 years, glucose explained the highest (80.1%) proportion of the treatment effect, followed by HOMA-IR (77.7%), 2-hour glucose (76.2%), and HbA1c (74.6%); the TyG index explained the smallest (70.3%) proportion. CONCLUSIONS These data suggest that, of the five examined surrogate markers, glucose and HOMA-IR were the superior surrogate markers in terms of PTE, compared with 2-hour glucose, HbA1c, and TyG index.
Collapse
Affiliation(s)
- Layla Parast
- The University of Texas at Austin, Austin, Texas, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Tianxi Cai
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Latha P Palaniappan
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Wang X, Parast L, Han L, Tian L, Cai T. Robust approach to combining multiple markers to improve surrogacy. Biometrics 2023; 79:788-798. [PMID: 35426444 PMCID: PMC10347081 DOI: 10.1111/biom.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Identifying effective and valid surrogate markers to make inference about a treatment effect on long-term outcomes is an important step in improving the efficiency of clinical trials. Replacing a long-term outcome with short-term and/or cheaper surrogate markers can potentially shorten study duration and reduce trial costs. There is sizable statistical literature on methods to quantify the effectiveness of a single surrogate marker. Both parametric and nonparametric approaches have been well developed for different outcome types. However, when there are multiple markers available, methods for combining markers to construct a composite marker with improved surrogacy remain limited. In this paper, building on top of the optimal transformation framework of Wang et al. (2020), we propose a novel calibrated model fusion approach to optimally combine multiple markers to improve surrogacy. Specifically, we obtain two initial estimates of optimal composite scores of the markers based on two sets of models with one set approximating the underlying data distribution and the other directly approximating the optimal transformation function. We then estimate an optimal calibrated combination of the two estimated scores which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained by the final combined score. This approach is unique in that it identifies an optimal combination of the multiple surrogates without strictly relying on parametric assumptions while borrowing modeling strategies to avoid fully nonparametric estimation which is subject to the curse of dimensionality. Our identified optimal transformation can also be used to directly quantify the surrogacy of this identified combined score. Theoretical properties of the proposed estimators are derived, and the finite sample performance of the proposed method is evaluated through simulation studies. We further illustrate the proposed method using data from the Diabetes Prevention Program study.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Biostatistics, Harvard University, Boston, Massachusetts, USA
| | - Layla Parast
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Larry Han
- Department of Biostatistics, Harvard University, Boston, Massachusetts, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Tianxi Cai
- Department of Biostatistics, Harvard University, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Parast L, Cai T, Tian L. Testing for heterogeneity in the utility of a surrogate marker. Biometrics 2023; 79:799-810. [PMID: 34874550 PMCID: PMC9170832 DOI: 10.1111/biom.13600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
In studies that require long-term and/or costly follow-up of participants to evaluate a treatment, there is often interest in identifying and using a surrogate marker to evaluate the treatment effect. While several statistical methods have been proposed to evaluate potential surrogate markers, available methods generally do not account for or address the potential for a surrogate to vary in utility or strength by patient characteristics. Previous work examining surrogate markers has indicated that there may be such heterogeneity, that is, that a surrogate marker may be useful (with respect to capturing the treatment effect on the primary outcome) for some subgroups, but not for others. This heterogeneity is important to understand, particularly if the surrogate is to be used in a future trial to replace the primary outcome. In this paper, we propose an approach and estimation procedures to measure the surrogate strength as a function of a baseline covariate W and thus examine potential heterogeneity in the utility of the surrogate marker with respect to W. Within a potential outcome framework, we quantify the surrogate strength/utility using the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate. We propose testing procedures to test for evidence of heterogeneity, examine finite sample performance of these methods via simulation, and illustrate the methods using AIDS clinical trial data.
