1
|
Cortini A, Bembich S, Marson L, Cocco E, Edomi P. Identification of novel non-myelin biomarkers in multiple sclerosis using an improved phage-display approach. PLoS One 2019; 14:e0226162. [PMID: 31805175 PMCID: PMC6894809 DOI: 10.1371/journal.pone.0226162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.
Collapse
Affiliation(s)
- Andrea Cortini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Bembich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Marson
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- * E-mail:
| |
Collapse
|
2
|
Becker M, Latarche C, Roman E, Debouverie M, Malaplate-Armand C, Guillemin F. No prognostic value of routine cerebrospinal fluid biomarkers in a population-based cohort of 407 multiple sclerosis patients. BMC Neurol 2015; 15:79. [PMID: 25966681 PMCID: PMC4430897 DOI: 10.1186/s12883-015-0330-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background We aimed to determine the association of clinical and routine cerebrospinal fluid biochemical markers (total protein, IgG index and oligoclonal bands) with disability in multiple sclerosis and whether these biomarkers assessed at diagnosis add prognostic value. Methods We followed a cohort of patients included in the Multiple Sclerosis Lorraine Register (eastern France) who had a diagnosis of multiple sclerosis for at least 5 years, as well as biological markers values and MRI findings (Barkhof’s criteria). In a Cox regression model, endpoint was time to score of 4 on the Expanded Disability Status Scale (EDSS) (i.e., limited time walking without aid or rest for more than 500 m). Results For 407 patients included, the median time from multiple sclerosis onset to EDSS score 4 was 4.5 years [2.2–7.2]. Cerebrospinal fluid total protein factor < 500 mg/L was associated with EDSS score 4 on bivariate analysis (hazard ratio 0.66, 95% confidence interval 0.46–0.95, p = 0.02). On multivariate analysis, older age at disease onset (≥50 years) and initial primary progressive course of MS but not biological markers predicted worse prognosis. Conclusion Routine cerebrospinal fluid biological markers at diagnosis were not prognostic factors of multiple sclerosis progression.
Collapse
Affiliation(s)
- Madlyne Becker
- INSERM, CIC-EC, CIC 1433, F-54 000, Nancy, France. .,Departement of Clinical Epidemiology and Evaluation, Nancy University Hospital, F-54 000, Nancy, France. .,Université de Lorraine, Université Paris Descartes, EA 4360 Apemac, F-54 000, Nancy, France.
| | - Clotilde Latarche
- INSERM, CIC-EC, CIC 1433, F-54 000, Nancy, France. .,Departement of Clinical Epidemiology and Evaluation, Nancy University Hospital, F-54 000, Nancy, France. .,Université de Lorraine, Université Paris Descartes, EA 4360 Apemac, F-54 000, Nancy, France.
| | - Emilie Roman
- Metz-Thionville Hospital, Bel Air Hospital, Departement of Biology, F-57 100, Thionville, France.
| | - Marc Debouverie
- INSERM, CIC-EC, CIC 1433, F-54 000, Nancy, France. .,Université de Lorraine, Université Paris Descartes, EA 4360 Apemac, F-54 000, Nancy, France. .,Department of Neurology, Nancy University Hospital, F-54 000, Nancy, France.
| | | | - Francis Guillemin
- INSERM, CIC-EC, CIC 1433, F-54 000, Nancy, France. .,Departement of Clinical Epidemiology and Evaluation, Nancy University Hospital, F-54 000, Nancy, France. .,Université de Lorraine, Université Paris Descartes, EA 4360 Apemac, F-54 000, Nancy, France. .,Department of Clinical Epidemiology and Evaluation, CHU de Nancy, Hôpitaux de Brabois, Allée du Morvan, 54500 Vandoeuvre Les, Nancy, France.
| |
Collapse
|
3
|
Bonnan M. [Meningeal tertiary lymphoid organs: Major actors in intrathecal autoimmunity]. Rev Neurol (Paris) 2014; 171:65-74. [PMID: 25555848 DOI: 10.1016/j.neurol.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/24/2014] [Accepted: 08/29/2014] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is characterized by an intrathecal synthesis of immunoglobulins synthesized by B-cell clones and by a brain infiltrate of clonal T-cells. The clonal maturation of these lymphocytes takes place in tertiary lymphoid organs (TLO) developed in the intrathecal compartment. TLO are acquired lymphoid organs able to develop in the vicinity of the inflammatory sites, where they mount a complete antigen-driven immune response. We here review TLO pathophysiology in animal models of MS and human MS. Several pieces of evidence suggest that intrathecal TLO may play a major role in the clinical impairment. Potential therapeutic applications are examined.
