1
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Parsamanesh N, Poudineh M, Siami H, Butler AE, Almahmeed W, Sahebkar A. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:1-43. [PMID: 38458734 DOI: 10.1016/bs.pmbts.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Königstein K, Meier J, Angst T, Maurer DJ, Kröpfl JM, Carrard J, Infanger D, Baumann S, Bischofsberger I, Harder M, Jäggi Y, Wettach S, Hanssen H, Schmidt-Trucksäss A. VascuFit: vascular effects of non-linear periodized exercise training in sedentary adults with elevated cardiovascular risk - protocol for a randomized controlled trial. BMC Cardiovasc Disord 2022; 22:449. [PMID: 36303113 PMCID: PMC9615395 DOI: 10.1186/s12872-022-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Background Early vascular aging (EVA) is increasingly prevalent in the general population. Exercise is important for primary cardiovascular prevention, but often insufficient due to ineffective training methods and a lack of biomarkers suitable to monitor its vascular effects. VascuFit will assess the effectiveness of non-linear periodized aerobic exercise (NLPE) in a non-athletic sedentary population to improve both established and promising biomarkers of EVA. Methods Forty-three sedentary adults, aged 40–60 years, with elevated cardiovascular risk will either engage in 8 weeks of ergometer-based NLPE (n = 28) or receive standard exercise recommendations (n = 15). The primary outcome will be the change of brachial-arterial flow-mediated dilation (baFMD) after versus before the intervention. Secondary outcomes will be the change in static vessel analysis (SVA; clinical biomarker of microvascular endothelial function), endomiRs (microRNAs regulating key molecular pathways of endothelial cell homeostasis) and circulating cellular markers of endothelial function (mature endothelial cells, endothelial progenitor cells). Tertiary outcomes will be the change in sphingolipidome, maximum oxygen capacity, and traditional cardiovascular risk factors (blood pressure, triglycerides, cholesterol, fasting glucose, high-sensitivity C-reactive protein). Discussion We expect an improvement of baFMD of at least 2.6% and significant pre-post intervention differences of SVA and endomiRs as well as of the tertiary outcomes in the intervention group. VascuFit may demonstrate the effectiveness of NLPE to improve endothelial function, thus vascular health, in the general sedentary population. Furthermore, this project might demonstrate the potential of selected molecular and cellular biomarkers to monitor endothelial adaptations to aerobic exercise. Trial registration The trial was registered on www.clinicaltrials.gov (NCT05235958) in February 11th 2022.
Collapse
Affiliation(s)
- Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland. .,Clinic for Children and Adolescent Medicine, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany.
| | - Jennifer Meier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Thomas Angst
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Debbie J Maurer
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland.,Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
| | - Julia M Kröpfl
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Sandra Baumann
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Imerio Bischofsberger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Marc Harder
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Yves Jäggi
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Sabrina Wettach
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| |
Collapse
|
4
|
Jiang Q, Li Y, Wu Q, Huang L, Xu J, Zeng Q. Pathogenic role of microRNAs in atherosclerotic ischemic stroke: Implications for diagnosis and therapy. Genes Dis 2022; 9:682-696. [PMID: 35782982 PMCID: PMC9243347 DOI: 10.1016/j.gendis.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke resulting from atherosclerosis (particularly in the carotid artery) is one of the major subtypes of stroke and has a high incidence of death. Disordered lipid homeostasis, lipid deposition, local macrophage infiltration, smooth muscle cell proliferation, and plaque rupture are the main pathological processes of atherosclerotic ischemic stroke. Hepatocytes, macrophages, endothelial cells and vascular smooth muscle cells are the main cell types participating in these processes. By inhibiting the expression of the target genes in these cells, microRNAs play a key role in regulating lipid disorders and atherosclerotic ischemic stroke. In this article, we listed the microRNAs implicated in the pathology of atherosclerotic ischemic stroke and aimed to explain their pro- or antiatherosclerotic roles. Our article provides an update on the potential diagnostic use of miRNAs for detecting growing plaques and impending clinical events. Finally, we provide a perspective on the therapeutic use of local microRNA delivery and discuss the challenges for this potential therapy.