Collapse
Affiliation(s)
- Layla Parast
- Statistics Group, RAND Corporation, Santa Monica, California, USA
| | - Tianxi Cai
- Department of Biostatistics, Harvard University, Boston, Massachusetts, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Berkovich R, Negroski D, Wynn D, Sellers D, Bzdek KG, Lublin AL, Rawlings AM, Quach C, Wells DP, Dumlao M, Bora A, Ranno AE, Luo KL, Chavin J, Hua LH, Becker D. Effectiveness and safety of switching to teriflunomide in older patients with relapsing multiple sclerosis: A real-world retrospective multicenter analysis. Mult Scler Relat Disord 2023; 70:104472. [PMID: 36566698 DOI: 10.1016/j.msard.2022.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The prevalence of multiple sclerosis (MS) in older people is increasing due to population aging and availability of effective disease-modifying therapies (DMTs). Treating older people with MS is complicated by age-related and MS-related comorbidities, immunologic effects of prior DMTs, and immunosenescence. Teriflunomide is a once-daily oral immunomodulator that has demonstrated efficacy and acceptable safety in clinical trials of adults with relapsing forms of MS (RMS). However, there are limited clinical trial and real-world data regarding teriflunomide use in people with MS aged >55 years. We analyzed real-world data to assess the effectiveness and safety of teriflunomide in older people with RMS who had switched to this agent from other DMTs. METHODS People with RMS (relapsing remitting and active secondary progressive MS) aged ≥55 years who had switched from other DMTs to teriflunomide (7 mg or 14 mg) for ≥1 year were identified retrospectively by chart review at four sites in the United States. Data were extracted from medical records from 1 year pre-index to 2 years post-index (index defined as the teriflunomide start date). Assessments of effectiveness included annualized relapse rate (ARR), Expanded Disability Status Scale (EDSS) score, and magnetic resonance imaging (MRI) outcomes. Assessments of safety included lymphocyte counts, infections, and malignancies. We examined the effectiveness outcomes and lymphocyte counts within sub-groups defined by age (55-64, ≥65 years), sex, MS type, and prior route of DMT administration (oral, injectable, infusible). RESULTS In total, 182 patients with RMS aged ≥55 years who switched from other DMTs to teriflunomide were identified (mean [SD] age: 62.5 [5.4] years). Mean ARR decreased from the start of teriflunomide treatment (mean [SD]: 0.43 [0.61]) to year 1 post-index (0.13 [0.65]) and year 2 post-index (0.05 [0.28]). Mean EDSS score remained unchanged from index (mean [SD]: 4.5 [1.8]) to 1 year post-treatment (4.5 [1.8]) and increased slightly at 2 years post-treatment (4.7 [1.7]). MRI scans from index and years 1 and 2 post-index compared with scans from the previous year indicated that most patients had stable or improved MRI outcomes at index (87.7%) and remained stable or improved at years 1 (96.0%) and 2 (93.6%). Lymphopenia decreased at years 1 (21.4%) and 2 post-index (14.8%, compared to index (23.5%). By 1 year post-index, fewer patients had grade 3 or 4 lymphopenia, and at 2 years post-index, there were no patients with grade 3 or 4 lymphopenia. Infection incidence was low (n = 40, 22.0%) and none were related to teriflunomide. The decreases in lymphopenia were driven by decreases among people who switched from a prior oral DMT; there were no notable differences in lymphopenia across the other sub-groups examined. ARR, EDSS score, and MRI outcomes across all sub-groups were similar to the results of the overall population. CONCLUSION Our multicenter, longitudinal, retrospective study demonstrated that patients with RMS aged 55 or older switching to teriflunomide from other DMTs had significantly improved ARR, stable disability, and stable or improved MRI over up to 2 years' follow up. Safety results were acceptable with fewer patients exhibiting lymphopenia at years 1 and 2 post-index.
Collapse
Affiliation(s)
- Regina Berkovich
- Regina Berkovich MD PhD Inc MS Neurology, West Hollywood, CA, United States; USC-LAC Neurology, Los Angeles, CA, United States
| | | | - Daniel Wynn
- Consultants in Neurology MS Center, Northbrook, IL, United States
| | | | - Kristen G Bzdek
- Sanofi, Cambridge, MA, United States; Worldwide Clinical Trials, Research Triangle Park, NC, United States
| | | | | | - Cuc Quach
- Sanofi, Cambridge, MA, United States
| | | | | | | | | | | | | | - Le H Hua
- Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Daniel Becker
- International Neurorehabilitation Institute, Baltimore, MD, USA; Johns Hopkins Hospital, Baltimore, MD, United States.
| |
Collapse
|
11
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
12
|
Sprenger T, Kappos L, Sormani MP, Miller AE, Poole EM, Cavalier S, Wuerfel J. Effects of teriflunomide treatment on cognitive performance and brain volume in patients with relapsing multiple sclerosis: Post hoc analysis of the TEMSO core and extension studies. Mult Scler 2022; 28:1719-1728. [PMID: 35485424 PMCID: PMC9442776 DOI: 10.1177/13524585221089534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In post hoc analyses of Teriflunomide Multiple Sclerosis Oral study (TEMSO;
NCT00134563), teriflunomide 14 mg significantly reduced brain volume loss
(BVL) versus placebo in patients with relapsing multiple sclerosis (MS). Objective: In this post hoc analysis of TEMSO and its long-term extension (NCT00803049),
we examined the relationship between teriflunomide’s effects on BVL and
cognition. Methods: We analyzed data from 709 patients who received teriflunomide 14 mg in TEMSO
or its extension. The change in cognitive performance, assessed using the
Paced Auditory Serial Addition Test 3 (PASAT-3), was measured in subgroups
stratified by BVL over 2 years (least BVL: ⩽ 0.52%; intermediate BVL:
>0.52%–2.18%; most BVL: >2.18%). BVL, MRI lesions, and relapses over 2
years were evaluated as potential mediators of the effect of teriflunomide
on cognition. Results: Teriflunomide 14 mg significantly improved PASAT-3 Z-scores
versus placebo through year 2. In the least- and intermediate-BVL groups,
significant improvements in PASAT-3 Z-score were
demonstrated versus the most-BVL group over 3 years in the extension.
