1
|
Mirmosayyeb O, Yazdan Panah M, Vaheb S, Ghoshouni H, Mahmoudi F, Kord R, Kord A, Zabeti A, Shaygannejad V. Association between diffusion tensor imaging measurements and cognitive performances in people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2025; 94:106261. [PMID: 39798200 DOI: 10.1016/j.msard.2025.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alterations in structural connectivity of brain networks have been linked to complex cognitive functions in people with multiple sclerosis (PwMS). However, a definitive consensus on the optimal diffusion tensor imaging (DTI) markers as indicators of cognitive performance remains incomplete and inconclusive. This systematic review and meta-analysis aimed to explore the evidence on the correlation between DTI metrics and cognitive functions in PwMS. METHODS A comprehensive literature search was conducted across PubMed/MEDLINE, Embase, Scopus, and the Web of Science up to March 2024 to identify studies reporting the correlation between DTI metrics and cognitive functions. Cognitive function was assessed using the Symbol Digit Modalities Test (SDMT), California Verbal Learning Test (CVLT), and Brief Visuospatial Memory Test-Revised (BVMT-R). The pooled correlation coefficients were estimated using R software version 4.4.0 with the random effect model. RESULTS Out of 1952 studies, 38 studies on 2055 PwMS fulfilled the inclusion criteria. The meta-analysis indicated that the SDMT exhibited the greatest correlation with corpus callosum fractional anisotropy (FA) (r = 0.54, 95 % CI: 0.4 to 0.66, p-value < 0.001, I2 = 34.1 %, p-heterogeneity = 0.19) and mean diffusivity (MD) (r = -0.48, 95 % CI: 0.61 to -0.33, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.77), white matter FA (r = 0.39, 95 % CI: 0.24 to 0.52, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.1), and fornix FA (r = 0.35, 95 % CI: 0.12 to 0.54, p-value = 0.003, I2 = 50.7 %, p-heterogeneity = 0.18) and MD (r = -0.35, 95 % CI: 0.49 to -0.19, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.5). CONCLUSION DTI measurements, including corpus callosum FA and MD, white matter FA, and fornix FA and MD, represent the indicators of cognitive performance in PwMS. Nonetheless, these findings warrant cautious interpretation due to the restricted kinds of cognitive tests and methodological variability across studies.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Mahmoudi
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Reza Kord
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Ali Kord
- Division of Interventional Radiology, Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - Aram Zabeti
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
3
|
Yang X, Liechti MD, Kanber B, Sudre CH, Castellazzi G, Zhang J, Yiannakas MC, Gonzales G, Prados F, Toosy AT, Gandini Wheeler-Kingshott CAM, Panicker JN. White Matter Magnetic Resonance Diffusion Measures in Multiple Sclerosis with Overactive Bladder. Brain Sci 2024; 14:975. [PMID: 39451989 PMCID: PMC11506346 DOI: 10.3390/brainsci14100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Lower urinary tract (LUT) symptoms are reported in more than 80% of patients with multiple sclerosis (MS), most commonly an overactive bladder (OAB). The relationship between brain white matter (WM) changes in MS and OAB symptoms is poorly understood. OBJECTIVES We aim to evaluate (i) microstructural WM differences across MS patients (pwMS) with OAB symptoms, patients without LUT symptoms, and healthy subjects using diffusion tensor imaging (DTI), and (ii) associations between clinical OAB symptom scores and DTI indices. METHODS Twenty-nine female pwMS [mean age (SD) 43.3 years (9.4)], including seventeen with OAB [mean age (SD) 46.1 years (8.6)] and nine without LUT symptoms [mean age (SD) 37.5 years (8.9)], and fourteen healthy controls (HCs) [mean age (SD) 48.5 years (20)] were scanned in a 3T MRI with a DTI protocol. Additionally, clinical scans were performed for WM lesion segmentation. Group differences in fractional anisotropy (FA) were evaluated using tract-based spatial statistics. The Urinary Symptom Profile questionnaire assessed OAB severity. RESULTS A statistically significant reduction in FA (p = 0.004) was identified in microstructural WM in pwMS, compared with HCs. An inverse correlation was found between FA in frontal and parietal WM lobes and OAB scores (p = 0.021) in pwMS. Areas of lower FA, although this did not reach statistical significance, were found in both frontal lobes and the rest of the non-dominant hemisphere in pwMS with OAB compared with pwMS without LUT symptoms (p = 0.072). CONCLUSIONS This study identified that lesions affecting different WM tracts in MS can result in OAB symptoms and demonstrated the role of the WM in the neural control of LUT functions. By using DTI, the association between OAB symptom severity and WM changes were identified, adding knowledge to the current LUT working model. As MS is predominantly a WM disease, these findings suggest that regional WM involvement, including of the anterior corona radiata, anterior thalamic radiation, superior longitudinal fasciculus, and superior frontal-occipital fasciculus and a non-dominant prevalence in WM, can result in OAB symptoms. OAB symptoms in MS correlate with anisotropy changes in different white matter tracts as demonstrated by DTI. Structural impairment in WM tracts plays an important role in LUT symptoms in MS.
