1
|
Han W, Li H, Jiang H, Xu H, Lin Y, Chen J, Bi C, Liu Z. Progress in the mechanism of autophagy and traditional Chinese medicine herb involved in alcohol-related liver disease. PeerJ 2023; 11:e15977. [PMID: 37727691 PMCID: PMC10506582 DOI: 10.7717/peerj.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Alcohol-related liver disease (ALD) is chronic liver damage caused by long-term heavy drinking with, extremely complicated pathogenesis. The current studies speculated that excessive alcohol and its metabolites are the major causes of liver cell toxicity. Autophagy is evolutionarily conserved in eukaryotes and aggravates alcoholic liver damage, through various mechanisms, such as cellular oxidative stress, inflammation, mitochondrial damage and lipid metabolism disorders. Therefore, autophagy plays an critical role in the occurrence and development of ALD. Some studies have shown that traditional Chinese medicine extracts improve the histological characteristics of ALD, as reflected in the improvement of oxidative stress and lipid droplet clearance, which might be achieved by inducing autophagy. This article reviews the mechanisms of quercetin, baicalin, glycycoumarin, salvianolic acid A, resveratrol, ginsenoside rg1, and dihydromyricetin inducing autophagy and their participation in the inhibition of ALD. The regulation of autophagy in ALD by these traditional Chinese medicine extracts provides novel ideas for the treatment of the disease; however, its molecular mechanism needs to be elucidated further.
Collapse
Affiliation(s)
- Wenwen Han
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Haiyu Li
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hanqi Jiang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Yifeng Lin
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Jiahuan Chen
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| |
Collapse
|
2
|
Haron MH, Avula B, Ali Z, Chittiboyina AG, Khan IA, Li J, Wang V, Wu C, Khan SI. Assessment of Herb-Drug Interaction Potential of Five Common Species of Licorice and Their Phytochemical Constituents. J Diet Suppl 2022:1-20. [PMID: 35302913 DOI: 10.1080/19390211.2022.2050875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dried roots and rhizomes of Glycyrrhiza species (G. glabra, G. uralensis and G. inflata), commonly known as licorice, have long been used in traditional medicine. In addition, two other species, G. echinata and G. lepidota are also considered "licorice" in select markets. Currently, licorice is an integral part of several botanical drugs and dietary supplements. To probe the botanicals' safety, herb-drug interaction potential of the hydroethanolic extracts of five Glycyrrhiza species and their key constituents was investigated by determining their effects on pregnane X receptor, aryl hydrocarbon receptor, two major cytochrome P450 isoforms (CYP3A4 and CYP1A2), and the metabolic clearance of antiviral drugs. All extracts enhanced transcriptional activity of PXR and AhR (>2-fold) and increased the enzyme activity of CYP3A4 and CYP1A2. The highest increase in CYP3A4 was seen with G. echinata (4-fold), and the highest increase in CYP1A2 was seen with G. uralensis (18-fold) and G. inflata (16-fold). Among the constituents, glabridin, licoisoflavone A, glyasperin C, and glycycoumarin activated PXR and AhR, glabridin being the most effective (6- and 27-fold increase, respectively). Licoisoflavone A, glyasperin C, and glycycoumarin increased CYP3A4 activity while glabridin, glyasperin C, glycycoumarin, and formononetin increased CYP1A2 activity (>2-fold). The metabolism of antiretroviral drugs (rilpivirine and dolutegravir) was increased by G. uralensis (2.0 and 2.5-fold) and its marker compound glycycoumarin (2.3 and 1.6-fold). The metabolism of dolutegravir was also increased by G. glabra (2.8-fold) but not by its marker compound, glabridin. These results suggest that licorice and its phytochemicals could affect the metabolism and clearance of certain drugs that are substrates of CYP3A4 and CYP1A2.Supplemental data for this article is available online at https://doi.org/10.1080/19390211.2022.2050875 .
Collapse
Affiliation(s)
- Mona H Haron
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Jing Li
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vivian Wang
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Charles Wu
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shabana I Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
3
|
Bisht D, Rashid M, Arya RKK, Kumar D, Chaudhary SK, Rana VS, Sethiya NK. Revisiting liquorice ( Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100206. [PMID: 35403088 PMCID: PMC8683220 DOI: 10.1016/j.phyplu.2021.100206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 04/27/2023]
Abstract
BACKGROUND Glycyrrhiza glabra L. (G. glabra) commonly known as liquorice is one of the highly exploited and utilized medicinal plant of the world. Since ancient times liquorice is considered as an auspicious and valuable traditional medicine across the world for treatment of various ailments. METHOD Several electronic online scientific databases such as Science Direct, PubMed, Scopus, Scifinder, Google Scholar, online books and reports were assessed for collecting information. All the collected information was classified into different sections to meet the objective of the paper. RESULTS The electronic database search yielded 3908 articles from different countries. Out of them one ninety-eight articles published between 1956 and 2021 were included, corresponding to all detailed review on G. glabra and research on anti-inflammatories, antivirals and immunomodulatory through pre-clinical and clinical models. From all selective area of studies on G. glabra and its bioactive components it was established (including molecular mechanisms) as a suitable remedy as per the current requirement of pandemic situation arise through respiratory tract infection. CONCLUSION Different relevant studies have been thoroughly reviewed to gain an insight on utility of liquorice and its bioactive constituents for anti-inflammatories, antivirals and immunomodulatory effects with special emphasized for prevention and treatment of COVID-19 infection with possible mechanism of action at molecular level. Proposed directions for future research are also outlined to encourage researchers to find out various mechanistic targets and useful value added products of liquorice in future investigations.
Collapse
Affiliation(s)
- Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Mohmmad Rashid
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, 31717, Saudi Arabia
| | - Rajeshwar Kamal Kant Arya
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | | | - Vijay Singh Rana
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| |
Collapse
|
4
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
5
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
6
|
Liu Y, Zhang M, Cheng J, Zhang Y, Kong H, Zhao Y, Qu H. Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect. Molecules 2021; 26:molecules26061512. [PMID: 33802020 PMCID: PMC8000522 DOI: 10.3390/molecules26061512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.L.); (M.Z.); (J.C.); (H.K.); (Y.Z.)
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.L.); (M.Z.); (J.C.); (H.K.); (Y.Z.)
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.L.); (M.Z.); (J.C.); (H.K.); (Y.Z.)
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.L.); (M.Z.); (J.C.); (H.K.); (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.L.); (M.Z.); (J.C.); (H.K.); (Y.Z.)