According to the mediation analysis, 44% of the teriflunomide effect on
cognition was due to effects on BVL at year 2. Conclusion: Teriflunomide improves cognition largely through its effects on BVL.
Accelerated BVL earlier in the disease course may predict cognitive
outcomes. ClinicalTrials.gov identifier: NCT00134563, NCT00803049
Collapse
Affiliation(s)
- Till Sprenger
- DKD Helios Klinik Wiesbaden, Deutsche Klinik für Diagnostik Wiesbaden, Germany/Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Aaron E Miller
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Steven Cavalier
- Sanofi, Cambridge, MA, USA/Steven Cavalier Consulting, LLC, Green Harbor, MA, USA
| | - Jens Wuerfel
- Medical Imaging Analysis Center (MIAC) AG and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Giovannoni G, Popescu V, Wuerfel J, Hellwig K, Iacobaeus E, Jensen MB, García-Domínguez JM, Sousa L, De Rossi N, Hupperts R, Fenu G, Bodini B, Kuusisto HM, Stankoff B, Lycke J, Airas L, Granziera C, Scalfari A. Smouldering multiple sclerosis: the 'real MS'. Ther Adv Neurol Disord 2022; 15:17562864211066751. [PMID: 35096143 PMCID: PMC8793117 DOI: 10.1177/17562864211066751] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/25/2022] Open
Abstract
Using a philosophical approach or deductive reasoning, we challenge the dominant clinico-radiological worldview that defines multiple sclerosis (MS) as a focal inflammatory disease of the central nervous system (CNS). We provide a range of evidence to argue that the 'real MS' is in fact driven primarily by a smouldering pathological disease process. In natural history studies and clinical trials, relapses and focal activity revealed by magnetic resonance imaging (MRI) in MS patients on placebo or on disease-modifying therapies (DMTs) were found to be poor predictors of long-term disease evolution and were dissociated from disability outcomes. In addition, the progressive accumulation of disability in MS can occur independently of relapse activity from early in the disease course. This scenario is underpinned by a more diffuse smouldering pathological process that may affect the entire CNS. Many putative pathological drivers of smouldering MS can be potentially modified by specific therapeutic strategies, an approach that may have major implications for the management of MS patients. We hypothesise that therapeutically targeting a state of 'no evident inflammatory disease activity' (NEIDA) cannot sufficiently prevent disability accumulation in MS, meaning that treatment should also focus on other brain and spinal cord pathological processes contributing to the slow loss of neurological function. This should also be complemented with a holistic approach to the management of other systemic disease processes that have been shown to worsen MS outcomes.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St., Whitechapel, London E1 2AT, UK
| | - Veronica Popescu
- Universitair MS Centrum, Hasselt, Belgium; Noorderhart Hospital, Pelt, Belgium; Hasselt University, Hasselt, Belgium
| | - Jens Wuerfel
- MIAC AG, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Charité - University Medicine Berlin, Berlin, Germany
| | - Kerstin Hellwig
- Katholisches Klinikum Bochum, Klinikum der Ruhr-Universität, Bochum, Germany
| | | | - Michael B Jensen
- Department of Neurology, Nordsjællands Hospital, Hillerød, Denmark
| | | | - Livia Sousa
- Centro Hospitalar e Universitário de Coimbra, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Raymond Hupperts
- Zuyderland Medisch Centrum, Sittard-Geleen, The Netherlands; Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Fenu
- Department of Neurology, Brotzu Hospital, Cagliari, Italy
| | - Benedetta Bodini
- Paris Brain Institute, Sorbonne University, Paris, France; Department of Neurology, APHP, Saint-Antoine Hospital, Paris, France
| | - Hanna-Maija Kuusisto
- Department of Neurology, Tampere University Hospital, Tampere, Finland; Department of Customer and Patient Safety, University of Eastern Finland, Kuopio, Finland
| | - Bruno Stankoff
- Paris Brain Institute, Sorbonne University, ICM, CNRS, Inserm, Paris, France; APHP, Saint-Antoine Hospital, Paris, France
| | - Jan Lycke
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, London, UK
| |
Collapse
|
14
|
Temmerman J, Van Der Veken F, Engelborghs S, Guldolf K, Nagels G, Smeets D, Allemeersch GJ, Costers L, D’hooghe MB, Vanbinst AM, Van Schependom J, Bjerke M, D’haeseleer M. Brain Volume Loss Can Occur at the Rate of Normal Aging in Patients with Multiple Sclerosis Who Are Free from Disease Activity. J Clin Med 2022; 11:jcm11030523. [PMID: 35159972 PMCID: PMC8836909 DOI: 10.3390/jcm11030523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and degenerative disorder of the central nervous system. Accelerated brain volume loss (BVL) has emerged as a promising magnetic resonance imaging marker (MRI) of neurodegeneration, correlating with present and future clinical disability. We have systematically selected MS patients fulfilling ‘no evidence of disease activity-3′ (NEDA-3) criteria under high-efficacy disease-modifying treatment (DMT) from the database of two Belgian MS centers. BVL between both MRI scans demarcating the NEDA-3 period was assessed and compared with a group of prospectively recruited healthy volunteers who were matched for age and gender. Annualized whole brain volume percentage change was similar between 29 MS patients achieving NEDA-3 and 24 healthy controls (−0.25 ± 0.49 versus −0.24 ± 0.20, p = 0.9992; median follow-up 21 versus 33 months; respectively). In contrast, we found a mean BVL increase of 72%, as compared with the former, in a second control group of MS patients (n = 21) whom had been excluded from the NEDA-3 group due to disease activity (p = 0.1371). Our results suggest that neurodegeneration in MS can slow down to the rate of normal aging once inflammatory disease activity has been extinguished and advocate for an early introduction of high-efficacy DMT to reduce the risk of future clinical disability.