Collapse
Affiliation(s)
- Xixi Yang
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing 100053, China
- Department of Brain Repair and Rehabilitation, Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; (M.D.L.); (J.N.P.)
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
| | - Martina D. Liechti
- Department of Brain Repair and Rehabilitation, Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; (M.D.L.); (J.N.P.)
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8006 Zürich, Switzerland
| | - Baris Kanber
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
| | - Carole H. Sudre
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Dementia Research Centre, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Jiaying Zhang
- School of Artificial Intelligence, Beijing University of Post and Communications, Beijing 100876, China;
- Department of Computer Science and Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
| | - Gwen Gonzales
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
- e-Health Centre, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| | - Ahmed T. Toosy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Jalesh N. Panicker
- Department of Brain Repair and Rehabilitation, Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; (M.D.L.); (J.N.P.)
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
| |
Collapse
|
4
|
Simani L, Molaeipour L, Kian S, Leavitt VM. Correlation between cognitive changes and neuroradiological changes over time in multiple sclerosis: a systematic review and meta-analysis. J Neurol 2024; 271:5498-5518. [PMID: 38890188 DOI: 10.1007/s00415-024-12517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND While many studies have examined relationships of neuroimaging variables to cognitive measures in multiple sclerosis (MS), longitudinal studies are lacking. The relationship of cognitive changes to neuroradiological changes in MS is thus incompletely understood. The present study systematically reviews all studies reporting a relationship between MRI changes and cognitive changes after at least one year of follow-up. METHOD An extensive and methodical search of online databases was conducted to identify qualified studies until August 2023. Among various cognitive tests and magnetic resonance imaging (MRI) measures, Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test (PASAT), verbal fluency, T2 lesion volume (T2LV), white matter lesion volume (WML), and grey matter volume (GMV) qualified for inclusion in a meta-analysis investigating the association of cognitive changes to neuroradiological changes. RESULTS We identified 35 studies that explored the link between MRI changes and changes in cognitive outcomes. Of these, twenty studies (57.14%) investigated the association between SDMT/PASAT and MRI metrics. Eleven studies (31.42%) focused on the relationship between MRI metrics and verbal learning and memory, while ten studies (28.57%) reported associations with visuospatial learning and memory. Furthermore, eight studies (22.85%) analyzed the correlation between verbal fluency and MRI measures. Only 5 were eligible for inclusion in the meta-analysis. The meta-analysis evaluated correlations between SDMT/PASAT and GMV (rs = 0.67, 95% CI 0.44-0.91), and verbal fluency and T2LV (rs = 0.35, 95% CI 0.09-0.60). CONCLUSION In this rigorously conducted systematic review, we found a significant association of cognitive changes, specifically SDMT/PASAT and verbal fluency, to changes in T2LV and atrophy in individuals with MS. Findings should be interpreted cautiously due to the limited amount of high-quality research, small sample sizes, and variability in study methodologies.
Collapse
Affiliation(s)
- Leila Simani
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila Molaeipour
- Department of Biostatistics and Epidemiology, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Kian
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Victoria M Leavitt
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Pontillo G, Cepas MB, Broeders TAA, Koubiyr I, Schoonheim MM. Network Analysis in Multiple Sclerosis and Related Disorders. Neuroimaging Clin N Am 2024; 34:375-384. [PMID: 38942522 DOI: 10.1016/j.nic.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of the central nervous system, commonly featuring disability and cognitive impairment. The pathologic hallmark of MS lies in demyelination and hence impaired structural and functional neuronal pathways. Recent studies have shown that MS shows extensive structural disconnection of key network hub areas like the thalamus, combined with a functional network reorganization that can mostly be related to poorer clinical functioning. As MS can, therefore, be considered a network disorder, this review outlines recent innovations in the field of network neuroscience in MS.