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: or ; Tel.: +86-010-6428-6705; Fax: +86-010-6428-6821
| |
Collapse
|
7
|
Yu P, Li Q, Feng Y, Chen Y, Ma S, Ding X. Quantitative Analysis of Flavonoids in Glycyrrhiza uralensis Fisch by 1H-qNMR. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6655572. [PMID: 33532111 PMCID: PMC7834775 DOI: 10.1155/2021/6655572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To establish a method for simultaneous determination of liquiritin, liquiritigenin, and isoliquiritinin glycyrrhizin using hydrogen nuclear magnetic resonance quantitative technology (1H-qNMR). Methodology. Deuterated dimethyl sulfoxide was used as the solvent, and dichloromethane was used as the internal standard. The probe temperature was 298.0 K, the pulse sequence was Zg30, the number of scans was 16, and relaxation delay (D1) was 10 s. Quantitative characteristic signal peaks were δ 4.891∼4.878 ppm, δ 8.187∼8.172 ppm, and δ 6.790∼6.776 ppm for liquiritin, isoliquiritin, and liquiritigenin, respectively. RESULTS The experimental result showed that the content of flavonoids in Licorice, from Chifeng, Inner Mongolia, was the highest. CONCLUSION In this study, a new method for determination of three flavonoids in Licorice using 1H-qNMR was established. This experimental method has the advantages of accuracy, efficiency, and economy. It lays a foundation for the study on the determination of flavonoids content in licorice by proton nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Ping Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanmei Feng
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuying Chen
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Sinan Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqin Ding
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Erusappan T, Kondapuram SK, Ekambaram SP, Coumar MS. Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis: docking, molecular dynamics, and network approach. J Mol Model 2021; 27:14. [PMID: 33403456 DOI: 10.1007/s00894-020-04651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder that commonly affects multiple joints of the body. Currently, there is no permanent cure to the disease, but it can be managed with several potent drugs that cause serious side effects on prolonged use. Traditional remedies are considered promising for the treatment of several diseases, particularly chronic conditions, because they have lower side effects compared to synthetic drugs. In folklore, the rhizome of Alpinia calcarata Roscoe (Zingiberaceae) is used as a major ingredient of herbal formulations to treat RA. Phytoconstituents reported in A. calcarata rhizomes are diterpenoids, sesquiterpenoid, flavonoids, phytosterol, and volatile oils. The present study is intended to understand the molecular-level interaction of phytoconstituents present in A. calcarata rhizomes with RA molecular targets using computational approaches. A total of 30 phytoconstituents reported from the plant were used to carry out docking with 36 known targets of RA. Based on the docking results, 4 flavonoids were found to be strongly interacting with the RA targets. Further, molecular dynamics simulation confirmed stable interaction of quercetin with 6 targets (JAK3, SYK, MMP2, TLR8, IRAK1, and JAK1), galangin with 2 targets (IRAK1 and JAK1), and kaempferol (IRAK1) with one target of RA. Moreover, the presence of these three flavonoids was confirmed in the A. calcarata rhizome extract using LC-MS analysis. The computational study suggests that flavonoids present in A. calcarata rhizome may be responsible for RA modulatory activity. Particularly, quercetin and galangin could be potential development candidates for the treatment of RA. Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis: docking, molecular dynamics, and network approach.
Collapse
Affiliation(s)
- Thamizharasi Erusappan
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sree Karani Kondapuram
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
9
|
Pandher R, Puvanendran A, Diamond TH. The dangers of herbal teas: hypertension and weakness caused by liquorice-induced apparent mineralocorticoid excess. Med J Aust 2020; 213:207-208.e1. [PMID: 32776334 DOI: 10.5694/mja2.50728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ravind Pandher
- Nepean Hospital, Sydney, NSW
- St George Hospital, Sydney, NSW
| | | | | |
Collapse
|
10
|
Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: A modern insight on the ancient drug. Int J Pharm 2019; 559:271-279. [PMID: 30690130 PMCID: PMC7126914 DOI: 10.1016/j.ijpharm.2019.01.047] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Glycyrrhizic acid (GA), saponin of licorice shows wide range of biological activity. Mechanism of GA activity on the cell and molecular level is rarely discussed. GA activity could be caused by the cell membrane modification.
Glycyrrhizic acid is the main active component of Licorice root which has been known in traditional Chinese and Japanese medicine since ancient times. In these cultures glycyrrhizic acid (GA) is one of the most frequently used drugs. However, only in 21-st century a novel unusual property of the GA to enhance the activity of other drugs has been discovered. The review describes briefly the experimental evidences of wide spectrum of own biological activities of glycyrrhizic acid as well as discusses the possible mechanisms of the ability of GA to enhance the activity of other drugs. We have shown that due to its amphiphilic nature GA is able to form self-associates in aqueous and non-aqueous media, as well as water soluble complexes with a wide range of lipophilic drugs. The main purpose of our review is to focus reader's attention on physicochemical studies of the molecular mechanisms of GA activity as a drug delivery system (DDS). In our opinion, the most intriguing feature of glycyrrhizic acid which might be the key factor in its therapeutic activity is the ability of GA to incorporate into the lipid bilayer and to increase the membrane fluidity and permeability. The ability of biomolecules and their aggregates to change the properties of cell membranes is of great significance, from both fundamental and practical points of view.
Collapse
|
11
|
Mamedov NA, Egamberdieva D. Phytochemical Constituents and Pharmacological Effects of Licorice: A Review. PLANT AND HUMAN HEALTH, VOLUME 3 2019. [PMCID: PMC7123875 DOI: 10.1007/978-3-030-04408-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Licorice (or “liquorice”) is one of most widely used in foods, herbal medicine, and extensively researched medicinal plants of the world. In traditional medicine licorice roots have been used against treating many ailments including lung diseases, arthritis, kidney diseases, eczema, heart diseases, gastric ulcer, low blood pressure, allergies, liver toxicity, and certain microbial infections. Licorice extract contains sugars, starch, bitters, resins, essential oils, tannins, inorganic salts, and low levels of nitrogenous constituents such as proteins, individual amino acids, and nucleic acids. A large number of biological active compounds have been isolated from Glycyrrhiza species, where triterpene saponins and flavonoids are the main constitutes which show broad biological activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
|
12
|
Gu MY, Chun YS, Zhao D, Ryu SY, Yang HO. Glycyrrhiza uralensis and Semilicoisoflavone B Reduce Aβ Secretion by Increasing PPARγ Expression and Inhibiting STAT3 Phosphorylation to Inhibit BACE1 Expression. Mol Nutr Food Res 2018; 62:e1700633. [PMID: 29143445 DOI: 10.1002/mnfr.201700633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/07/2017] [Indexed: 12/19/2022]
Abstract
SCOPE Glycyrrhiza uralensis extract (GUE) has been reported to improve amyloid beta (Aβ)-induced cognitive deficits in mice. However, the mechanisms underlying this effect and the components involved have not been previously explored. Extracellular Aβ plaques are one of the major pathological hallmarks of Alzheimer's disease (AD). Therefore, decreasing Aβ levels is one strategy for preventing the etiology of AD. This study aims to test the effect of GUE and semilicoisoflavone B (SB) on Aβ secretion and investigates the mechanism underlying this effect. METHODS AND RESULTS GUE and its bio-activated compound SB reduce Aβ secretion. We find that this effect contribute to the downregulation of the β-secretase-1 (BACE1) protein and mRNA. In a subsequent mechanism study, we find that GUE and SB regulate BACE1 transcription factors by inducing the expression of peroxisome proliferator activated receptor γ (PPARγ) and inhibiting the phosphorylation of signal transducer and activator of transcription 3. In addition, the effect of GUE and SB on BACE1 expression and Aβ secretion are attenuated by treatment with PPARγ-siRNA or its antagonist, GW9662. CONCLUSION These findings indicate that GUE and SB may function as PPARγ agonists, thereby inhibiting BACE1 expression and ultimately reducing the secretion of Aβ.
Collapse
Affiliation(s)
- Ming-Yao Gu
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yoon Sun Chun
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Dong Zhao
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Shi Yong Ryu
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
13
|
Penninkilampi R, Eslick EM, Eslick GD. The association between consistent licorice ingestion, hypertension and hypokalaemia: a systematic review and meta-analysis. J Hum Hypertens 2017; 31:699-707. [PMID: 28660884 DOI: 10.1038/jhh.2017.45] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
There have been numerous case reports of severe adverse events including deaths following chronic licorice ingestion. The aim of the present study was to evaluate the effect of chronic ingestion of licorice on blood pressure, plasma potassium, plasma renin activity and plasma aldosterone. A search of MEDLINE, PubMed, EMBASE, CENTRAL, DARE, CINAHL and Current Contents Connect was performed from inception through to 26 April 2017. Trials that included a treatment group ingesting a product containing at least 100 mg of glycyrrhizic acid daily were selected. Pooled mean changes from baseline with 95% confidence intervals were calculated for diastolic blood pressure, systolic blood pressure, plasma potassium, plasma renin activity and plasma aldosterone using a random effects model. An assessment of dose-response was also undertaken. A total of 18 studies (n=337) were included in the meta-analysis. There was a statistically significant increase in mean systolic blood pressure (5.45 mm Hg, 95% CI 3.51-7.39) and diastolic blood pressure (3.19 mm Hg, 95% CI 0.10-6.29) after chronic ingestion of a product containing glycyrrhizic acid. Plasma potassium (-0.33 mmol l-1, 95% CI -0.42 to 0.23), plasma renin activity (-0.82 ngml-1 per hour, 95% CI -1.27 to -0.37) and plasma aldosterone (-173.24 pmol l-1, 95% CI -231.65 to -114.83) were all significantly decreased. A significant correlation was noted between daily dose of glycyrrhizic acid and systolic blood pressure (r2=0.55) and diastolic blood pressure (r2=0.65), but not for the other outcome measures. Hence, chronic licorice ingestion is associated with an increase in blood pressure and a drop in plasma potassium, even at modest doses. This is of particular relevance for individuals with existing cardiovascular disease.