Collapse
Affiliation(s)
- Joke Temmerman
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Department of Biomedical Sciences, Institute Born-Bunge, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Floris Van Der Veken
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
| | - Sebastiaan Engelborghs
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Department of Biomedical Sciences, Institute Born-Bunge, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Kaat Guldolf
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
- Department of Neurology, Onze-Lieve-Vrouw Ziekenhuis, Moorselbaan 164, 9300 Aalst, Belgium
| | - Guy Nagels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Icometrix, Kolonel Begaultlaan 1b, 3012 Leuven, Belgium
| | - Dirk Smeets
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Icometrix, Kolonel Begaultlaan 1b, 3012 Leuven, Belgium
| | - Gert-Jan Allemeersch
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (G.-J.A.); (A.-M.V.)
| | - Lars Costers
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Icometrix, Kolonel Begaultlaan 1b, 3012 Leuven, Belgium
| | - Marie B. D’hooghe
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Nationaal Multiple Sclerose Centrum (NMSC), Vanheylenstraat 16, 1820 Melsbroek, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (G.-J.A.); (A.-M.V.)
| | - Jeroen Van Schependom
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Maria Bjerke
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Department of Biomedical Sciences, Institute Born-Bunge, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerp, Belgium
- Laboratory of Clinical Neurochemistry, Department of Clinical Biology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Miguel D’haeseleer
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; (J.T.); (F.V.D.V.); (S.E.); (K.G.); (G.N.); (M.B.D.)
- Center for Neurosciences (C4N), NEUR and AIMS, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium; (D.S.); (L.C.); (J.V.S.); (M.B.)
- Nationaal Multiple Sclerose Centrum (NMSC), Vanheylenstraat 16, 1820 Melsbroek, Belgium
- Correspondence:
| |
Collapse
|
15
|
Tsagkas C, Geiter E, Gaetano L, Naegelin Y, Amann M, Parmar K, Papadopoulou A, Wuerfel J, Kappos L, Sprenger T, Granziera C, Mallar Chakravarty M, Magon S. Longitudinal changes of deep gray matter shape in multiple sclerosis. NEUROIMAGE: CLINICAL 2022; 35:103137. [PMID: 36002960 PMCID: PMC9421532 DOI: 10.1016/j.nicl.2022.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
Specific shape changes over time occur at the bilateral ventrolateral pallidal and the left posterolateral striatal surface in relapse-onset multiple sclerosis. These shape changes over time were not associated with disease progression. The average shape of deep gray matter structures was associated with the patients’ average disease severity as well as white matter lesion-load.
Objective This study aimed to investigate longitudinal deep gray matter (DGM) shape changes and their relationship with measures of clinical disability and white matter lesion-load in a large multiple sclerosis (MS) cohort. Materials and Methods A total of 230 MS patients (179 relapsing-remitting, 51 secondary progressive; baseline age 44.5 ± 11.3 years; baseline disease duration 12.99 ± 9.18) underwent annual clinical and MRI examinations over a maximum of 6 years (mean 4.32 ± 2.07 years). The DGM structures were segmented on the T1-weighted images using the “Multiple Automatically Generated Templates” brain algorithm. White matter lesion-load was measured on T2-weighted MRI. Clinical examination included the expanded disability status scale, 9-hole peg test, timed 25-foot walk test, symbol digit modalities test and paced auditory serial addition test. Vertex‐wise longitudinal analysis of DGM shapes was performed using linear mixed effect models and evaluated the association between average/temporal changes of DGM shapes with average/temporal changes of clinical measurements, respectively. Results A significant shrinkage over time of the bilateral ventrolateral pallidal and the left posterolateral striatal surface was observed, whereas no significant shape changes over time were observed at the bilateral thalamic and right striatal surfaces. Higher average lesion-load was associated with an average inwards displacement of the global thalamic surface with relative sparing on the posterior side (slight left-side predominance), the antero-dorso-lateral striatal surfaces bilaterally (symmetric on both sides) and the antero-lateral pallidal surface (left-side predominance). There was also an association between shrinkage of large lateral DGM surfaces with higher clinical motor and cognitive disease severity. However, there was no correlation between any DGM shape changes over time and measurements of clinical progression or lesion-load changes over time. Conclusions This study showed specific shape change of DGM structures occurring over time in relapse-onset MS. Although these shape changes over time were not associated with disease progression, we demonstrated a link between DGM shape and the patients’ average disease severity as well as white matter lesion-load.