Collapse
Affiliation(s)
- Giuseppe Pontillo
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, Postbus 7057, 1007 MB, Amsterdam, The Netherlands; MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Mar Barrantes Cepas
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Tommy A A Broeders
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ismail Koubiyr
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ding S, Li X, Huang Z, Wang L, Shi Z, Cai J, Zheng H. Alterations of brain structural and functional connectivity networks topology and decoupling in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. Mult Scler Relat Disord 2024; 87:105699. [PMID: 38838424 DOI: 10.1016/j.msard.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To investigate the alteration in structural and functional connectivity networks (SCN and FCN) as well as their coupling in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and determine if these properties could serve as potential biomarkers for the disease. MATERIALS AND METHODS In total of 32 children with MOGAD and 30 age- and sex-matched healthy controls (HC) were employed to construct the SCN and FCN, respectively. The graph-theoretical analyses of the global properties, node properties of the 90 brain nodes, and the structural-functional connectivity (SC-FC) coupling of the two networks were performed. The graph-theoretical properties that exhibited significant differences were analyzed using partial correlation analysis in conjunction with the clinical scales, including the expanded disability status scale (EDSS), modified Rankin scale (mRS), and pediatric cerebral performance category (PCPC) of the MOGAD group. Subsequently, a machine learning model was developed to discriminate between MOGAD and the HC group, aiming to explore the potential of these properties as biomarkers. RESULTS The SCN of the MOGAD group exhibited aberrant global properties, including an increased characteristic path length (Lp) and a decreased global efficiency (Eg), along with reduced nodal properties such as degree centrality (Dc), nodal efficiency (Ne), and local efficiency in multiple nodes. The FCN of the MOGAD group only exhibited decreased Dc, Ne, and betweenness centrality in two nodes of nodal properties. Besides, MOGAD showed a significant decrease in SC-FC coupling compared to the HC group. The analysis of partial correlation revealed significant correlations between several properties and the scales of EDSS and mRS in the MOGAD group. The machine learning method was used to extract six features and establish the model, achieving a classification accuracy of 82.3% for MOGAD. CONCLUSIONS Pediatric MOGAD showed a more pronounced impairment in the SCN along with decoupling of SC-FC. Both partial correlation analysis and discriminant modeling suggest that alterations in brain network properties have the potential as biomarkers for assessing brain damage in MOGAD.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiujuan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhongxin Huang
- Department of Radiology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhuowei Shi
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
7
|
Rocca MA, D’Amore G, Valsasina P, Tedone N, Meani A, Filippi M. 2.5-Year changes of connectivity dynamism are relevant for physical and cognitive deterioration in multiple sclerosis. Mult Scler 2024; 30:546-557. [PMID: 38372039 PMCID: PMC11010569 DOI: 10.1177/13524585241231155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND In MS, functional connectivity (FC) dynamism may influence disease evolution. OBJECTIVES The objective is to assess time-varying functional connectivity (TVFC) changes over time at 2.5-year follow-up in MS patients according to physical and cognitive worsening. METHODS We collected 3T magnetic resonance imaging (MRI) for TVFC assessment (performed using sliding-window analysis of centrality) and clinical evaluations at baseline and 2.5-year follow-up from 28 healthy controls and 129 MS patients. Of these, 79 underwent baseline and follow-up neuropsychological assessment. At 2.5 years, physical/cognitive worsening was defined according to disability/neuropsychological score changes. RESULTS At follow-up, 25/129 (19.3%) MS patients worsened physically and 14/79 (17.7%) worsened cognitively. At baseline, MS patients showed reduced TVFC versus controls. At 2.5-year follow-up, no TVFC changes were detected in controls. Conversely, TVFC decreased over time in parieto-temporal regions in stable MS patients and in default-mode network in worsened MS. In physically worsened MS, basal ganglia TVFC reductions were also found. Reduced TVFC over time in the putamen in physically worsened and reduced TVFC in the precuneus in cognitively worsened were significant versus stable MS. DISCUSSION At 2.5-year follow-up, default-mode network TVFC reductions were found in worsening MS. Moreover, reduced deep gray matter TVFC characterized physically worsened patients, whereas precuneus involvement characterized cognitively worsened MS patients.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia D’Amore
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicolò Tedone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Ni MH, Yu Y, Yang Y, Li ZY, Ma T, Xie H, Li SN, Dai P, Cao XY, Cui YY, Zhu JL, Cui GB, Yan LF. Functional-structural decoupling in visual network is associated with cognitive decline in patients with type 2 diabetes mellitus: evidence from a multimodal MRI analysis. Brain Imaging Behav 2024; 18:73-82. [PMID: 37874444 DOI: 10.1007/s11682-023-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and cognitive dysfunction are highly prevalent disorders worldwide. Although visual network (VN) alteration and functional-structural coupling are potential warning factors for mild cognitive impairment (MCI) in T2DM patients, the relationship between the three in T2DM without MCI is unclear. Thirty T2DM patients without MCI and twenty-nine healthy controls (HC) were prospectively enrolled. Visual components (VC) were estimated by independent component analysis (ICA). Degree centrality (DC), amplitude of low frequency fluctuation (ALFF) and fractional anisotropy (FA) were established to reflect functional and structural characteristics in these VCs respectively. Functional-structural coupling coefficients were further evaluated using combined FA and DC or ALFF. Partial correlations were performed among neuroimaging indicators and neuropsychological scores and clinical variables. Three VCs were selected using group ICA. Deteriorated DC, ALFF and DC-FA coefficients in the VC1 were observed in the T2DM group compared with the HC group, while FA and ALFF-FA coefficients in these three VCs showed no significant differences. In the T2DM group, DC in the VC1 positively correlated with 2 dimensions in the California Verbal Learning Test, including Trial 4 and Total trial 1-5. The impaired DC-FA coefficients in the VC1 markedly affected the Total perseverative responses % of the Wisconsin Card Sorting Test. These findings indicate that DC and DC-FA coefficients in VN may be potential imaging biomarkers revealing early cognitive deficits in T2DM.