Collapse
Affiliation(s)
- R Penninkilampi
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Sydney, New South Wales, Australia
| | - E M Eslick
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Sydney, New South Wales, Australia
| | - G D Eslick
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
15
|
Park SY, Kwon SJ, Lim SS, Kim JK, Lee KW, Park JHY. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells. Int J Mol Sci 2016; 17:E934. [PMID: 27314329 PMCID: PMC4926467 DOI: 10.3390/ijms17060934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis.
Collapse
Affiliation(s)
- So Young Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyonggi-do 443-270, Korea.
| | - Soo Jin Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Jin-Kyu Kim
- Biocenter, Gyeonggi Institute of Science & Technology Promotion, Suwon, Gyonggi-do 443-270, Korea.
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyonggi-do 443-270, Korea.
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea.
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyonggi-do 443-270, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
16
|
Kim HJ, Park SY, Kim DG, Park SH, Lee H, Hwang DY, Jung MH, Ha KT, Kim BJ. Effects of the roots of Liriope Platyphylla Wang Et tang on gastrointestinal motility function. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:144-153. [PMID: 26969403 DOI: 10.1016/j.jep.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope platyphylla Wang et Tang continues to be used in Korea as a traditional medicine for the treatment of gastrointestinal (GI) disorders related to constipation and abnormal GI motility. AIM OF THE STUDY Because GI disorders, especially GI motility dysfunctions, are major lifelong problems, the authors investigated the effects of a water extract of the roots of L. platyphylla Wang et Tang (LPE) on the pacemaker potentials (PPTs) of interstitial cells of Cajal (ICCs) and on GI motility in male ICR mice. MATERIALS AND METHODS Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record PPTs generated by cultured ICCs in vitro. In vivo effects of LPE on GI motility were investigated by measuring intestinal transit rates (ITRs) of Evans blue in normal mice and in acetic acid (AA) and streptozotocin (STZ)-induced diabetic mouse models of GI motility dysfunction. RESULTS LPE dose-dependently depolarized PPTs in ICCs. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) did not block LPE-induced PPT depolarization. However, pretreatment with 4-DAMP (a muscarinic M3 receptor antagonist) blocked LPE-induced PPT depolarization. In addition, treatment with LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) also blocked LPE-induced PPT depolarization. Intracellular GDPβS inhibited LPE-induced PPT depolarization, and LPE-induced PPT depolarization was found to occur in a phospholipase C (PLC)- and a protein kinase C (PKC)-dependent manner. Pretreatment with Ca(2+)free solution or thapsigargin (a Ca(2+)-ATPase inhibitor in endoplasmic reticulum) abolished PPTs, and under these conditions, LPE did not depolarize ICC PPTs. In normal mice, ITRs were significantly and dose-dependently increased by LPE (0.01-1g/kg administered intragastrically (i.g.)). In addition, LPE (i.g.) significantly recovered GI motility dysfunctions in both animal models. CONCLUSION LPE dose-dependently depolarizes ICC PPTs through M3 receptors via external and internal Ca(2+)regulation and via G protein-, PI3K-, PLC- and PKC- dependent pathways in vitro. Also, in vivo, LPE increased ITRs in treatment naïve mice and our two mouse models of GI dysfunction. Therefore, this study shows that LPE offers a basis for the development of a prokinetic agent that prevents or alleviates GI motility dysfunctions.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Sun Young Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Dae Geon Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - So-Hae Park
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Heeseob Lee
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Youn Hwang
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Division of Applied Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.
| |
Collapse
|
17
|
Lüde S, Vecchio S, Sinno-Tellier S, Dopter A, Mustonen H, Vucinic S, Jonsson B, Müller D, Veras Gimenez Fruchtengarten L, Hruby K, De Souza Nascimento E, Di Lorenzo C, Restani P, Kupferschmidt H, Ceschi A. Adverse Effects of Plant Food Supplements and Plants Consumed as Food: Results from the Poisons Centres-Based PlantLIBRA Study. Phytother Res 2016; 30:988-96. [PMID: 26948409 DOI: 10.1002/ptr.5604] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022]
Abstract
Plant food supplements (PFS) are products of increasing popularity and wide-spread distribution. Nevertheless, information about their risks is limited. To fill this gap, a poisons centres-based study was performed as part of the EU project PlantLIBRA. Multicentre retrospective review of data from selected European and Brazilian poisons centres, involving human cases of adverse effects due to plants consumed as food or as ingredients of food supplements recorded between 2006 and 2010. Ten poisons centres provided a total of 75 cases. In 57 cases (76%) a PFS was involved; in 18 (24%) a plant was ingested as food. The 10 most frequently reported plants were Valeriana officinalis, Camellia sinensis, Paullinia cupana, Melissa officinalis, Passiflora incarnata, Mentha piperita, Glycyrrhiza glabra, Ilex paraguariensis, Panax ginseng, and Citrus aurantium. The most frequently observed clinical effects were neurotoxicity and gastro-intestinal symptoms. Most cases showed a benign clinical course; however, five cases were severe. PFS-related adverse effects seem to be relatively infrequent issues for poisons centres. Most cases showed mild symptoms. Nevertheless, the occurrence of some severe adverse effects and the increasing popularity of PFS require continuous active surveillance, and further research is warranted. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Saskia Lüde
- National Poisons Centre, Tox Info Suisse, Associated Institute of the University of Zurich, Zurich, Switzerland
| | - Sarah Vecchio
- Pavia Poison Center and National Toxicology Information Centre-Toxicology Unit IRCCS Maugeri Foundation and University of Pavia, Pavia, Italy
| | | | - Aymeric Dopter
- Nutrivigilance, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Maisons-Alfort, France
| | - Harriet Mustonen
- Poison Information Centre, Helsinki University Central Hospital, Helsinki, Finland
| | - Slavica Vucinic
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
| | | | - Dieter Müller
- GIZ-Nord Poisons Center Göttingen, Göttingen, Germany
| | | | - Karl Hruby
- Austrian Poisons Information Centre, Vienna, Austria
| | | | - Chiara Di Lorenzo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Restani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Hugo Kupferschmidt
- National Poisons Centre, Tox Info Suisse, Associated Institute of the University of Zurich, Zurich, Switzerland
| | - Alessandro Ceschi
- National Poisons Centre, Tox Info Suisse, Associated Institute of the University of Zurich, Zurich, Switzerland.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
18
|
Chong SJK, Howard KA, Knox C. Hypokalaemia and drinking green tea: a literature review and report of 2 cases. BMJ Case Rep 2016; 2016:bcr-2016-214425. [PMID: 26884077 DOI: 10.1136/bcr-2016-214425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report the association between excessive consumption of green tea and hypokalaemia in an Oriental couple. Both patients were asymptomatic and the abnormal electrolyte level was only detected on routine blood tests. When they were advised to reduce the consumption of green tea, the abnormally low potassium level was reversed. We have not found such an association reported in the medical literature. The health benefits of green tea consumption are well publicised but the potential side-effects of overconsumption are less well known. We would like to report this association to alert clinicians about this potentially serious complication. This is especially relevant for those who are also taking prescribed medications that can lower potassium levels and/or sensitise patients to potential harm from hypokalaemia.