Collapse
|
16
|
Chitnis T, Banwell B, Kappos L, Arnold DL, Gücüyener K, Deiva K, Skripchenko N, Cui LY, Saubadu S, Hu W, Benamor M, Le-Halpere A, Truffinet P, Tardieu M. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol 2021; 20:1001-1011. [PMID: 34800398 DOI: 10.1016/s1474-4422(21)00364-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapeutic options for children with multiple sclerosis are scarce. Teriflunomide is approved in more than 80 countries for the treatment of adults with relapsing multiple sclerosis. The TERIKIDS study examined the safety and efficacy of teriflunomide in children with relapsing multiple sclerosis. METHODS The TERIKIDS trial was a multicentre, phase 3, double-blind, parallel-group, randomised, placebo-controlled study conducted at 57 clinical centres in 22 countries in Asia, Europe, the Middle East, North Africa, and North America. The trial enrolled patients aged 10-17 years, diagnosed with relapsing multiple sclerosis and with at least one relapse in the year preceding screening or at least two relapses in the 2 years preceding screening. Patients were randomly assigned (2:1) to oral teriflunomide (dosage equivalent to 14 mg in adults) or matching placebo, using an interactive web and voice response system, for up to 96 weeks. Personnel in all sites and all patients were masked to study treatment in the double-blind period. Early entry into a subsequent 96-week open-label extension phase was possible before the end of the double-blind period for patients with confirmed clinical relapse or high MRI activity (at least five new or enlarged T2 lesions at week 24, followed by at least nine new or enlarged T2 lesions at week 36, or at least five new or enlarged T2 lesions at weeks 36 and 48, or at weeks 48 and 72). The primary endpoint was time to first confirmed clinical relapse by the end of the double-blind period. Key secondary imaging endpoints were number of new or enlarged T2 lesions and number of gadolinium-enhancing lesions per MRI scan. Efficacy endpoints were analysed in the intention-to-treat population, and safety was assessed in all patients randomly assigned to treatment and exposed to the double-blind study medication. This study is registered with ClinicalTrials.gov (trial number NCT02201108) and is closed to recruitment, but an additional optional open-label extension is ongoing. FINDINGS Between July 24, 2014, and the date of last patient visit on Oct 25, 2019, 185 patients were screened for eligibility, 166 (90%) were enrolled, and 109 were randomly assigned teriflunomide and 57 were randomly assigned placebo. 102 (94%) of 109 and 53 (93%) of 57 completed the double-blind period. Switch to the ongoing open-label extension because of high MRI activity was more frequent than anticipated in the placebo group (14 [13%] of 109 patients in the teriflunomide group vs 15 [26%] of 57 in the placebo group), decreasing the power of the study. After 96 weeks, there was no difference in time to first confirmed clinical relapse with teriflunomide compared with placebo (hazard ratio 0·66, 95% CI 0·39-1·11; p=0·29). Teriflunomide reduced the number of new or enlarged T2 lesions versus placebo by 55% (relative risk 0·45, 95% CI 0·29-0·71; p=0·00061), and the number of gadolinium-enhancing lesions by 75% (relative risk 0·25, 0·13-0·51; p<0·0001). Adverse events occurred in 96 (88%) patients in the teriflunomide group and 47 (82%) patients in the placebo group; serious adverse events occurred in 12 (11%) patients in the teriflunomide group and 6 (11%) patients in the placebo group. Nasopharyngitis, upper-respiratory-tract infection, alopecia, paraesthesia, abdominal pain, and increased blood creatine phosphokinase were more frequent with teriflunomide than with placebo. During the double-blind phase, four patients in the teriflunomide group had pancreatic adverse events (two with acute pancreatitis and two with pancreatic enzyme elevation), of which three events led to treatment discontinuation. INTERPRETATION No significant difference in time to first confirmed clinical relapse was found, possibly because more patients than expected switched from the double-blind to the open-label treatment period because of high MRI activity. Key secondary imaging analyses and a prespecified sensitivity analysis of probability of relapse or high MRI activity suggest that teriflunomide might have beneficial effects in children with relapsing multiple sclerosis by reducing the risk of focal inflammatory activity. FUNDING Sanofi.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Massachusetts General Hospital for Children, Boston, MA, USA.