Collapse
Affiliation(s)
- Min-Hua Ni
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, 1 Middle Section of Shiji Road, Xianyang, 712046, Shaanxi, China
| | - Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Teng Ma
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Hao Xie
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
- Faculty of Medical Technology, Xi`an Medical University, 1 Xinwang Road, Xi'an, 710016, Shaanxi, China
| | - Pan Dai
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
- Faculty of Medical Technology, Xi`an Medical University, 1 Xinwang Road, Xi'an, 710016, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
- Faculty of Medical Technology, Yan'an University, 580 Shengdi Road, Yan'an, 716000, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, 1 Middle Section of Shiji Road, Xianyang, 712046, Shaanxi, China
| | - Jun-Ling Zhu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
9
|
Fotiadis P, Cieslak M, He X, Caciagli L, Ouellet M, Satterthwaite TD, Shinohara RT, Bassett DS. Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex. Nat Commun 2023; 14:6115. [PMID: 37777569 PMCID: PMC10542365 DOI: 10.1038/s41467-023-41686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Recent work has demonstrated that the relationship between structural and functional connectivity varies regionally across the human brain, with reduced coupling emerging along the sensory-association cortical hierarchy. The biological underpinnings driving this expression, however, remain largely unknown. Here, we postulate that intracortical myelination and excitation-inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) and its temporal variance across the cortical hierarchy. We employ atlas- and voxel-based connectivity approaches to analyze neuroimaging data acquired from two groups of healthy participants. Our findings are consistent across six complementary processing pipelines: 1) SFC and its temporal variance respectively decrease and increase across the unimodal-transmodal and granular-agranular gradients; 2) increased myelination and lower EI-ratio are associated with more rigid SFC and restricted moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to myelination as the principal predictor of SFC occurs when traversing from granular to agranular cortical regions. Collectively, our work delivers a framework to conceptualize structure-function relationships in the human brain, paving the way for an improved understanding of how demyelination and/or EI-imbalances induce reorganization in brain disorders.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu Ouellet
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
10
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
11
|
Has Silemek AC, Nolte G, Pöttgen J, Engel AK, Heesen C, Gold SM, Stellmann JP. Topological reorganization of brain network might contribute to the resilience of cognitive functioning in mildly disabled relapsing remitting multiple sclerosis. J Neurosci Res 2023; 101:143-161. [PMID: 36263462 DOI: 10.1002/jnr.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease which leads to impairment in several functional systems including cognition. Alteration of brain networks is linked to disability and its progression. However, results are mostly cross-sectional and yet contradictory as putative adaptive and maladaptive mechanisms were found. Here, we aimed to explore longitudinal reorganization of brain networks over 2-years by combining diffusion tensor imaging (DTI), resting-state functional MRI (fMRI), magnetoencephalography (MEG), and a comprehensive neuropsychological-battery. In 37 relapsing-remitting MS (RRMS) and 39 healthy-controls, cognition remained stable over-time. We reconstructed network models based on the three modalities and analyzed connectivity in relation to the hierarchical topology and functional subnetworks. Network models were compared across modalities and in their association with cognition using linear-mixed-effect-regression models. Loss of hub connectivity and global reduction was observed on a structural level over-years (p < .010), which was similar for functional MEG-networks but not for fMRI-networks. Structural hub connectivity increased in controls (p = .044), suggesting a physiological mechanism of healthy aging. Despite a general loss in structural connectivity in RRMS, hub connectivity was preserved (p = .002) over-time in default-mode-network (DMN). MEG-networks were similar to DTI and weakly correlated with fMRI in MS (p < .050). Lower structural (β between .23-.33) and both lower (β between .40-.59) and higher functional connectivity (β = -.54) in DMN was associated with poorer performance in attention and memory in RRMS (p < .001). MEG-networks involved no association with cognition. Here, cognitive stability despite ongoing neurodegeneration might indicate a resilience mechanism of DMN hubs mimicking a physiological reorganization observed in healthy aging.