Collapse
Affiliation(s)
| | | | - Chloe Knox
- Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
19
|
Abstract
Liquorice foliage
Collapse
|
20
|
Increase in the Level of Proinflammatory Cytokine HMGB1 in Nasal Fluids of Patients With Rhinitis and its Sequestration by Glycyrrhizin Induces Eosinophil Cell Death. Clin Exp Otorhinolaryngol 2015; 8:123-8. [PMID: 26045910 PMCID: PMC4451536 DOI: 10.3342/ceo.2015.8.2.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 11/07/2013] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES The nuclear protein high mobility group protein box 1 (HMGB1) is a proinflammatory mediator that belongs to the alarmin family of proinflammatory mediators, and it has recently emerged as a key player in different acute and chronic immune disorders. Several lines of evidence demonstrate that HMGB1 is actively released extracellularly from immune cells or passively released from necrotic cells. Because of the ability of HMGB1 to sustain chronic inflammation, we investigated whether the protein is present in nasal fluids of patients with different forms of rhinitis. METHODS HMGB1 levels were evaluated in nasal fluids of healthy subjects or rhinitis patients who were treated or not treated with different treatments. RESULTS We report that the level of HMGB1 was significantly increased in nasal fluids of patients with allergic rhinitis, patients with NARES (nonallergic rhinitis with eosinophiliac syndrome), as well as patients with polyps. We also found that a formulation containing the HMGB1-binding compound glycyrrhizin (GLT) reduced the HMGB1 content in nasal fluids of rhinitis patients to an extent similar to that with nasal budesonide treatment. We also found that among the cultured human leukocyte populations, eosinophils released higher amounts of HMGB1. Based on the ability of HMGB1 to sustain eosinophil survival and the ability of GLT to inactivate HMGB1, we report that GLT selectively killed cultured eosinophils and had no effect on neutrophils, macrophages, and lymphocytes. CONCLUSION Collectively, these data underscore the role of HMGB1 in rhinitis pathogenesis and the therapeutic potential of GLT formulations in treatment of chronic inflammatory disorders of the nasal mucosa.
Collapse
|
21
|
Main AM, Feldt-Rasmussen U. The Hidden Liquorice: Apparent Mineralocorticoid Excess Caused by Inadvertent Exposure to Liquorice Root Extract. AACE Clin Case Rep 2015. [DOI: 10.4158/ep14556.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Yang R, Wang LQ, Liu Y. Antitumor Activities of Widely-used Chinese Herb—Licorice. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
23
|
Xu CH, Wang P, Wang Y, Yang Y, Li DH, Li HF, Sun SQ, Wu XZ. Pharmacokinetic comparisons of two different combinations of Shaoyao-Gancao Decoction in rats: competing mechanisms between paeoniflorin and glycyrrhetinic acid. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:443-452. [PMID: 23867078 DOI: 10.1016/j.jep.2013.06.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/14/2013] [Accepted: 06/23/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao-Gancao Decoction (SGD), a well-known traditional Chinese medicine prescription, is a combination of Radix Paeoniae Alba (Paeonia lactiflora Pall, root) and Glycyrrhizae uralensis (Glycyrrhiza uralensis Fisch., root and rhizome, honeyed) for spasmolysis and emergency pain relief. Paeoniflorin (PF) and glycyrrhetinic acid (GA) are two typical active components of SGD for pain relief. AIM OF THE STUDY To study comparative pharmacokinetics of ten bioactive compounds in SGDs with two different combinations of RP and GU, and therefore to investigate the herb-herb interaction mechanisms of Shaoyao-Gancao Decoction for better spasmolysis and emergency pain relief in rats. MATERIALS AND METHODS Herbal IR macro-fingerprinting was implemented to provide the full chemical fingerprints of RP, GU and SGD decoctions and to investigate the variation rule of the full chemical profile of SGDs with various combinations of RP and GU. A specifically developed HPLC-MS/MS assay coupled with protein precipitation method was employed to determine the plasma concentrations of the ten analytes. Male Wistar rats were orally administered with SGD1 (RP:GU, 1:1 (w/w)) and SGD2 ((RP:GU, 4:1 (w/w)) equivalent to 9.5 g/kg body weight of GU. RESULTS Full chemical fingerprints of RP, GU and SGDs with various combinations of RP and GU were provided in the form of IR macro-fingerprints. Except for liquiritin, there were statistically significant differences (p<0.05 or p<0.01) of these analytes between SGD1 and SGD2 in in vivo pharmacokinetic study. Compared with the results when oral administrated with SGD1, six glycosides (PF, albiflorin, oxypaeoniflorin, isoliquiritin, ononin, and glycyrrhizin) exhibited higher systematic exposure levels (AUC0-t) and slower elimination rates (CL) whereas two glycones (GA and isoliquiritigenin) were the reverse when administrated with SGD2. CONCLUSIONS Increasing the amount of RP attenuated the inhibitory effect of GA via competing being consumed by intestinal bacteria (or β-glucosidase) to reduce the conversion amount of glycyrrhizin to GA and subsequently to afford significantly higher bioavailability and longer efficacy of PF, glycyrrhizin, albiflorin, oxypaeoniflorin, isoliquiritin, and ononin, leading to better spasmolysis and emergency pain relief.
Collapse
Affiliation(s)
- Chang-Hua Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fong SYK, Liu M, Wei H, Löbenberg R, Kanfer I, Lee VHL, Amidon GL, Zuo Z. Establishing the pharmaceutical quality of Chinese herbal medicine: a provisional BCS classification. Mol Pharm 2013; 10:1623-43. [PMID: 23473440 DOI: 10.1021/mp300502m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Biopharmaceutical Classification System (BCS), which is a scientific approach to categorize active drug ingredient based on its solubility and intestinal permeability into one of the four classes, has been used to set the pharmaceutical quality standards for drug products in western society. However, it has received little attention in the area of Chinese herbal medicine (CHM). This is likely, in part, due to the presence of multiple active components as well as lack of standardization of CHM. In this report, we apply BCS classification to CHMs provisionally as a basis for establishing improved in vitro quality standards. Based on a top-200 drugs selling list in China, a total of 31 CHM products comprising 50 official active marker compounds (AMCs) were provisionally classified according to BCS. Information on AMC content and doses of these CHM products were retrieved from the Chinese Pharmacopoeia. BCS parameters including solubility and permeability of the AMCs were predicted in silico (ACD/Laboratories). A BCS classification of CHMs according to biopharmaceutical properties of their AMCs is demonstrated to be feasible in the current study and can be used to provide a minimum set of quality standards. Our provisional results showed that 44% of the included AMCs were classified as Class III (high solubility, low permeability), followed by Class II (26%), Class I (18%), and Class IV (12%). A similar trend was observed when CHMs were classified in accordance with the BCS class of AMCs. Most (45%) of the included CHMs were classified as Class III, followed by Class II (16%), Class I (10%), and Class IV (6%); whereas 23% of the CHMs were of mixed class due to the presence of multiple individual AMCs with different BCS classifications. Moreover, about 60% of the AMCs were classified as high-solubility compounds (Class I and Class III), suggesting an important role for an in vitro dissolution test in setting quality control standards ensuring consistent biopharmaceutical quality for the commercially available CHM products. That is, provisionally, more than half of the AMCs of the top-selling CHMs included in this study would be candidates for a bioequivalence (BE) biowaiver, based on WHO recommendations and EMEA guidelines. Thus a dissolution requirement on these AMCs would represent a significant advance in the pharmaceutical quality of CHM today.