| | - Brenda Banwell
- Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ludwig Kappos
- Research Centre for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Douglas L Arnold
- NeuroRx Research, Montréal, QC, Canada; Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Kivilcim Gücüyener
- Gazi Universitesi Tip Fakültesi Pediatrik Nöroloji Bilim Dali, Ankara, Turkey
| | | | - Natalia Skripchenko
- FSBI Research Institute for Paediatric Infectious Diseases FMBA Russia, St Petersburg, Russia
| | - Li-Ying Cui
- Peking Union Medical College Hospital, Beijing, China
| | | | | | | | | | | | - Marc Tardieu
- Hôpitaux Universitaires Paris-Sud, Paris, France
| | | |
Collapse
|
17
|
Oh J, Arbour N, Giuliani F, Guenette M, Kolind S, Lynd L, Marrie RA, Metz LM, Patten SB, Prat A, Schabas A, Smyth P, Tam R, Traboulsee A, Yong VW. The Canadian prospective cohort study to understand progression in multiple sclerosis (CanProCo): rationale, aims, and study design. BMC Neurol 2021; 21:418. [PMID: 34706670 PMCID: PMC8549411 DOI: 10.1186/s12883-021-02447-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Neurological disability progression occurs across the spectrum of people living with multiple sclerosis (MS). Although there are a handful of disease-modifying treatments approved for use in progressive phenotypes of MS, there are no treatments that substantially modify the course of clinical progression in MS. Characterizing the determinants of clinical progression can inform the development of novel therapeutic agents and treatment approaches that target progression in MS, which is one of the greatest unmet needs in clinical practice. Canada, having one of the world’s highest rates of MS and a publicly-funded health care system, represents an optimal country to achieve in-depth analysis of progression. Accordingly, the overarching aim of the Canadian Prospective Cohort Study to Understand Progression in MS (CanProCo) is to evaluate a wide spectrum of factors associated with the clinical onset and rate of disease progression in MS, and to describe how these factors relate to one another to influence progression. Methods CanProCo is a prospective, observational cohort study with investigators specializing in epidemiology, neuroimaging, neuroimmunology, health services research and health economics. CanProCo’s study design was approved by an international review panel, comprised of content experts and key stakeholders. One thousand individuals with radiologically-isolated syndrome, relapsing-remitting MS, and primary-progressive MS within 10–15 years of disease onset will be recruited from 5 academic MS centres in Canada. Participants will undergo detailed clinical evaluation annually over 5 years (including advanced, app-based clinical data collection). In a subset of participants within 5–10 years of disease onset (n = 500), blood, cerebrospinal fluid, and research MRIs will be collected allowing an integrated, in-depth evaluation of factors contributing to progression in MS from multiple perspectives. Factors of interest range from biological measures (e.g. single-cell RNA-sequencing), MRI-based microstructural assessment, participant characteristics (self-reported, performance-based, clinician-assessed, health-system based), and micro and macro-environmental factors. Discussion Halting the progression of MS remains a fundamental need to improve the lives of people living with MS. Achieving this requires leveraging transdisciplinary approaches to better characterize why clinical progression occurs. CanProCo is a pioneering multi-dimensional cohort study aiming to characterize these determinants to inform the development and implementation of efficacious and effective interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02447-7.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre hospitalier de l'Université de Montréal, 900 rue St. Denis, Montreal, QC, H2X 0A9, Canada
| | - Fabrizio Giuliani
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, 11350-83 Avenue, Edmonton, AB, T6G 2G3, Canada
| | - Melanie Guenette
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Shannon Kolind
- Department of Medicine, Division of Neurology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.,Department of Radiology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Larry Lynd
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,Centre for Health Evaluation and Outcome Sciences, Providence Health Research Institute, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 744 Bannatyne Ave, Winnipeg, MB, R3E 0W2, Canada
| | - Luanne M Metz
- Department of Clinical Neurosciences, University of Calgary Foothills Hospital, 1403-29th Street NW, Calgary, AB, T2N 2T9, Canada
| | - Scott B Patten
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre hospitalier de l'Université de Montréal, 900 rue St. Denis, Montreal, QC, H2X 0A9, Canada
| | - Alice Schabas
- Department of Medicine, Division of Neurology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Penelope Smyth
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, 11350-83 Avenue, Edmonton, AB, T6G 2G3, Canada
| | - Roger Tam
- Department of Radiology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.,School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anthony Traboulsee
- Department of Medicine, Division of Neurology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
18
|
Miller AE. An updated review of teriflunomide's use in multiple sclerosis. Neurodegener Dis Manag 2021; 11:387-409. [PMID: 34486382 DOI: 10.2217/nmt-2021-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Teriflunomide, a once daily, oral disease-modifying therapy, has demonstrated consistent efficacy, safety and tolerability in patients with relapsing forms of multiple sclerosis (MS) and with a first clinical episode suggestive of MS treated up to 12 years. This review is an update to a previous version that examined data from the teriflunomide core clinical development program and extension studies. Data have since become available from active comparator trials with other disease-modifying therapies, treatment-related changes in brain volume (analyzed using structural image evaluation using normalization of atrophy) and real-world evidence including patient-reported outcomes. Initial data on the potential antiviral effects of teriflunomide in patients with MS, including case reports of patients infected with the 2019 novel coronavirus (SARS-CoV-2), are also presented.
