1
|
de Paula VF, Tardelli LP, Amaral SL. Dexamethasone-Induced Arterial Stiffening Is Attenuated by Training due to a Better Balance Between Aortic Collagen and Elastin Levels. Cardiovasc Drugs Ther 2024; 38:693-703. [PMID: 36795192 DOI: 10.1007/s10557-023-07438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE Although the cardioprotective benefits of exercise training are well known, the effects of training on dexamethasone (DEX)-induced arterial stiffness are still unclear. This study was aimed at investigating the mechanisms induced by training to prevent DEX-induced arterial stiffness. METHODS Wistar rats were allocated into 4 groups and submitted to combined training (aerobic and resistance exercises, on alternate days, 60% of maximal capacity, for 74 d) or were kept sedentary: sedentary control rats (SC), DEX-treated sedentary rats (DS), combined training control (CT), and DEX-treated trained rats (DT). During the last 14 d, rats were treated with DEX (50 μg/kg per body weight, per day, s.c.) or saline. RESULTS DEX increased PWV (+44% vs +5% m/s, for DS vs SC, p<0.001) and increased aortic COL 3 protein level (+75%) in DS. In addition, PWV was correlated with COL3 levels (r=0.682, p<0.0001). Aortic elastin and COL1 protein levels remained unchanged. On the other hand, the trained and treated groups showed lower PWV values (-27% m/s, p<0.001) vs DS and lower values of aortic and femoral COL3 compared with DS. CONCLUSION As DEX is widely used in several situations, the clinical relevance of this study is that the maintenance of good physical capacity throughout life can be crucial to alleviate some of its side effects, such as arterial stiffness.
Collapse
Affiliation(s)
- Vinicius F de Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil
| | - Lidieli P Tardelli
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil
| | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil.
| |
Collapse
|
2
|
Xi Y, Hu L, Chen X, Zuo L, Bai X, Du W, Xu N. Antibacterial and Anti-Inflammatory Polysaccharide from Fructus Ligustri Lucidi Incorporated in PVA/Pectin Hydrogels Accelerate Wound Healing. Molecules 2024; 29:1423. [PMID: 38611703 PMCID: PMC11012603 DOI: 10.3390/molecules29071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
In cutaneous wound healing, an overproduction of inflammatory chemokines and bacterial infections impedes the process. Hydrogels can maintain a physiologically moist microenvironment, absorb chemokines, prevent bacterial infection, inhibit bacterial reproduction, and facilitate wound healing at a wound site. The development of hydrogels provides a novel treatment strategy for the entire wound repair process. Here, a series of Fructus Ligustri Lucidi polysaccharide extracts loaded with polyvinyl alcohol (PVA) and pectin hydrogels were successfully fabricated through the freeze-thaw method. A hydrogel containing a 1% mixing weight ratio of FLL-E (named PVA-P-FLL-E1) demonstrated excellent physicochemical properties such as swellability, water retention, degradability, porosity, 00drug release, transparency, and adhesive strength. Notably, this hydrogel exhibited minimal cytotoxicity. Moreover, the crosslinked hydrogel, PVA-P-FLL-E1, displayed multifunctional attributes, including significant antibacterial properties, earlier re-epithelialization, production of few inflammatory cells, the formation of collagen fibers, deposition of collagen I, and faster remodeling of the ECM. Consequently, the PVA-P-FLL-E1 hydrogel stands out as a promising wound dressing due to its superior formulation and enhanced healing effects in wound care.
Collapse
Affiliation(s)
- Yanli Xi
- Department of Toxicology, School of Public Health, Jilin Medical University, Jilin 132013, China; (Y.X.); (X.C.); (W.D.)
| | - Lianxin Hu
- Department of Clinical Medicine, School of Clinical Medicine, Jilin Medical University, Jilin 132013, China;
| | - Xiang Chen
- Department of Toxicology, School of Public Health, Jilin Medical University, Jilin 132013, China; (Y.X.); (X.C.); (W.D.)
| | - Lili Zuo
- Department of Food Quality and Safety, School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Xuesong Bai
- Department of Nutrition, School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Weijie Du
- Department of Toxicology, School of Public Health, Jilin Medical University, Jilin 132013, China; (Y.X.); (X.C.); (W.D.)
| | - Na Xu
- Office of Educational Administration, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
3
|
Liu X, Halvorsen S, Blanke N, Downs M, Stein TD, Bigio IJ, Zaia J, Zhang Y. Progressive mechanical and structural changes in anterior cerebral arteries with Alzheimer's disease. Alzheimers Res Ther 2023; 15:185. [PMID: 37891618 PMCID: PMC10605786 DOI: 10.1186/s13195-023-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. Anterior cerebral arteries (ACAs) from a total of 19 brain donor participants from controls and pathologically diagnosed AD groups (early-Braak stages I-II; intermediate-Braak stages III-IV; and advanced-Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate and advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameters of the ACAs remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 μm and 32.8 ± 9.24 μm in width for the intermediate and advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Samuel Halvorsen
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Nathan Blanke
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Margaret Downs
- Department of Biochemistry and Cell Biology, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Thor D Stein
- Pathology and Laboratory Medicine, Boston University, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Joseph Zaia
- Department of Biochemistry and Cell Biology, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Liu X, Halvorsen S, Blanke N, Downs M, Stein TD, Bigio IJ, Zaia J, Zhang Y. Progressive Mechanical and Structural Changes in Anterior Cerebral Arteries with Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-3283587. [PMID: 37693508 PMCID: PMC10491325 DOI: 10.21203/rs.3.rs-3283587/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. A total of 28 brain donor participants with human anterior cerebral artery (ACA) from controls and pathologically diagnosed AD groups (early - Braak stages I-II; intermediate - Braak stages III-IV; and advanced - Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate& advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameter of ACA remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 μm and 32.8 ± 9.24 μm in width for the intermediate& advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.