Collapse
|
5
|
Peng Q, Yin R, Zhu X, Jin L, Wang J, Pan X, Ma A. miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice. J Physiol Biochem 2022; 78:365-375. [DOI: 10.1007/s13105-022-00871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
|
6
|
Improta-Caria AC, Aras MG, Nascimento L, De Sousa RAL, Aras-Júnior R, Souza BSDF. MicroRNAs Regulating Renin-Angiotensin-Aldosterone System, Sympathetic Nervous System and Left Ventricular Hypertrophy in Systemic Arterial Hypertension. Biomolecules 2021; 11:biom11121771. [PMID: 34944415 PMCID: PMC8698399 DOI: 10.3390/biom11121771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene and protein expression. MicroRNAs also regulate several cellular processes such as proliferation, differentiation, cell cycle, apoptosis, among others. In this context, they play important roles in the human body and in the pathogenesis of diseases such as cancer, diabetes, obesity and hypertension. In hypertension, microRNAs act on the renin-angiotensin-aldosterone system, sympathetic nervous system and left ventricular hypertrophy, however the signaling pathways that interact in these processes and are regulated by microRNAs inducing hypertension and the worsening of the disease still need to be elucidated. Thus, the aim of this review is to analyze the pattern of expression of microRNAs in these processes and the possible associated signaling pathways.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Department of Physical Education in Cardiology of the State of Bahia, Brazilian Society of Cardiology, Salvador 41170-130, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| | - Marcela Gordilho Aras
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Luca Nascimento
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | | | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 22281-100, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| |
Collapse
|
7
|
He X, Tao Z, Zhang Z, He W, Xie Y, Zhang L. The potential role of RAAS-related hsa_circ_0122153 and hsa_circ_0025088 in essential hypertension. Clin Exp Hypertens 2021; 43:715-722. [PMID: 34392742 DOI: 10.1080/10641963.2021.1945077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: The dysregulation of renin-angiotensin-aldosterone system (RAAS) is closely related to the development of essential hypertension (EH). MicroRNAs (miRNAs) are an important regulator of RAAS. The sponge effect of circular RNAs (circRNAs) on miRNAs makes the circRNA-miRNA-mRNA axis in EH possible, however, there is currently a lack of relevant evidence.Material and Methods: A circRNA-miRNA network was constructed based on the previous circRNAs microarray results. The expression of RAAS-related miRNAs and circRNAs were verified by qRT-PCR. Peripheral blood samples of 106 EH patients and 106 healthy volunteers were included in this study. GO and KEGG enrichment were performed to predict the role of candidate circRNAs in EH.Results: In EH patients, RAAS-related hsa-miR-483-3p and hsa-miR-27a-3p were down-regulated, and hsa_circ_0122153 and hsa_circ_0025088 were up-regulated. The relative expression of RAAS-related circRNAs and target miRNAs showed a negative correlation (hsa_circ_0122153-hsa-miR-483-3p and hsa_circ_0025088-hsa-miR-27a-3p). Hsa_circ_0122153 or hsa_circ_0025088 combined with corresponding miRNAs and environmental factors may support the early diagnosis of EH. Hsa_circ_0122153 and hsa_circ_0025088 may participate in the regulation of aldosterone and the secretion of renin through the circRNA-miRNA-mRNA network, respectively.Conclusion: Highly expressed hsa_circ_0122153 and hsa_circ_0025088 increase the risk of EH. The hsa_circ_0122153/hsa-miR-483-3p and hsa_circ_0025088/hsa-miR-27a-3p axis involving RAAS were potential EH pathways.