Collapse
Affiliation(s)
- M Bonnan
- Service de neurologie, hôpital F.-Mitterrand, 4, boulevard Hauterive, 64000 Pau, France.
| |
Collapse
|
4
|
Bonnan M. Intrathecal immune reset in multiple sclerosis: exploring a new concept. Med Hypotheses 2013; 82:300-9. [PMID: 24417802 DOI: 10.1016/j.mehy.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis impairment is mainly driven by the progressive phase, whose pathology remains elusive. No drug has yet been able to halt this phase so therapeutic management remains challenging. It was recently demonstrated that late disability correlates with the spreading of cortical subpial lesions, and tertiary lymphoid organs (TLO) were identified in close apposition with these lesions. TLO are of crucial importance since they are able to mount a complete local immune response, as observed in the intrathecal compartment from the moment MS is diagnosed (i.e. oligoclonal bands). This article examines the consequences of this intrathecal response: giving a worst clinical prognostic value and bearing arguments for possible direct brain toxicity, intrathecal secretion should be targeted by drugs abating both B-lymphocytes and plasma cells. Another consequence is that intrathecal secretion has value as a surrogate marker of the persistence of an ongoing intrathecal immune reaction after treatment. Although it is still unsure which mechanism or byproduct secreted by TLO triggers cortical lesions, we propose to target TLO components as a new therapeutic avenue in progressive MS. Whereas it was long considered that the inability of therapies to penetrate the blood-brain-barrier was a crucial obstacle, our proposed strategy will take advantage of the properties of the BBB to safely reset the intrathecal immune system in order to halt the slow axonal burning underlying secondary MS. We review the literature in support of the rationale for treating MS with intrathecal drugs dedicated to clearing the local immune response. Since many targets are involved, achieving this goal may require a combination of monoclonal antibodies targeting each cell sub-type. Hope might be rekindled with a one-shot intrathecal multi-drug treatment in progressive MS.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de Neurologie, Hôpital F. Mitterrand, 4 bd Hauterive, 64046 Pau, France.
| |
Collapse
|
5
|
Quintana FJ, Farez MF, Izquierdo G, Lucas M, Cohen IR, Weiner HL. Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 2012; 78:532-9. [PMID: 22262743 DOI: 10.1212/wnl.0b013e318247f9f3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is characterized by the local production of antibodies in the CNS and the presence of oligoclonal bands in the CSF. Antigen arrays allow the study of antibody reactivity against a large number of antigens using small volumes of fluid with greater sensitivity than ELISA. We investigated whether there were unique autoantibodies in the CSF of patients with MS as measured by antigen arrays and whether these antibodies differed from those in serum. METHODS We used antigen arrays to analyze the reactivity of antibodies in matched serum and CSF samples of 20 patients with untreated relapsing-remitting MS (RRMS), 26 methylprednisolone-treated patients with RRMS, and 20 control patients with other noninflammatory neurologic conditions (ONDs) against 334 different antigens including heat shock proteins, lipids, and myelin antigens. RESULTS We found different antibody signatures in matched CSF and serum samples The targets of these antibodies included epitopes of the myelin antigens CNP, MBP, MOBP, MOG, and PLP (59%), HSP60 and HSP70 (38%), and the 68-kD neurofilament (3%). The antibody response in patients with MS was heterogeneous; CSF antibodies in individual patients reacted with different autoantigens. These autoantibodies were locally synthesized in the CNS and were of the immunoglobulin G class. Finally, we found that treatment with steroids decreased autoantibody reactivity, epitope spreading, and intrathecal autoantibody synthesis. CONCLUSIONS These studies provide a new avenue to investigate the local antibody response in the CNS, which may serve as a biomarker to monitor both disease progression and response to therapy in MS.
Collapse
Affiliation(s)
- F J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Fujimori J, Nakashima I, Fujihara K, Misu T, Sato S, Itoyama Y. Epitope analysis of cerebrospinal fluid IgG in Japanese multiple sclerosis patients using phage display method. Mult Scler Int 2011; 2011:353417. [PMID: 22132333 PMCID: PMC3216389 DOI: 10.1155/2011/353417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022] Open
Abstract
To investigate the antigen recognized by cerebrospinal fluid (CSF) high affinity IgG in patients with multiple sclerosis (MS), the phage display method was applied to the CSF from 15 MS and 10 control patients. Peptide sequences recognized by MS and control CSF IgG were individual specific, and no common motif was found. Peptide sequences frequently showed homology to various kinds of amino acid sequences of ubiquitous viruses such as epstein barr virus (EBV) and herpes simplex virus (HSV), although the frequency was not specific to MS patients. MS CSF IgG may recognize various types of ubiquitous viral antigen and may be increased by a bystander response.