Collapse
Affiliation(s)
| | | | | | - Margaret Downs
- Boston University Chobanian & Avedisian School of Medicine
| | | | | | - Joseph Zaia
- Boston University Chobanian & Avedisian School of Medicine
| | | |
Collapse
|
5
|
Miotto DS, Duchatsch F, Dionizio A, Buzalaf MAR, Amaral SL. Physical Training vs. Perindopril Treatment on Arterial Stiffening of Spontaneously Hypertensive Rats: A Proteomic Analysis and Possible Mechanisms. Biomedicines 2023; 11:biomedicines11051381. [PMID: 37239052 DOI: 10.3390/biomedicines11051381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Arterial stiffness is an important predictor of cardiovascular events. Perindopril and physical exercise are important in controlling hypertension and arterial stiffness, but the mechanisms are unclear. (2) Methods: Thirty-two spontaneously hypertensive rats (SHR) were evaluated for eight weeks: SHRC (sedentary); SHRP (sedentary treated with perindopril-3 mg/kg) and SHRT (trained). Pulse wave velocity (PWV) analysis was performed, and the aorta was collected for proteomic analysis. (3) Results: Both treatments determined a similar reduction in PWV (-33% for SHRP and -23% for SHRT) vs. SHRC, as well as in BP. Among the altered proteins, the proteomic analysis identified an upregulation of the EH domain-containing 2 (EHD2) protein in the SHRP group, required for nitric oxide-dependent vessel relaxation. The SHRT group showed downregulation of collagen-1 (COL1). Accordingly, SHRP showed an increase (+69%) in the e-NOS protein level and SHRT showed a lower COL1 protein level (-46%) compared with SHRC. (4) Conclusions: Both perindopril and aerobic training reduced arterial stiffness in SHR; however, the results suggest that the mechanisms can be distinct. While treatment with perindopril increased EHD2, a protein involved in vessel relaxation, aerobic training decreased COL1 protein level, an important protein of the extracellular matrix (ECM) that normally enhances vessel rigidity.
Collapse
Affiliation(s)
- Danyelle Siqueira Miotto
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos 14801-903, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos 14801-903, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo-USP, Bauru 17012-901, Brazil
| | | | - Sandra Lia Amaral
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos 14801-903, Brazil
- Department of Physical Education, School of Sciences, São Paulo State University-UNESP, Bauru 17033-360, Brazil
| |
Collapse
|
6
|
The effects of repeated binge drinking on arterial stiffness and urinary norepinephrine levels in young adults. J Hypertens 2020; 38:111-117. [PMID: 31503138 DOI: 10.1097/hjh.0000000000002223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effect of repeated binge drinking and moderate alcohol consumption in young adults on arterial stiffness and sympathetic activity. METHODS We enrolled 49 healthy young adults, free of cardiovascular diseases (25 men; age: 23.5 ± 0.4 years; BMI: 23.4 ± 0.4 kg/m; mean ± S.E). Individuals included were those with a history of repeated binge drinking (>2 years duration; n = 20), drank at moderate levels (MODs, >5 years duration; n = 16) and abstained from alcohol (last 2-3 years; n = 13). Arterial stiffness was assessed using carotid to femoral pulse wave velocity (cfPWV) and sympathetic activity was assessed using 24-h urinary norepinephrine levels. Also measured was aortic SBP and augmentation index (AIx), a measure of wave reflection. RESULTS Binge drinkers and MODs had higher cfPWV than alcohol abstainers (0.6 and 0.5 m/s, respectively; P ≤ 0.04). In addition, binge drinkers had higher urinary norepinephrine levels than MODs and alcohol abstainers (P < 0.05). Higher cfPWV were correlated with higher norepinephrine levels (r = 0.35. P = 0.02). Aortic SBP (P = 0.2) and AIx (P = 0.96) were similar among binge drinkers, MODs and alcohol abstainers. CONCLUSION Our findings suggest that repeated exposure to alcohol, regardless of drinking pattern, may increase aortic arterial stiffness in healthy young adults. In addition, sympathetic activation, reflected by increased 24-h urinary norepinephrine levels, may contribute to alcohol-induced arterial stiffening in young adults.