Collapse
Affiliation(s)
- Aaron E Miller
- Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|
19
|
Frisch ES, Pretzsch R, Weber MS. A Milestone in Multiple Sclerosis Therapy: Monoclonal Antibodies Against CD20-Yet Progress Continues. Neurotherapeutics 2021; 18:1602-1622. [PMID: 33880738 PMCID: PMC8609066 DOI: 10.1007/s13311-021-01048-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS), which is a chronic inflammatory disease of the central nervous system, still represents one of the most common causes of persisting disability with an early disease onset. Growing evidence suggests B cells to play a crucial role in its pathogenesis and progression. Over the last decades, monoclonal antibodies (mabs) against the surface protein CD20 have been intensively studied as a B cell targeting therapy in relapsing MS (RMS) as well as primary progressive MS (PPMS). Pivotal studies on anti-CD20 therapy in RMS showed remarkable clinical and radiological effects, especially on acute inflammation and relapse biology. These results paved the way for further research on the implication of B cells in the pathogenesis of MS. Besides controlling relapse development in RMS, ocrelizumab (OCR) also showed clinical benefits in patients with PPMS and became the first approved drug for this disease course. In this review, we provide an overview of the current anti-CD20 mabs used or tested for the treatment of MS-namely rituximab (RTX), OCR, ofatumumab (OFA), and ublituximab (UB). Besides their effectiveness, we also discuss possible limitations and safety concerns especially in regard to long-term treatment, both for this class of drugs overall as well as for each anti-CD20 mab individually. Additionally, we elucidate to what extent anti-CD20 therapy may alter the function of other immune cells, both directly or indirectly. Finally, we cover the current knowledge on repopulation of CD20+ cells after cessation of anti-CD20 treatment and discuss future aspirations towards alternative, further developed B cell silencing therapies.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD20/immunology
- B-Lymphocytes, Regulatory/drug effects
- B-Lymphocytes, Regulatory/immunology
- Clinical Trials as Topic/methods
- Humans
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis, Chronic Progressive/drug therapy
- Multiple Sclerosis, Chronic Progressive/immunology
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Rituximab/pharmacology
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Esther S Frisch
- Institute of Neuropathology, University Medical Center, Georg August University, 37099, Göttingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37099, Göttingen, Germany
| | - Roxanne Pretzsch
- Institute of Neuropathology, University Medical Center, Georg August University, 37099, Göttingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37099, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Georg August University, 37099, Göttingen, Germany.
- Department of Neurology, University Medical Center, Georg August University, 37099, Göttingen, Germany.
| |
Collapse
|
20
|
Papp V, Buron MD, Siersma V, Rasmussen PV, Illes Z, Kant M, Hilt C, Mezei Z, Roshanisefat H, Sejbæk T, Weglewski A, van Wingerden J, Geertsen SS, Bramow S, Sellebjerg F, Magyari M. Real-world outcomes for a complete nationwide cohort of more than 3200 teriflunomide-treated multiple sclerosis patients in The Danish Multiple Sclerosis Registry. PLoS One 2021; 16:e0250820. [PMID: 34003862 PMCID: PMC8130956 DOI: 10.1371/journal.pone.0250820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Teriflunomide is a once-daily, oral disease-modifying therapy (DMT) for relapsing forms of multiple sclerosis (MS). We studied clinical outcomes in a real-world setting involving a population-based large cohort of unselected patients enrolled in The Danish Multiple Sclerosis Registry (DMSR) who started teriflunomide treatment between 2013–2019. Methods This was a complete nationwide population-based cohort study with prospectively enrolled unselected cases. Demographic and disease-specific patient parameters related to treatment history, efficacy outcomes, and discontinuation and switching rates among other clinical variables were assessed at baseline and during follow-up visits. Results A total of 3239 patients (65.4% female) started treatment with teriflunomide during the study period, 56% of whom were treatment-naïve. Compared to previously treated patients, treatment-naïve patients were older on average at disease onset, had a shorter disease duration, a lower Expanded Disability Status Scale score at teriflunomide treatment start and more frequently experienced a relapse in the 12 months prior to teriflunomide initiation. In the 3001 patients initiating teriflunomide treatment at least 12 months before the cut-off date, 72.7% were still on treatment one year after treatment start. Discontinuations in the first year were due mainly to adverse events (15.6%). Over the full follow-up period, 47.5% of patients discontinued teriflunomide treatment. Sixty-three percent of the patients treated with teriflunomide for 5 years were relapse-free, while significantly more treatment-naïve versus previously treated patients experienced a relapse during the follow-up (p<0.0001). Furthermore, 85% of the patients with available data were free of disability worsening at the end of follow-up. Conclusions Solid efficacy and treatment persistence data consistent with other real-world studies were obtained over the treatment period. Treatment outcomes in this real-world scenario of the population-based cohort support previous findings that teriflunomide is an effective and generally well-tolerated DMT for relapsing MS patients with mild to moderate disease activity.