Collapse
Affiliation(s)
- Juichi Fujimori
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shigeru Sato
- Department of Neurology, Kohnan Hospital, Sendai 982-8523, Japan
| | - Yasuto Itoyama
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
7
|
The role of antibodies in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2011; 1812:239-45. [DOI: 10.1016/j.bbadis.2010.06.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 06/11/2010] [Accepted: 06/16/2010] [Indexed: 11/23/2022]
|
8
|
Somers K, Govarts C, Stinissen P, Somers V. Multiplexing approaches for autoantibody profiling in multiple sclerosis. Autoimmun Rev 2009; 8:573-9. [DOI: 10.1016/j.autrev.2009.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 02/01/2009] [Indexed: 01/19/2023]
|
9
|
Somers V, Govarts C, Somers K, Hupperts R, Medaer R, Stinissen P. Autoantibody Profiling in Multiple Sclerosis Reveals Novel Antigenic Candidates. THE JOURNAL OF IMMUNOLOGY 2008; 180:3957-63. [DOI: 10.4049/jimmunol.180.6.3957] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Elkabes S, Li H. Proteomic strategies in multiple sclerosis and its animal models. Proteomics Clin Appl 2007; 1:1393-1405. [PMID: 19759847 DOI: 10.1002/prca.200700315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The early and precise diagnosis, the prognosis, and the clinical management of multiple sclerosis, remain a considerable challenge. In recent years, the development of novel and powerful proteomic techniques prompted the use of these approaches for the search of unique biomarkers in the cerebrospinal fluid of multiple sclerosis patients. A few studies have also utilized proteomics to delineate the profile of differentially expressed proteins in animal models of the human disease in order to gain global insights into affected pathways. The identification of differentially expressed proteins may be an initial step in the discovery of novel targets and mechanisms that play critical roles in the pathology of multiple sclerosis. Based on these findings, future investigations may elucidate the events leading to demyelination, axonal damage, and neurodegeneration, providing better insights into mechanisms governing the onset and progression of the disease. Although these proteomic studies provide valuable information, they are also faced with a number of challenges. The present review discusses some of the strengths and limitations of proteomic investigations as applied to multiple sclerosis.
Collapse
Affiliation(s)
- Stella Elkabes
- Department of Neurology and Neuroscience, New Jersey Medical School-UMDNJ, Newark, NJ, USA
| | | |
Collapse
|
11
|
Somers V, Govarts C, Hellings N, Hupperts R, Stinissen P. Profiling the autoantibody repertoire by serological antigen selection. J Autoimmun 2005; 25:223-8. [PMID: 16256306 DOI: 10.1016/j.jaut.2005.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 06/06/2005] [Accepted: 09/06/2005] [Indexed: 11/29/2022]
Abstract
The identification of disease related autoantigens targeted by pathogenic T- and B-cell responses is crucial for the development of improved therapies for autoimmune diseases. To identify immunogenic targets recognized by the humoral immune response, we have recently applied a novel and powerful molecular approach, named 'serological antigen selection' (SAS). This method involves the display of a cDNA expression library on filamentous phage and subsequent selection on patient immunoglobulin G (IgG). In the present study, we have cloned a cDNA repertoire from a multiple sclerosis (MS) patient in pVI phage display vectors and performed selections on pooled MS cerebrospinal fluid (CSF) samples immobilized with anti-human IgG. To further streamline this procedure, we report an optimized SAS procedure in which we have successfully established methods for enrichment of MS-specific candidate antigens. In conclusion, the broad applicability of the SAS method makes it a highly promising method for investigating the autoimmune repertoire.
Collapse
Affiliation(s)
- V Somers
- Hasselt University, Biomedical Research Institute, and Transnationale Universiteit Limburg, School of Life Sciences, Agoralaan, Building A, B-3590 Diepenbeek, Belgium.
| | | | | | | | | |
Collapse
|
12
|
Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Büssow K, Sommer N, Hemmer B. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 2005; 115:1352-60. [PMID: 15841210 PMCID: PMC1077174 DOI: 10.1172/jci23661] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Accepted: 02/15/2005] [Indexed: 11/17/2022] Open
Abstract
MS is a chronic inflammatory and demyelinating disease of the CNS with as yet unknown etiology. A hallmark of this disease is the occurrence of oligoclonal IgG antibodies in the cerebrospinal fluid (CSF). To assess the specificity of these antibodies, we screened protein expression arrays containing 37,000 tagged proteins. The 2 most frequent MS-specific reactivities were further mapped to identify the underlying high-affinity epitopes. In both cases, we identified peptide sequences derived from EBV proteins expressed in latently infected cells. Immunoreactivities to these EBV proteins, BRRF2 and EBNA-1, were significantly higher in the serum and CSF of MS patients than in those of control donors. Oligoclonal CSF IgG from MS patients specifically bound both EBV proteins. Also, CD8(+) T cell responses to latent EBV proteins were higher in MS patients than in controls. In summary, these findings demonstrate an increased immune response to EBV in MS patients, which suggests that the virus plays an important role in the pathogenesis of disease.