Collapse
Affiliation(s)
- Arzu Ceylan Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix-Marseille Université, CNRS, CRMBM, UMR 7339, Marseille, France
| |
Collapse
|
12
|
Hui ES. Advanced Diffusion
MRI
of Stroke Recovery. J Magn Reson Imaging 2022; 57:1312-1319. [PMID: 36378071 DOI: 10.1002/jmri.28523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for ways to improve our understanding of poststroke recovery to inform the development of novel rehabilitative interventions, and improve the clinical management of stroke patients. Supported by the notion that predictive information on poststroke recovery is embedded not only in the individual brain regions, but also the connections throughout the brain, majority of previous investigations have focused on the relationship between brain functional connections and post-stroke deficit and recovery. However, considering the fact that it is the static anatomical brain connections that constrain and facilitate the dynamic functional brain connections, the microstructures and structural connections of the brain may potentially be better alternatives to the functional MRI-based biomarkers of stroke recovery. This review, therefore, seeks to provide an overview of the basic concept and applications of two recently proposed advanced diffusion MRI techniques, namely lesion network mapping and fixel-based morphometry, that may be useful for the investigation of stroke recovery at the local and global levels of the brain. This review will also highlight the application of some of other emerging advanced diffusion MRI techniques that warrant further investigation in the context of stroke recovery research.
Collapse
Affiliation(s)
- Edward S. Hui
- Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Shatin Hong Kong China
- Department of Psychiatry The Chinese University of Hong Kong Shatin Hong Kong China
| |
Collapse
|
13
|
Schoonheim MM, Broeders TAA, Geurts JJG. The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics. Neuroimage Clin 2022; 35:103108. [PMID: 35917719 PMCID: PMC9421449 DOI: 10.1016/j.nicl.2022.103108] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis is a neuroinflammatory and neurodegenerative disorder of the central nervous system that can be considered a network disorder. In MS, lesional pathology continuously disconnects structural pathways in the brain, forming a disconnection syndrome. Complex functional network changes then occur that are poorly understood but closely follow clinical status. Studying these structural and functional network changes has been and remains crucial to further decipher complex symptoms like cognitive impairment and physical disability. Recent insights especially implicate the importance of monitoring network hubs in MS, like the thalamus and default-mode network which seem especially hit hard. Such network insights in MS have led to the hypothesis that as the network continues to become disconnected and dysfunctional, exceeding a certain threshold of network efficiency loss leads to a "network collapse". After this collapse, crucial network hubs become rigid and overloaded, and at the same time a faster neurodegeneration and accelerated clinical (and cognitive) progression can be seen. As network neuroscience has evolved, the MS field can now move towards a clearer classification of the network collapse itself and specific milestone events leading up to it. Such an updated network-focused conceptual framework of MS could directly impact clinical decision making as well as the design of network-tailored rehabilitation strategies. This review therefore provides an overview of recent network concepts that have enhanced our understanding of clinical progression in MS, especially focusing on cognition, as well as new concepts that will likely move the field forward in the near future.
Collapse
Affiliation(s)
- Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Tommy A A Broeders
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Koubiyr I, Broeders TA, Deloire M, Brochet B, Tourdias T, Geurts JJ, Schoonheim MM, Ruet A. Altered functional brain states predict cognitive decline 5 years after a clinically isolated syndrome. Mult Scler 2022; 28:1973-1982. [PMID: 35735004 DOI: 10.1177/13524585221101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive impairment occurs in the earliest stages of multiple sclerosis (MS) together with altered functional connectivity (FC). OBJECTIVE The aim of this study was to investigate the evolution of dynamic FC states in early MS and their role in shaping cognitive decline. METHODS Overall, 32 patients were enrolled after their first neurological episode suggestive of MS and underwent cognitive evaluation and resting-state functional MRI (fMRI) over 5 years. In addition, 28 healthy controls were included at baseline. RESULTS Cognitive performance was stable during the first year and declined after 5 years.At baseline, the number of transitions between states was lower in MS compared to controls (p = 0.01). Over time, frequency of high FC states decreased in patients (p = 0.047) and increased in state with low FC (p = 0.035). Cognitive performance at Year 5 was best predicted by the mean connectivity of high FC state at Year 1. CONCLUSION Patients with early MS showed reduced functional network dynamics at baseline. Longitudinal changes showed longer time spent in a state of low FC but less time spent and more connectivity disturbance in more integrative states with high within- and between-network FC. Disturbed FC within this more integrative state was predictive of future cognitive decline.
Collapse
Affiliation(s)
- Ismail Koubiyr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Tommy Aa Broeders
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Bruno Brochet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Thomas Tourdias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Jeroen Jg Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno Michiel Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Aurélie Ruet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 2022; 35:103076. [PMID: 35691253 PMCID: PMC9194954 DOI: 10.1016/j.nicl.2022.103076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/12/2023]
Abstract
Functional MRI is able to detect adaptive and maladaptive abnormalities at different MS stages. Increased fMRI activity is a feature of early MS, while progressive exhaustion of adaptive mechanisms is detected later on in the disease. Collapse of long-range connections and impaired hub integration characterize MS network reorganization. Time-varying connectivity analysis provides useful and complementary pieces of information to static functional connectivity. New perspectives might be the use of multimodal MRI and artificial intelligence.