Collapse
Affiliation(s)
- Viktoria Papp
- Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Mathias Due Buron
- The Danish Multiple Sclerosis Registry, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Danish Multiple Sclerosis Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Zsolt Mezei
- Aalborg University Hospital, Aalborg, Denmark
| | | | - Tobias Sejbæk
- Department of Neurology, Hospital of South West Jutland, Esbjerg, Denmark
| | | | | | | | - Stephan Bramow
- Danish Multiple Sclerosis Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Melinda Magyari
- The Danish Multiple Sclerosis Registry, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Danish Multiple Sclerosis Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
21
|
Bsteh G, Hegen H, Altmann P, Auer M, Berek K, Di Pauli F, Leutmezer F, Rommer P, Wurth S, Zinganell A, Zrzavy T, Deisenhammer F, Berger T. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur J Neurol 2021; 28:2037-2045. [PMID: 33735479 PMCID: PMC8251588 DOI: 10.1111/ene.14829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Background and purpose Peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell plus inner plexiform layer (GCIPL) thinning are markers of neuroaxonal degeneration in multiple sclerosis (MS), which is reduced by disease‐modifying treatment (DMT). We aimed to investigate the potential of pRNFL and GCIPL thinning for prediction of DMT failure in relapsing MS (RMS). Methods In this 4‐year prospective observational study on 113 RMS patients, pRNFL and GCIPL were measured at DMT initiation and after 12 months (M12) and 24 months (M24). Treatment failure was defined as 6‐month confirmed Expanded Disability Status Scale (EDSS) progression and/or Symbol Digit Modalities Test (SDMT) worsening. Optimal cutoff values for predicting treatment failure were determined by receiver operating characteristic analyses and hazard ratios (HRs) by multivariable Cox regression adjusting for age, sex, disease duration, EDSS/SDMT, and DMT class. Results Thinning of GCIPL >0.5 μm/year at M24 showed superior value for treatment failure prediction (HR: 4.5, 95% confidence interval [CI]: 1.8–7.6, p < 0.001; specificity 91%, sensitivity 81%), followed by GCIPL >0.5 μm at M12 (odds ratio [OR]: 3.9, 95% CI: 1.4–6.9, p < 0.001; specificity 85%, sensitivity 78%), and pRNFL ≥2 μm/year at M24 (OR: 3.7, 95% CI: 1.1–6.5, p = 0.023; specificity 84%, sensitivity 69%), whereas pRNFL at M12 was not predictive. Conclusions GCIPL, and to a lesser degree pRNFL, thinning predicts disability progression after DMT initiation and may be a useful and accessible biomarker of treatment failure in RMS.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Tavazzi E, Zivadinov R, Dwyer MG, Jakimovski D, Singhal T, Weinstock-Guttman B, Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Rev Neurother 2020; 20:821-834. [PMID: 32306772 DOI: 10.1080/14737175.2020.1757435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Conventional imaging measures remain a key clinical tool for the diagnosis multiple sclerosis (MS) and monitoring of patients. However, most measures used in the clinic show unsatisfactory performance in predicting disease progression and conversion to secondary progressive MS. AREAS COVERED Sophisticated imaging techniques have facilitated the identification of imaging biomarkers associated with disease progression, such as global and regional brain volume measures, and with conversion to secondary progressive MS, such as leptomeningeal contrast enhancement and chronic inflammation. The relevance of emerging imaging approaches partially overcoming intrinsic limitations of traditional techniques is also discussed. EXPERT OPINION Imaging biomarkers capable of detecting tissue damage early on in the disease, with the potential to be applied in multicenter trials and at an individual level in clinical settings, are strongly needed. Several measures have been proposed, which exploit advanced imaging acquisitions and/or incorporate sophisticated post-processing, can quantify irreversible tissue damage. The progressively wider use of high-strength field MRI and the development of more advanced imaging techniques will help capture the missing pieces of the MS puzzle. The ability to more reliably identify those at risk for disability progression will allow for earlier intervention with the aim to favorably alter the disease course.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York , Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi , Milan, Italy
| |
Collapse
|
23
|
Treatment Optimization in Multiple Sclerosis: Canadian MS Working Group Recommendations. Can J Neurol Sci 2020; 47:437-455. [DOI: 10.1017/cjn.2020.66] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract:The Canadian Multiple Sclerosis Working Group has updated its treatment optimization recommendations (TORs) on the optimal use of disease-modifying therapies for patients with all forms of multiple sclerosis (MS). Recommendations provide guidance on initiating effective treatment early in the course of disease, monitoring response to therapy, and modifying or switching therapies to optimize disease control. The current TORs also address the treatment of pediatric MS, progressive MS and the identification and treatment of aggressive forms of the disease. Newer therapies offer improved efficacy, but also have potential safety concerns that must be adequately balanced, notably when treatment sequencing is considered. There are added discussions regarding the management of pregnancy, the future potential of biomarkers and consideration as to when it may be prudent to stop therapy. These TORs are meant to be used and interpreted by all neurologists with a special interest in the management of MS.
Collapse
|
24
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|