Collapse
Affiliation(s)
- Sabine Cepok
- Department of Neurology, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Büssow K, Sommer N, Hemmer B. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 2005. [DOI: 10.1172/jci200523661] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. Although the immune system seems to play an important role in the pathogenesis of disease, target antigens are still uncertain and pathways leading to tissue destruction have not been fully elucidated. Recent studies have significantly contributed to a better understanding of the disease process and broadened our view on possible scenarios of disease initiation and progression. We review the role of the immune system for the manifestation and evolution of MS and discuss different pathogenetic concepts. We conclude with an outlook on future strategies to identify the cause of MS.
Collapse
Affiliation(s)
- Bernhard Hemmer
- Department of Neurology, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Bernd Kieseier
- Department of Neurology, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Sabine Cepok
- Department of Neurology, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002; 3:291-301. [PMID: 11967559 DOI: 10.1038/nrn784] [Citation(s) in RCA: 389] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bernhard Hemmer
- Department of Neurology, Philipps-Universität, Marburg 35033, Germany
| | | | | |
Collapse
|
16
|
Schwab C, McGeer PL. Complement activated C4d immunoreactive oligodendrocytes delineate small cortical plaques in multiple sclerosis. Exp Neurol 2002; 174:81-8. [PMID: 11869036 DOI: 10.1006/exnr.2001.7851] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C4d-immunoreactive complement-activated oligodendrocytes (C4d-CAOs) have been described in several neurodegenerative diseases but have not been studied in multiple sclerosis (MS). Here we report that such CAOs delineate miniature MS plaques of 300-500 mum diameter. They are devoid of myelin and are surrounded by a rim of activated microglia intermingled with the C4d-CAOs. Although C4d-immunostained periaxonal oligodendroglial processes are often swollen, the axons of passage appear undamaged and extend through the demyelinated plaque area. No immunostaining with other components of the complement cascade (C1q-C9) was observed in association with these miniature plaques. However, in large MS lesions, C1q-C9 immunoreactive fibers were present, indicating complete activation of the complement cascade in these more developed lesions. It is possible that the miniature plaques, bordered by C4d-CAOs, represent the earliest stage of plaque development, preceding even the larger, transient plaques frequently observed in serial MRI studies. The association of CAOs with miniature areas of demyelination suggests a direct attack on oligodendroglial cells by the early complement components as an initiating event in MS. Incomplete complement activation indicates that this step may be reversible, whereas full and persistent activation as observed in large MS lesions may lead to death of oligodendroglia with permanent axonal damage.
Collapse
Affiliation(s)
- Claudia Schwab
- Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
17
|
Jolivet-Reynaud C, Perron H, Ferrante P, Becquart L, Dalbon P, Mandrand B. Specificities of multiple sclerosis cerebrospinal fluid and serum antibodies against mimotopes. Clin Immunol 1999; 93:283-93. [PMID: 10600340 DOI: 10.1006/clim.1999.4789] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to characterize antigenic epitopes specifically targeted by the immune response of patients with multiple sclerosis (MS), the antibody specificities of cerebrospinal fluids (CSF) and sera from the same MS patients have been analyzed using a random pentadecapeptide library displayed on phage. The 3 peptides (mimotopes) selected with MS sera were not disease-specific. In contrast, the combination of 4 MS CSF selected mimotopes, allowed the detection of specific antibodies in 21 of 60 MS CSF whereas only 2 of 27 CSF from patients with other neurological diseases equally recognized the 4 mimotopes. Some amino acid similarities were found between two MS CSF selected mimotopes and two envelope regions (319-329 and 433-443, respectively) of MSRV (multiple-sclerosis-associated retrovirus) and the related endogenous retrovirus HERV-W.
Collapse
Affiliation(s)
- C Jolivet-Reynaud
- Unité Mixte de Recherche 103, Centre National de la Recherche Scientifique-bioMérieux, 46 Allée d'Italie, Lyon Cedex 07, 69364, France.
| | | | | | | | | | | |
Collapse
|