Multiple sclerosis (MS) is a neurological disorder affecting the central nervous system and features extensive functional brain changes that are poorly understood but relate strongly to clinical impairments. Functional magnetic resonance imaging (fMRI) is a non-invasive, powerful technique able to map activity of brain regions and to assess how such regions interact for an efficient brain network. FMRI has been widely applied to study functional brain changes in MS, allowing to investigate functional plasticity consequent to disease-related structural injury. The first studies in MS using active fMRI tasks mainly aimed to study such plastic changes by identifying abnormal activity in salient brain regions (or systems) involved by the task. In later studies the focus shifted towards resting state (RS) functional connectivity (FC) studies, which aimed to map large-scale functional networks of the brain and to establish how MS pathology impairs functional integration, eventually leading to the hypothesized network collapse as patients clinically progress. This review provides a summary of the main findings from studies using task-based and RS fMRI and illustrates how functional brain alterations relate to clinical disability and cognitive deficits in this condition. We also give an overview of longitudinal studies that used task-based and RS fMRI to monitor disease evolution and effects of motor and cognitive rehabilitation. In addition, we discuss the results of studies using newer technologies involving time-varying FC to investigate abnormal dynamism and flexibility of network configurations in MS. Finally, we show some preliminary results from two recent topics (i.e., multimodal MRI analysis and artificial intelligence) that are receiving increasing attention. Together, these functional studies could provide new (conceptual) insights into disease stage-specific mechanisms underlying progression in MS, with recommendations for future research.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Sobczak AM, Bohaterewicz B, Ceglarek A, Zyrkowska A, Fafrowicz M, Slowik A, Wnuk M, Marona M, Nowak K, Zur-Wyrozumska K, Marek T. Brain Under Fatigue – Can Perceived Fatigability in Multiple Sclerosis Be Seen on the Level of Functional Brain Network Architecture? Front Hum Neurosci 2022; 16:852981. [PMID: 35620154 PMCID: PMC9128356 DOI: 10.3389/fnhum.2022.852981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fatigue is one of the most common symptoms of multiple sclerosis (MS), significantly affecting the functioning of the patients. However, the neural underpinnings of physical and mental fatigue in MS are still vague. The aim of our study was to investigate the functional architecture of resting-state networks associated with fatigue in patients with MS. Methods The sum of 107 high-functioning patients underwent a resting-state scanning session and filled out the 9-item Fatigue Severity Scale (FSS). Based on the FSS score, we identified patients with different levels of fatigue using the cluster analysis. The low-fatigue group consisted of n = 53 subjects, while the high-fatigue group n = 48. The neuroimaging data were analyzed in terms of functional connectivity (FC) between various resting-state networks as well as amplitude of low-frequency fluctuation (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF). Results Two-sample t-test revealed between-group differences in FC of posterior salience network (SN). No differences occurred in default mode network (DMN) and sensorimotor network (SMN). Moreover, differences in fALFF were shown in the right middle frontal gyrus and right superior frontal gyrus, however, no ALFF differences took place. Conclusion Current study revealed significant functional network (FN) architecture between-group differences associated with fatigue. Present results suggest the higher level of fatigue is related to deficits in awareness as well as higher interoceptive awareness and nociception.