Collapse
|
7
|
Kowara M, Cudnoch-Jedrzejewska A, Opolski G, Wlodarski P. MicroRNA regulation of extracellular matrix components in the process of atherosclerotic plaque destabilization. Clin Exp Pharmacol Physiol 2018; 44:711-718. [PMID: 28440887 DOI: 10.1111/1440-1681.12772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
The process of atherosclerotic plaque destabilization, leading to myocardial infarction, is still not fully understood. The pathway - composed of structural and regulatory proteins of the extracellular matrix (ECM) such as collagen, elastin, small leucine-rich proteoglycans, metalloproteinases, cathepsins and serine proteases - is one potential way of atherosclerotic plaque destabilization. The expression of these proteins is controlled by different microRNA molecules. The goal of this paper is to summarize the current investigations and knowledge about ECM in the process of atherosclerotic plaque destabilization, giving special attention to epigenetic expression regulation by microRNA.
Collapse
Affiliation(s)
- Michal Kowara
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Opolski
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Wlodarski
- Department of Histology and Embryology, Center for Biostructure Research, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
9
|
Rao VH, Kansal V, Stoupa S, Agrawal DK. MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Physiol Rep 2014; 2:e00224. [PMID: 24744893 PMCID: PMC3966234 DOI: 10.1002/phy2.224] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/11/2022] Open
Abstract
Mechanisms underlying the rupture of atherosclerotic plaque, a crucial factor in the development of myocardial infarction and stroke, are not well defined. Here, we examined the role of epidermal growth factor (EGF)‐mediated matrix metalloproteinases (MMP) on the stability of interstitial collagens in vascular smooth muscle cells (VSMCs) isolated from carotid endarterectomy tissues of symptomatic and asymptomatic patients with carotid stenosis. VSMCs isolated from the carotid plaques of both asymptomatic and symptomatic patients were treated with EGF. The MMP‐9 activity was quantified by gelatin zymography and the analysis of mRNA transcripts and protein for MMP‐9, MMP‐1, EGFR and collagen types I, Col I(α1) and collagen type III, Col III(α1) were analyzed by qPCR and immunofluorescence, respectively. The effect of EGF treatment to increase MMP‐9 activity and mRNA transcripts for MMP‐9, MMP‐1, and EGFR and to decrease mRNA transcripts for Col I(α1) and Col III(α1) was threefold to fourfold greater in VSMCs isolated from the carotid plaques of symptomatic than asymptomatic patients. Inhibitors of EGFR (AG1478) and a small molecule inhibitor of MMP‐9 decreased the MMP9 expression and upregulated Col I(α1) and Col III(α1) in EGF‐treated VSMCs of both groups. Additionally, the magnitude in decreased MMP‐9 mRNA and increased Col I(α1) and Col III(α1) due to knockdown of MMP‐9 gene with siRNA in EGF‐treated VSMCs was significantly greater in the symptomatic group than the asymptomatic group. Thus, a selective blockade of both EGFR and MMP‐9 may be a novel strategy and a promising target for stabilizing vulnerable plaques in patients with carotid stenosis. This report described the underlying mechanisms by which MMP‐1 and MMP‐9 induced by EFGR activation decreases the interstitial collagens and this could result in plaque instability in patients with carotid stenosis. Thus, selective blockade of EGFR and/or MMP‐9 may be a novel strategy and a promising target to stabilize atherosclerotic plaques and thus decreases morbidity and mortality.
Collapse
Affiliation(s)
- Velidi H Rao
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska
| | - Vikash Kansal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska
| | - Samantha Stoupa
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska ; Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, 68178, Nebraska
| |
Collapse
|
10
|
Zhang XY, Shen BR, Zhang YC, Wan XJ, Yao QP, Wu GL, Wang JY, Chen SG, Yan ZQ, Jiang ZL. Induction of thoracic aortic remodeling by endothelial-specific deletion of microRNA-21 in mice. PLoS One 2013; 8:e59002. [PMID: 23527070 PMCID: PMC3601125 DOI: 10.1371/journal.pone.0059002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) are known to have an important role in modulating vascular biology. MiR21 was found to be involved in the pathogenesis of proliferative vascular disease. The role of miR21 in endothelial cells (ECs) has well studied in vitro, but the study in vivo remains to be elucidated. In this study, miR21 endothelial-specific knockout mice were generated by Cre/LoxP system. Compared with wild-type mice, the miR21 deletion in ECs resulted in structural and functional remodeling of aorta significantly, such as diastolic pressure dropping, maximal tension depression, endothelium-dependent relaxation impairment, an increase of opening angles and wall-thickness/inner diameter ratio, and compliance decrease, in the miR21 endothelial-specific knockout mice. Furthermore, the miR21 deletion in ECs induced down-regulation of collagen I, collagen III and elastin mRNA and proteins, as well as up-regulation of Smad7 and down-regulation of Smad2/5 in the aorta of miR21 endothelial-specific knockout mice. CTGF and downstream MMP/TIMP changes were also identified to mediate vascular remodeling. The results showed that miR21 is identified as a critical molecule to modulate vascular remodeling, which will help to understand the role of miR21 in vascular biology and the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Xing-Yi Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Rong Shen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Cheng Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Jiao Wan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Liang Wu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Yao Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Guo Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Qiang Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|