Collapse
Affiliation(s)
- Sophia Y K Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Woerdenbag HJ, Nguyen TM, Vu DV, Tran H, Nguyen DT, Tran TV, De Smet PAGM, Brouwers JRBJ. Vietnamese traditional medicine from a pharmacist's perspective. Expert Rev Clin Pharmacol 2013; 5:459-77. [PMID: 22943125 DOI: 10.1586/ecp.12.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional medicine plays an important role in the healthcare system of Vietnam. Vietnamese traditional medicine (VTM) is underpinned by the oriental philosophy and theory of healing. VTM is largely influenced by traditional Chinese medicine, but differs to a certain extent. VTM is largely not evidence-based from a clinical perspective but subclinical research data from the past decades support the traditional use of many herbal VTM drugs. For safe use, knowledge of the occurrence of adverse reactions and herb-drug interactions is necessary. The Vietnamese government supports further development of VTM in a scientific way and integration of VTM with Western medicine. This article first gives an overview of the general aspects of VTM (historical perspective, regulatory aspects, comparison with traditional Chinese medicine, philosophical background, the Vietnamese market situation, quality assurance and formulations), and subsequently focuses on its safe and effective use in Vietnamese clinical pharmacy and medical practice.
Collapse
Affiliation(s)
- Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Qiao X, Ye M, Xiang C, Wang Q, Liu CF, Miao WJ, Guo DA. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J Chromatogr A 2012; 1258:84-93. [DOI: 10.1016/j.chroma.2012.08.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022]
|
28
|
Raghuvanshi S, Shrivastava S, Johri S, Shukla S. Therapeutic associated with occupational exposure to silica. J Trace Elem Med Biol 2012; 26:205-9. [PMID: 22575538 DOI: 10.1016/j.jtemb.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/02/2012] [Indexed: 11/22/2022]
Abstract
Occupational exposure to silica dust has been increasing the possible risk of varieties of pathologies. The aim of this study was to evaluate the protective activity of ethanolic extract of Glycyrrhiza glabra roots at doses of 500 and 1000 mg/kg, p.o., given for 7 days against the toxicity of SiO(2) nanoparticles (50mg/kg intraperitoneal for 6 weeks) in rats. Exposure to silica altered various respiratory and biochemical variables, including ALT, AST, albumin, urea, uric acid, creatinine, catalase, LPO and GSH. Treatments with G. glabra extract significantly improved antioxidant status towards control. Stone workers in the Gwalior region exposed to silica dust had higher prevalence of cough, wheezing and shortness of breath. Increased serum ACE level was noted in the silica exposed group. It is of immense need to monitor this problem for betterment of worker's health.
Collapse
Affiliation(s)
- Suchita Raghuvanshi
- Reproductive Biology and Toxicology Laboratory, School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | | | | | | |
Collapse
|
29
|
Celik MM, Karakus A, Zeren C, Demir M, Bayarogullari H, Duru M, Al M. Licorice induced hypokalemia, edema, and thrombocytopenia. Hum Exp Toxicol 2012; 31:1295-8. [PMID: 22653692 DOI: 10.1177/0960327112446843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Licorice originates from the root of Glycyrrhiza glabra, which has a herbal ingredient, glycyrrhizic acid, and has a mineralocorticoid-like effect. Chronic intake of licorice induces a syndrome similar to that found in primary hyperaldosteronism. Excessive intake of licorice may cause a hypermineralocorticoidism-like syndrome characterized by sodium and water retention, hypertension, hypokalemia, metabolic alkalosis, low-renin activity, and hypoaldosteronism. In this case report, an association of hypokalemia, edema, and thrombocytopenia that is developed due to the excessive intake of licorice is presented. There are case reports in the literature, which suggest that toxicity findings may emerge with hyperaldosteronism-like manifestations such as hypokalemia, edema, and hypertension. However, any knowledge of thrombocytopenia as a resultant was not encountered among these reported toxic effects. Our case is important because it shows that the excessive intake of licorice may cause a toxic effect in the form of thrombocytopenia. This report is the first presented case to show thrombocytopenia due to licorice syrup consumption.
Collapse
Affiliation(s)
- M M Celik
- Department of Internal Medicine, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey.
| | | | | | | | | | | | | |
Collapse
|
30
|
Delacour H, Le Berre JP, Servonnet A, Janvier F, Rault A, Ceppa F, Gardet V. [The old man and the syrup]. PATHOLOGIE-BIOLOGIE 2011; 59:336-338. [PMID: 19896293 DOI: 10.1016/j.patbio.2009.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/15/2009] [Indexed: 05/28/2023]
Abstract
Intoxication by glycyrrhizin is a rare cause of hypokalemia. We describe a patient with severe hypokalemia caused by long-term consumption of syrup containing liquorice. The physiopathological mechanism of the intoxication and the differential diagnosis are presented.
Collapse
Affiliation(s)
- H Delacour
- Fédération de Biologie Clinique, Hôpital d'Instruction des Armées Bégin, 69 Avenue de Paris, 94163 Saint-Mandé cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Guan Y, Li FF, Hong L, Yan XF, Tan GL, He JS, Dong XW, Bao MJ, Xie QM. Protective effects of liquiritin apioside on cigarette smoke-induced lung epithelial cell injury. Fundam Clin Pharmacol 2011; 26:473-83. [DOI: 10.1111/j.1472-8206.2011.00956.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of Glycyrrhiza glabra and its phytoconstituents. Inflammopharmacology 2011; 19:235-41. [PMID: 21328091 DOI: 10.1007/s10787-011-0080-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 01/21/2011] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To evaluate the inhibitory property of de-glycyrrhizinated extract of Glycyrrhiza glabra root and its phytoconstituents (glabridin, isoliquiritigenin and glycyrrhizin) on LPS-induced production of pro-inflammatory mediators. MATERIALS AND METHODS Inhibitory effect of G. glabra extract and its phytoconstituents were studied on lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) levels in J774A.1 murine macrophages. RESULTS G. glabra and isoliquiritigenin significantly inhibited LPS stimulated NO, IL-1 beta and IL-6 production. Glabridin showed significant inhibition of NO and IL-1 beta release, but failed to attenuate IL-6 levels at the tested concentrations. In addition, glycyrrhizin did not exhibit inhibitory response towards any of the LPS-induced pro-inflammatory mediators at the tested concentrations. CONCLUSION From the results we speculate that the inhibitory effect of G. glabra extract on LPS-induced pro-inflammatory mediators is influenced by glabridin and isoliquiritigenin and is not contributed by glycyrrhizin.
Collapse
|
33
|
Chen ZP, Xiao L, Liu D, Feng MS, Xiao YY, Chen J, Li W, Li WD, Cai BC. Synthesis of a novel polymer cholesterol-poly(ethylene glycol) 2000-glycyrrhetinic acid (chol-PEG-GA) and its application in brucine liposome. J Appl Polym Sci 2011. [DOI: 10.1002/app.35501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Thaler H, Wirnsberger G, Pienaar S, Roller R. Bilateral leg edema in the elderly. Clinical considerations and treatment options. Eur Geriatr Med 2010. [DOI: 10.1016/j.eurger.2010.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Nagai H, He JX, Tani T, Akao T. Antispasmodic activity of licochalcone A, a species-specific ingredient of Glycyrrhiza inflata roots. J Pharm Pharmacol 2010; 59:1421-6. [PMID: 17910818 DOI: 10.1211/jpp.59.10.0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Licochalcone A, a species-specific and characteristic retrochalcone ingredient of Glycyrrhiza inflata root, has been shown to possess multiple bioactive properties. However, its muscle relaxant activity has not been reported previously. Licochalcone A showed a concentration-dependent relaxant effect on the contraction induced by carbachol (50% effective concentration (EC50) = 5.64 ± 1.61 μm). KCl (EC50 5.12 ± 1.68 μm), BaCl2 (EC50 1.97 ± 0.48 μm) and A23187 (EC50 2.63 ± 2.05 μm). Pretreatment with licochalcone A enhanced the relaxant effect of forskolin, an adenylyl cyclase activator, on the contraction in a similar manner to 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase (PDE) inhibitor. Furthermore, the IC50 (22.1 ± 10.9 μm) of licochalcone A against cAMP PDE was similar to that of IBMX (26.2 ± 7.4 μm). These results indicated that licochalcone A may have been responsible for the relaxant activity of G. inflata root and acted through the inhibition of cAMP PDE.