Collapse
Affiliation(s)
- Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- *Correspondence: Anna Maria Sobczak,
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Zyrkowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Marcin Wnuk
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Monika Marona
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Klaudia Nowak
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Kamila Zur-Wyrozumska
- Department of Medical Education, Jagiellonian University Medical College, Kraków, Poland
- Department of Neurology, 5th Military Hospital, Kraków, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
17
|
Broeders TA, Douw L, Eijlers AJ, Dekker I, Uitdehaag BM, Barkhof F, Hulst HE, Vinkers CH, Geurts JJ, Schoonheim MM. A more unstable resting-state functional network in cognitively declining multiple sclerosis. Brain Commun 2022; 4:fcac095. [PMID: 35620116 PMCID: PMC9128379 DOI: 10.1093/braincomms/fcac095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment is common in people with multiple sclerosis and strongly
affects their daily functioning. Reports have linked disturbed cognitive
functioning in multiple sclerosis to changes in the organization of the
functional network. In a healthy brain, communication between brain regions and
which network a region belongs to is continuously and dynamically adapted to
enable adequate cognitive function. However, this dynamic network adaptation has
not been investigated in multiple sclerosis, and longitudinal network data
remain particularly rare. Therefore, the aim of this study was to longitudinally
identify patterns of dynamic network reconfigurations that are related to the
worsening of cognitive decline in multiple sclerosis. Resting-state functional
MRI and cognitive scores (expanded Brief Repeatable Battery of
Neuropsychological tests) were acquired in 230 patients with multiple sclerosis
and 59 matched healthy controls, at baseline (mean disease duration: 15 years)
and at 5-year follow-up. A sliding-window approach was used for functional MRI
analyses, where brain regions were dynamically assigned to one of seven
literature-based subnetworks. Dynamic reconfigurations of subnetworks were
characterized using measures of promiscuity (number of subnetworks switched to),
flexibility (number of switches), cohesion (mutual switches) and disjointedness
(independent switches). Cross-sectional differences between cognitive groups and
longitudinal changes were assessed, as well as relations with structural damage
and performance on specific cognitive domains. At baseline, 23% of
patients were cognitively impaired (≥2/7 domains
Z < −2) and 18% were mildly
impaired (≥2/7 domains
Z < −1.5). Longitudinally,
28% of patients declined over time (0.25 yearly change on ≥2/7
domains based on reliable change index). Cognitively impaired patients displayed
more dynamic network reconfigurations across the whole brain compared with
cognitively preserved patients and controls, i.e. showing higher promiscuity
(P = 0.047), flexibility
(P = 0.008) and cohesion
(P = 0.008). Over time, cognitively
declining patients showed a further increase in cohesion
(P = 0.004), which was not seen in stable
patients (P = 0.544). More cohesion was
related to more severe structural damage (average
r = 0.166,
P = 0.015) and worse verbal memory
(r = −0.156,
P = 0.022), information processing speed
(r = −0.202,
P = 0.003) and working memory
(r = −0.163,
P = 0.017). Cognitively impaired multiple
sclerosis patients exhibited a more unstable network reconfiguration compared to
preserved patients, i.e. brain regions switched between subnetworks more often,
which was related to structural damage. This shift to more unstable network
reconfigurations was also demonstrated longitudinally in patients that showed
cognitive decline only. These results indicate the potential relevance of a
progressive destabilization of network topology for understanding cognitive
decline in multiple sclerosis.
Collapse
Affiliation(s)
- Tommy A.A. Broeders
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda Douw
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anand J.C. Eijlers
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iris Dekker
- Departments of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernard M.J. Uitdehaag
- Departments of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Departments of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK
| | - Hanneke E. Hulst
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan H. Vinkers
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Departments of Psychiatry, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J.G. Geurts
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M. Schoonheim
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
19
|
Frieske J, Pareto D, García-Vidal A, Cuypers K, Meesen RL, Alonso J, Arévalo MJ, Galán I, Renom M, Vidal-Jordana Á, Auger C, Montalban X, Rovira À, Sastre-Garriga J. Can cognitive training reignite compensatory mechanisms in advanced multiple sclerosis patients? An explorative morphological network approach. Neuroscience 2022; 495:86-96. [DOI: 10.1016/j.neuroscience.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
20
|
Ye C, Huang J, Liang L, Yan Z, Qi Z, Kang X, Liu Z, Dong H, Lv H, Ma T, Lu J. Coupling of brain activity and structural network in multiple sclerosis: A graph frequency analysis study. J Neurosci Res 2022; 100:1226-1238. [PMID: 35184336 DOI: 10.1002/jnr.25028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Jing Huang
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| | - Li Liang
- Department of Electronic and Information Engineering Harbin Institute of Technology at Shenzhen Shenzhen China
| | - Zehong Yan
- Department of Electronic and Information Engineering Harbin Institute of Technology at Shenzhen Shenzhen China
| | - Zhigang Qi
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| | - Xiong Kang
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| | - Zheng Liu
- Department of Neurology Xuanwu Hospital, Capital Medical University Beijing China
| | - Huiqing Dong
- Department of Neurology Xuanwu Hospital, Capital Medical University Beijing China
| | - Haiyan Lv
- Mindsgo Life Science Shenzhen Co. Ltd Shenzhen China
| | - Ting Ma
- Peng Cheng Laboratory Shenzhen China
- Department of Electronic and Information Engineering Harbin Institute of Technology at Shenzhen Shenzhen China
- Advanced Innovation Center for Human Brain Protection Capital Medical University Beijing China
- National Clinical Research Center for Geriatric Disorders Xuanwu Hospital Capital Medical University Beijing China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| |
Collapse
|
21
|
Kulik SD, Nauta IM, Tewarie P, Koubiyr I, van Dellen E, Ruet A, Meijer KA, de Jong BA, Stam CJ, Hillebrand A, Geurts JJG, Douw L, Schoonheim MM. Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Netw Neurosci 2021; 6:339-356. [PMID: 35733434 PMCID: PMC9208024 DOI: 10.1162/netn_a_00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
Abstract
Multiple sclerosis (MS) features extensive connectivity changes, but how structural and functional connectivity relate, and whether this relation could be a useful biomarker for cognitive impairment in MS is unclear.
This study included 79 MS patients and 40 healthy controls (HCs). Patients were classified as cognitively impaired (CI) or cognitively preserved (CP). Structural connectivity was determined using diffusion MRI and functional connectivity using resting-state magnetoencephalography (MEG) data (theta, alpha1 and alpha2 bands). Structure-function coupling was assessed by correlating modalities, and further explored in frequency bands that significantly correlated with whole-brain structural connectivity. Functional correlates of short- and long-range structural connections (based on tract length) were then specifically assessed. ROC analyses were performed on coupling values to identify biomarker potential.
Only the theta band showed significant correlations between whole-brain structural and functional connectivity (rho = −0.26, p = 0.023, only in MS). Long-range structure-function coupling was higher in CI patients compared to HCs (p = 0.005). Short-range coupling showed no group differences. Structure-function coupling was not a significant classifier of cognitive impairment for any tract length (short-range AUC = 0.498, p = 0.976, long-range AUC = 0.611, p = 0.095).
Long-range structure-function coupling was higher in CI-MS compared to HC, but more research is needed to further explore this measure as biomarkers in MS.
Collapse
Affiliation(s)
- Shanna D. Kulik
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ilse M. Nauta
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Prejaas Tewarie
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ismail Koubiyr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Edwin van Dellen
- University Medical Center Utrecht, Psychiatry, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Aurelie Ruet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
- CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Kim A. Meijer
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen J. G. Geurts
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Douw
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M. Schoonheim
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Zhang J, Cortese R, De Stefano N, Giorgio A. Structural and Functional Connectivity Substrates of Cognitive Impairment in Multiple Sclerosis. Front Neurol 2021; 12:671894. [PMID: 34305785 PMCID: PMC8297166 DOI: 10.3389/fneur.2021.671894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Cognitive impairment (CI) occurs in 43 to 70% of multiple sclerosis (MS) patients at both early and later disease stages. Cognitive domains typically involved in MS include attention, information processing speed, memory, and executive control. The growing use of advanced magnetic resonance imaging (MRI) techniques is furthering our understanding on the altered structural connectivity (SC) and functional connectivity (FC) substrates of CI in MS. Regarding SC, different diffusion tensor imaging (DTI) measures (e.g., fractional anisotropy, diffusivities) along tractography-derived white matter (WM) tracts showed relevance toward CI. Novel diffusion MRI techniques, including diffusion kurtosis imaging, diffusion spectrum imaging, high angular resolution diffusion imaging, and neurite orientation dispersion and density imaging, showed more pathological specificity compared to the traditional DTI but require longer scan time and mathematical complexities for their interpretation. As for FC, task-based functional MRI (fMRI) has been traditionally used in MS to brain mapping the neural activity during various cognitive tasks. Analysis methods of resting fMRI (seed-based, independent component analysis, graph analysis) have been applied to uncover the functional substrates of CI in MS by revealing adaptive or maladaptive mechanisms of functional reorganization. The relevance for CI in MS of SC–FC relationships, reflecting common pathogenic mechanisms in WM and gray matter, has been recently explored by novel MRI analysis methods. This review summarizes recent advances on MRI techniques of SC and FC and their potential to provide a deeper understanding of the pathological substrates of CI in MS.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
23
|
van Dam M, Hulst HE, Schoonheim MM. Coupling structure and function in early MS: How a less diverse repertoire of brain function could lead to clinical progression. Mult Scler 2021; 27:491-493. [PMID: 33719745 DOI: 10.1177/1352458520987798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maureen van Dam
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Gromisch ES, Dhari Z. Identifying Early Neuropsychological Indicators of Cognitive Involvement in Multiple Sclerosis. Neuropsychiatr Dis Treat 2021; 17:323-337. [PMID: 33574669 PMCID: PMC7872925 DOI: 10.2147/ndt.s256689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system that is most commonly seen in early to middle adulthood, although it can be diagnosed during childhood or later in life. While cognitive impairment can become more prevalent and severe as the disease progresses, signs of cognitive involvement can be apparent in the early stages of the disease. In this review, we discuss the prevalence and types of cognitive impairment seen in early MS, including the specific measures used to identify them, as well as the challenges in characterizing their frequency and progression. In addition to examining the progression of early cognitive involvement over time, we explore the clinical factors associated with early cognitive involvement, including demographics, level of physical disability, disease modifying therapy use, vocational status, and psychological and physical symptoms. Given the prevalence and functional impact these impairments can have for persons with MS, considerations for clinicians are provided, such as the role of early cognitive screenings and the importance of comprehensive neuropsychological assessments.
Collapse
Affiliation(s)
- Elizabeth S Gromisch
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zaenab Dhari
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| |
Collapse
|