Collapse
Affiliation(s)
- Hidemasa Nagai
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
36
|
Majima T, Yamada T, Tega E, Sakurai H, Saiki I, Tani T. Pharmaceutical evaluation of liquorice before and after roasting in mice. J Pharm Pharmacol 2010; 56:589-95. [PMID: 15142335 DOI: 10.1211/0022357023286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Liquorice has been used for allergic-inflammatory and liver disorders in both traditional Chinese and modern medicine. In traditional Chinese formulations, it is mainly roasted liquorice that has been used rather than un-roasted liquorice. We have compared the pharmaceutical characteristics of liquorice before and after roasting to clarify the pharmaceutical significance of the roasting. Although roasted liquorice contained less glycyrrhizin (an anti-allergic component) than un-roasted liquorice, the inhibitory potency of roasted liquorice extract (200 mg kg−1) on immunoglobulin E (IgE)-mediated triphasic ear swelling in mice was much greater compared with un-roasted liquorice. To search for additional active ingredients, roasted liquorice extract was subjected to gel-chromatography to give an anti-allergic fraction (Fa) of molecular weight ranging from 15000 to 200000 or more, in which glycyrrhizin was not detected. By testing the activity of the various fractions, it was proved that the anti-allergic effect of roasted liquorice was due to glycyrrhizin, its metabolite glycyrrhetic acid, and the Fa fraction. The inhibitory potency of the Fa fraction (15 and 75 mg kg−1) prepared from roasted liquorice was stronger than that prepared from un-roasted liquorice. Therefore, a pharmaceutical implication of roasting the liquorice seems to be associated with an increase in the anti-allergic property of the Fa fraction. It is notable that oral administration of the high molecular mass fraction (Fa) significantly inhibited IgE-mediated ear swelling six days after challenge at doses as low as 3, 15 or 75 mg kg−1.
Collapse
Affiliation(s)
- Takami Majima
- Division of Pharmacognosy, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Lee JW, Ji YJ, Yu MH, Bo MHH, Seo HJ, Lee SP, Lee IS. Antimicrobial effect and resistant regulation ofGlycyrrhiza uralensison methicillin-resistantStaphylococcus aureus. Nat Prod Res 2009; 23:101-11. [DOI: 10.1080/14786410801886757] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ji-Won Lee
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- b The Center for Traditional Microorganism Resources Center, Keimyung Universit , Korea
| | - Young-Ju Ji
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- b The Center for Traditional Microorganism Resources Center, Keimyung Universit , Korea
| | - Mi-Hee Yu
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- b The Center for Traditional Microorganism Resources Center, Keimyung Universit , Korea
| | - Mi-Hyang Hwang Bo
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- b The Center for Traditional Microorganism Resources Center, Keimyung Universit , Korea
| | - Hwa-Jeong Seo
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- c Daegu Technopark Bio Industry Center, Daechoen-dong, Dalseo-gu , Daegu, Korea
| | - Sam-Pin Lee
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- b The Center for Traditional Microorganism Resources Center, Keimyung Universit , Korea
| | - In-Seon Lee
- a Department of Food Science and Technology , Keimyung University , Daegu, Korea
- b The Center for Traditional Microorganism Resources Center, Keimyung Universit , Korea
| |
Collapse
|
38
|
Affiliation(s)
- Satish R Raj
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-2195, USA.
| | | | | | | |
Collapse
|
39
|
Hammond K, Wilson M, Sanche S, Wilson TW. Cocktail paralysis. Am J Med 2009; 122:907-9. [PMID: 19786157 DOI: 10.1016/j.amjmed.2009.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/25/2022]
Affiliation(s)
- Karsten Hammond
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
40
|
Chen X, Zhao J, Meng Q, Li S, Wang Y. Simultaneous determination of five flavonoids in licorice using pressurized liquid extraction and capillary electrochromatography coupled with peak suppression diode array detection. J Chromatogr A 2009; 1216:7329-35. [DOI: 10.1016/j.chroma.2009.08.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 11/29/2022]
|
41
|
Liquorice health check, Oro-dental implications, and a case report. Case Rep Med 2009; 2009:170735. [PMID: 19707475 PMCID: PMC2729489 DOI: 10.1155/2009/170735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/11/2009] [Indexed: 11/17/2022] Open
Abstract
Liquorice has an active substance, Glycyrrhizin which inhibits the conversion of precursor cortisol to cortisone by inhibiting the enzyme 11-betahydroxysteroid dehydrogenase. When imbibed, liquorice acts like hyperaldosteronism which presents with typical symptoms including high blood pressure, low blood potassium, and muscle pain and weakness. This article appraises physiological and pharmacological effects on health of liquorice, critiques products containing liquorice, describes a typical case report of liquorice-induced hypertension, and appraises oral effects from consumption of liquorice products.
Collapse
|
42
|
Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 2009; 285:109-15. [PMID: 19464787 DOI: 10.1016/j.canlet.2009.04.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/16/2009] [Accepted: 04/23/2009] [Indexed: 12/31/2022]
Abstract
In the Western world, an average of 250 mg per day of triterpenes (member of phytosterol family), largely derived from vegetable oils, cereals, fruits and vegetables is consumed by humans. During the last decade, there has been an unprecedented escalation of interest in triterpenes due to their cholesterol-lowering properties and evidence of this phenomenon include at least 25 clinical studies, 20 patents and at least 10 major commercially triterpene-based products currently being sold all around the world. Lupeol a triterpene (also known as Fagarsterol) found in white cabbage, green pepper, strawberry, olive, mangoes and grapes was reported to possess beneficial effects as a therapeutic and preventive agent for a range of disorders. Last 15 years have seen tremendous efforts by researchers worldwide to develop this wonderful molecule for its clinical use for the treatment of variety of disorders. These studies also provide insight into the mechanism of action of Lupeol and suggest that it is a multi-target agent with immense anti-inflammatory potential targeting key molecular pathways which involve nuclear factor kappa B (NFkappaB), cFLIP, Fas, Kras, phosphatidylinositol-3-kinase (PI3K)/Akt and Wnt/beta-catenin in a variety of cells. It is noteworthy that Lupeol at its effective therapeutic doses exhibit no toxicity to normal cells and tissues. This mini review provides detailed account of preclinical studies conducted to determine the utility of Lupeol as a therapeutic and chemopreventive agent for the treatment of inflammation and cancer.
Collapse
|
43
|
Tian M, Yan H, Ho Row K. Extraction and Analysis of Liquiritin from Licorice. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902790769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Minglei Tian
- a Center for Advanced Bio Technology, Department of Chemical Engineering , Inha University , Incheon, Korea
| | - Hongyuan Yan
- a Center for Advanced Bio Technology, Department of Chemical Engineering , Inha University , Incheon, Korea
| | - Kyung Ho Row
- a Center for Advanced Bio Technology, Department of Chemical Engineering , Inha University , Incheon, Korea
| |
Collapse
|
44
|
Xie YC, Dong XW, Wu XM, Yan XF, Xie QM. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. Int Immunopharmacol 2008; 9:194-200. [PMID: 19071231 DOI: 10.1016/j.intimp.2008.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/22/2008] [Accepted: 11/03/2008] [Indexed: 12/18/2022]
Abstract
Airway inflammation plays important roles in the pathogenesis of acute respiratory distress syndrome (ARDS), asthma and chronic obstructive pulmonary disease (COPD), and anti-inflammatory treatment effectively improves the symptoms of these diseases. To develop the potentially therapeutic compounds for the treatment of pulmonary inflammation, we investigated the effects of licorice flavonoids (LF) extracted from the roots of Glycyrrhiza uralensis (licorice) on lipopolysaccharide (LPS)-induced acute pulmonary inflammation in mice. Acute pulmonary inflammation was induced by intracheal instillation with LPS, treatment with LF at dosages of 3, 10 and 30 mg/kg significantly reduced the LPS-induced inflammatory cells, including neutrophils, macrophages and lymphocytes accumulation in bronchoalveolar lavage fluids (BALF), among these inflammatory cells, LF predominately inhibited neutrophil infiltration, and the maximal effect (30 mg/kg) was as comparable as dexamethasone treatment at 1 mg/kg. Consistent with its effects on neutrophil infiltration, LF treatment significantly increased LPS-induced BALF superoxide dismutase activity, and significantly decreased lung myeloperoxidase activity as well. Furthermore, treatment with LF at 30 mg/kg significantly reduced LPS-induced lung TNFalpha and IL-1beta mRNA expression at 6 h and 24 h after LPS instillation, respectively. Finally, LF at different dosages not only significantly decreased the elevation of lung water content, but also markedly attenuated LPS-induced histological alteration. Therefore, we suggest that LF effectively attenuates LPS-induced pulmonary inflammation through inhibition of inflammatory cells infiltration and inflammatory mediator release which subsequently reduces neutrophil recruitment into lung and neutrophil-mediated oxidative injury, and this study provides with the potential rationale for development of anti-inflammatory compounds from flavonoid extracts of licorice.
Collapse
Affiliation(s)
- Yi-Cheng Xie
- Zhejing Respiratory Drugs Research Laboratory of State Food and Drugs Administration of China, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
45
|
Abstract
Secondary hypertension is common in clinical practice if a broad definition is applied. Various patterns of hypertension exist in the patient with an endocrine source of their disease, including new-onset hypertension in a previously normotensive individual, a loss of blood pressure control in a patient with previously well-controlled blood pressure, and/or labile blood pressure in the setting of either of these 2 patterns. A thorough history and physical exam, which can rule out concomitant medications, alcohol intake, and over-the-counter medication use, is an important prerequisite to the workup for endocrine causes of hypertension. Endocrine forms of secondary hypertension, such as pheochromocytoma and Cushing's disease, are extremely uncommon. Conversely, primary aldosteronism now occurs with sufficient frequency so as to be considered "top of the list" for secondary endocrine causes in otherwise difficult-to-treat or resistant hypertension. Primary aldosteronism can be insidious in its presentation since a supposed hallmark finding, hypokalemia, may be variable in its presentation. It is important to identify secondary causes of hypertension that are endocrine in nature because surgical intervention may result in correction or substantial improvement of the hypertension.
Collapse
Affiliation(s)
- Domenic A Sica
- Virginia Commonwealth University Health System, Richmond, VA 23298-0160, USA.
| |
Collapse
|
46
|
Abstract
Adverse drug reactions (ADRs) occur frequently in modern medical practice, increasing morbidity and mortality and inflating the cost of care. Patients with cardiovascular disease are particularly vulnerable to ADRs due to their advanced age, polypharmacy, and the influence of heart disease on drug metabolism. The ADR potential for a particular cardiovascular drug varies with the individual, the disease being treated, and the extent of exposure to other drugs. Knowledge of this complex interplay between patient, drug, and disease is a critical component of safe and effective cardiovascular disease management. The majority of significant ADRs involving cardiovascular drugs are predictable and therefore preventable. Better patient education, avoidance of polypharmacy, and clear communication between physicians, pharmacists, and patients, particularly during the transition between the inpatient to outpatient settings, can substantially reduce ADR risk.
Collapse
|
47
|
Final report on the safety assessment of Glycyrrhetinic Acid, Potassium Glycyrrhetinate, Disodium Succinoyl Glycyrrhetinate, Glyceryl Glycyrrhetinate, Glycyrrhetinyl Stearate, Stearyl Glycyrrhetinate, Glycyrrhizic Acid, Ammonium Glycyrrhizate, Dipotassium Glycyrrhizate, Disodium Glycyrrhizate, Trisodium Glycyrrhizate, Methyl Glycyrrhizate, and Potassium Glycyrrhizinate. Int J Toxicol 2008; 26 Suppl 2:79-112. [PMID: 17613133 DOI: 10.1080/10915810701351228] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycyrrhetinic Acid and its salts and esters and Glycyrrhizic Acid and its salts and esters are cosmetic ingredients that function as flavoring agents or skin-conditioning agents - miscellaneous or both. These chemicals may be isolated from licorice plants. Glycyrrhetinc Acid is described as at least 98% pure, with 0.6% 24-OH-Glycyrrhetinic Acid, not more than 20 mu g/g of heavy metals and not more than 2 mu g/g of arsenic. Ammonium Glycyrrhizate has been found to be at least 98% pure and Dipotassium Glycyrrhizate has been found to be at least 95% pure. Glycyrrhetinic Acid is used in cosmetics at concentrations of up to 2%; Stearyl Glycyrrhetinate, up to 1%; Glycyrrhizic Acid, up to 0.1%; Ammonium Glycyrrhizate, up to 5%; Dipotassium Glycyrrhizate, up to 1%; and Potassium Glycyrretinate, up to 1%. Although Glycyrrhizic Acid is poorly absorbed by the intestinal tract, it may be hydrolyzed to Glycyrrhetinic Acid by a beta -glucuronidase produced by intestinal bacteria. Glycyrrhetinic Acid and Glycyrrhizic Acid bind to rat and human albumin, but do not absorb well into tissues. Glycyrrhetinic Acid and Glycyrrhizic Acid and metabolites are mostly excreted in the bile, with very little excreted in urine. Dipotassium Glycyrrhizate was undetectable in the receptor chamber when tested for transepidermal permeation through pig skin. Glycyrrhizic Acid increased the dermal penetration of diclofenac sodium in rat skin. Dipotassium Glycyrrhizate increased the intestinal absorption of calcitonin in rats. In humans, Glycyrrhetinic Acid potentiated the effects of hydrocortisone in the skin. Moderate chronic or high acute exposure to Glycyrrhizic Acid, Ammonium Glycyrrhizate, and their metabolites have been demonstrated to cause transient systemic alterations, including increased potassium excretion, sodium and water retention, body weight gain, alkalosis, suppression of the renin-angiotensis-aldosterone system, hypertension, and muscular paralysis; possibly through inhibition of 11beta -hydroxysteroid dehydrogenase-2 (11beta -OHSD2) in the kidney. Glycyrrhetinic Acid and its derivatives block gap junction intracellular communication in a dose-dependent manner in animal and human cells, including epithelial cells, fibroblasts, osteoblasts, hepatocytes, and astrocytes; at high concentrations, it is cytotoxic. Glycyrrhetinic Acid and Glycyrrhizic Acid protect liver tissue from carbon tetrachloride. Glycyrrhizic Acid has been used to treat chronic hepatitis, inhibiting the penetration of the hepatitis A virus into hepatocytes. Glycyrrhetinic Acid and Glycyrrhizic Acid have anti-inflammatory effects in rats and mice. The acute intraperitoneal LD(50) for Glycyrrhetinic Acid in mice was 308 mg/kg and the oral LD(50) was > 610 mg/kg. The oral LD(50) in rats was reported to be 610 mg/kg. Higher LD(50) values were generally reported for salts. Little short-term, subchronic, or chronic toxicity was seen in rats given ammonium, dipotassium, or disodium salts of Glycyrrhizic Acid. Glycyrrhetinic Acid was not irritating to shaved rabbit skin, but was considered slightly irritating in an in vitro test. Glycyrrhetinic Acid inhibited the mutagenic activity of benzo[a]pyrene and inhibited tumor initiation and promotion by other agents in mice. Glycyrrhizic Acid inhibited tumor initiation by another agent, but did not prevent tumor promotion in mice. Glycyrrhizic Acid delayed mortality in mice injected with Erlich ascites tumor cells, but did not reduce the mortality rate. Ammonium Glycyrrhizate was not genotoxic in in vivo and in vitro cytogenetics assays, the dominant lethal assay, an Ames assay, and heritable translocation tests, except for possible increase in dominant lethal mutations in rats given 2000 mg/kg day(-1) in their diet. Disodium Glycyrrhizate was not carcinogenic in mice in a drinking water study at exposure levels up to 12.2 mg/kg day(-1) for 96 weeks. Glycyrrhizate salts produced no reproductive or developmental toxicity in rats, mice, golden hamsters, or Dutch-belted rabbits, except for a dose-dependent increase (at 238.8 and 679.9 mg/kg day(-1)) in sternebral variants in a study using rats. Sedation, hypnosis, hypothermia, and respiratory depression were seen in mice given 1250 mg/kg Glycyrrhetinic Acid intraperitoneally. Rats fed a powdered diet containing up to 4% Ammonium Glycyrrhizate had no treatment related effects in motor function tests, but active avoidance was facilitated at 4%, unaffected at 3%, and depressed at 2%. In a study of 39 healthy volunteers, a no effect level of 2 mg/kg/day was determined for Glycyrrhizic Acid given orally for 8 weeks. Clinical tests in seven normal individuals given oral Ammonium Glycyrrhizate at 6 g/day for 3 days revealed reduced renal and thermal sweat excretion of Na+ and K+, but carbohydrate and protein metabolism were not affected. Glycyrrhetinic Acid at concentrations up to 6% was not a skin irritant or a sensitizer in clinical tests. Neither Glycyrrhizic Acid, Ammonium Glycyrrhizate, nor Dipotassium Glycyrrhizate at 5% were phototoxic agents or photosensitizers. Birth weight and maternal blood pressure were unrelated to the level of consumption of Glycyrrhizic Acid in 1049 Finnish women with infants, but babies whose mother consumed > 500 mg/wk were more likely to be born before 38 weeks. The Cosmetic Ingredient Review (CIR) Expert Panel noted that the ingredients in this safety assessment are not plant extracts, powders, or juices, but rather are specific chemical species that may be isolated from the licorice plant. Because these chemicals may be isolated from plant sources, however, steps should be taken to assure that pesticide and toxic metal residues are below acceptable levels. The Panel advised the industry that total polychlorobiphenyl (PCB)/pesticide contamination should be limited to not more than 40 ppm, with not more than 10 ppm for any specific residue, and that toxic metal levels must not contain more than 3 mg/kg of arsenic (as As), not more than 0.002% heavy metals, and not more than 1 mg/kg of lead (as Pb). Although the Panel noted that Glycyrrhizic Acid is cytotoxic at high doses and ingestion can have physiological effects, there is little acute, short-term, subchronic, or chronic toxicity and it is expected that these ingredients would be poorly absorbed through the skin. These ingredients are not considered to be irritants, sensitizers, phototoxic agents, or photosensitizers at the current maximum concentration of use. Accordingly, the CIR Expert Panel concluded that these ingredients are safe in the current practices of use and concentration. The Panel recognizes that certain ingredients in this group are reportedly used in a given product category, but the concentration of use is not available. For other ingredients in this group, information regarding use concentration for specific product categories is provided, but the number of such products is not known. In still other cases, an ingredient is not in current use, but may be used in the future. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicate a pattern of use. Within this overall pattern of use, the Expert Panel considers all ingredients in this group to be safe.
Collapse
|
48
|
Wu X, Zhang L, Gurley E, Studer E, Shang J, Wang T, Wang C, Yan M, Jiang Z, Hylemon PB, Sanyal AJ, Pandak WM, Zhou H. Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology 2008; 47:1905-15. [PMID: 18452148 DOI: 10.1002/hep.22239] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and affects millions of people worldwide. Despite the increasing prevalence of NAFLD, the exact molecular/cellular mechanisms remain obscure and effective therapeutic strategies are still limited. It is well-accepted that free fatty acid (FFA)-induced lipotoxicity plays a pivotal role in the pathogenesis of NAFLD. Inhibition of FFA-associated hepatic toxicity represents a potential therapeutic strategy. Glycyrrhizin (GL), the major bioactive component of licorice root extract, has a variety of pharmacological properties including anti-inflammatory, antioxidant, and immune-modulating activities. GL has been used to treat hepatitis to reduce liver inflammation and hepatic injury; however, the mechanism underlying the antihepatic injury property of GL is still poorly understood. In this report, we provide evidence that 18 beta-glycyrrhetinic acid (GA), the biologically active metabolite of GL, prevented FFA-induced lipid accumulation and cell apoptosis in in vitro HepG2 (human liver cell line) NAFLD models. GA also prevented high fat diet (HFD)-induced hepatic lipotoxicity and liver injury in in vivo rat NAFLD models. GA was found to stabilize lysosomal membranes, inhibit cathepsin B expression and enzyme activity, inhibit mitochondrial cytochrome c release, and reduce FFA-induced oxidative stress. These characteristics may represent major cellular mechanisms, which account for its protective effects on FFA/HFD-induced hepatic lipotoxicity. CONCLUSION GA significantly reduced FFA/HFD-induced hepatic lipotoxicity by stabilizing the integrity of lysosomes and mitochondria and inhibiting cathepsin B expression and enzyme activity.
Collapse
Affiliation(s)
- Xudong Wu
- Jiangsu Center for Drug Screening, Jiangsu Center for Pharmacodynamic Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22:709-24. [PMID: 18446848 PMCID: PMC7167813 DOI: 10.1002/ptr.2362] [Citation(s) in RCA: 745] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 12/15/2022]
Abstract
The roots and rhizomes of licorice (Glycyrrhiza) species have long been used worldwide as a herbal medicine and natural sweetener. Licorice root is a traditional medicine used mainly for the treatment of peptic ulcer, hepatitis C, and pulmonary and skin diseases, although clinical and experimental studies suggest that it has several other useful pharmacological properties such as antiinflammatory, antiviral, antimicrobial, antioxidative, anticancer activities, immunomodulatory, hepatoprotective and cardioprotective effects. A large number of components have been isolated from licorice, including triterpene saponins, flavonoids, isoflavonoids and chalcones, with glycyrrhizic acid normally being considered to be the main biologically active component. This review summarizes the phytochemical, pharmacological and pharmacokinetics data, together with the clinical and adverse effects of licorice and its bioactive components.
Collapse
Affiliation(s)
- Marjan Nassiri Asl
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
| |
Collapse
|
50
|
Zore GB, Winston UB, Surwase BS, Meshram NS, Sangle VD, Kulkarni SS, Mohan Karuppayil S. Chemoprofile and bioactivities of Taverniera cuneifolia (Roth) Arn.: a wild relative and possible substitute of Glycyrrhiza glabra L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:292-300. [PMID: 17350239 DOI: 10.1016/j.phymed.2007.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/12/2006] [Indexed: 05/14/2023]
Abstract
Chemoprofile of Taverniera cuneifolia (Roth) Arn. a wild relative of commercial licorice (Glycyrrhiza glabra L) is presented. Both T. cuneifolia and G. glabra L were found to be very similar phytochemically. At least eighteen chromatophores were found similar in both the plants including the sweetening principle, glycyrrhizin. The extracts of T. cuneifolia root, exhibited promising anti-inflammatory, anti-tumor, anti germ tube formation (in Candida albicans), protection from mutagen toxicity and cytotoxic activities comparable to that of G. glabra. In general, the results suggest that T. cuneifolia could be used as substitute of G. glabra.
Collapse
Affiliation(s)
- Gajanan B Zore
- School of Life Sciences, SRTM University, Nanded, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|