Collapse
Affiliation(s)
- Xin He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhenbo Tao
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zebo Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Wenming He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yanqing Xie
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Lina Zhang
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
8
|
Springer CB, Sapp RM, Evans WS, Hagberg JM, Prior SJ. Circulating MicroRNA Responses to Postprandial Lipemia with or without Prior Exercise. Int J Sports Med 2021; 42:1260-1267. [PMID: 34116579 DOI: 10.1055/a-1480-7692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Repeated exposure to a high-fat meal triggers inflammation and oxidative stress, contributing to the onset of cardiometabolic diseases. Regular exercise prevents cardiometabolic diseases and a prior bout of acute endurance exercise can counteract the detrimental cardiovascular effects of a subsequent high-fat meal. Circulating microRNAs (ci-miRs) are potential mediators of these vascular effects through regulation of gene expression at the posttranscriptional level. Therefore, we investigated the expression of ci-miRs related to vascular function (miR-21, miR-92a, miR-126, miR-146a, miR-150, miR-155, miR-181b, miR-221, miR-222) in plasma from healthy, recreationally to highly active, Caucasian adult men after a high-fat meal with (EX) and without (CON) a preceding bout of cycling exercise. Ci-miR-155 was the only ci-miR for which there was a significant interaction effect of high-fat meal and exercise (p=0.050). Ci-miR-155 significantly increased in the CON group at two (p=0.007) and four hours (p=0.010) after the high-fat meal test, whereas it significantly increased in the EX group only four hours after the meal (p=0.0004). There were significant main effects of the high-fat meal on ci-miR-21 (p=0.01), ci-miR-126 (p=0.02), ci-miR-146a (p=0.02), ci-miR-181b (p=0.02), and ci-miR-221 (p=0.008). Collectively, our results suggest that prior exercise does not prevent high-fat meal-induced increases in vascular-related ci-miRs.
Collapse
Affiliation(s)
- Catherine B Springer
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - Ryan M Sapp
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - James M Hagberg
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, United States.,Department of Veterans Affairs, Baltimore Veterans Affairs Geriatric Research, Education and Clincial Center, Baltimore, United States
| |
Collapse
|
9
|
Sapp RM, Chesney CA, Eagan LE, Evans WS, Zietowski EM, Prior SJ, Hagberg JM, Ranadive SM. Changes in circulating microRNA and arterial stiffness following high-intensity interval and moderate intensity continuous exercise. Physiol Rep 2021; 8:e14431. [PMID: 32358919 PMCID: PMC7195557 DOI: 10.14814/phy2.14431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
High‐intensity interval (HII) exercise elicits distinct vascular responses compared to a matched dose of moderate intensity continuous (MOD) exercise. However, the acute effects of HII compared to MOD exercise on arterial stiffness are incompletely understood. Circulating microRNAs (ci‐miRs) may contribute to the vascular effects of exercise. We sought to determine exercise intensity‐dependent changes in ci‐miR potentially underlying changes in arterial stiffness. Ten young, healthy men underwent well‐matched, 30‐min HII and MOD exercise bouts. RT‐qPCR was used to determine the levels of seven vascular‐related ci‐miRs in serum obtained immediately before and after exercise. Arterial stiffness measures including carotid to femoral pulse wave velocity (cf‐PWV), carotid arterial compliance and β‐stiffness, and augmentation index (AIx and AIx75) were taken before, 10min after and 60min after exercise. Ci‐miR‐21‐5p, 126‐3p, 126‐5p, 150‐5p, 155‐5p, and 181b‐5p increased after HII exercise (p < .05), while ci‐miR‐150‐5p and 221‐3p increased after MOD exercise (p = .03 and 0.056). One hour after HII exercise, cf‐PWV trended toward being lower compared to baseline (p = .056) and was significantly lower compared to 60min after MOD exercise (p = .04). Carotid arterial compliance was increased 60min after HII exercise (p = .049) and was greater than 60min after MOD exercise (p = .02). AIx75 increased 10 min after both HII and MOD exercise (p < .05). There were significant correlations between some of the exercise‐induced changes in individual ci‐miRs and changes in cf‐PWV and AIx/AIx75. These results support the hypotheses that arterial stiffness and ci‐miRs are altered in an exercise intensity‐dependent manner, and ci‐miRs may contribute to changes in arterial stiffness.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - William S Evans
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Evelyn M Zietowski
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,Department of Biology, University of Maryland, College Park, MD, USA
| | - Steven J Prior
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Baltimore, MD, USA
| | - James M Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| |
Collapse
|
10
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
11
|
Hosen MR, Goody PR, Zietzer A, Nickenig G, Jansen F. MicroRNAs As Master Regulators of Atherosclerosis: From Pathogenesis to Novel Therapeutic Options. Antioxid Redox Signal 2020; 33:621-644. [PMID: 32408755 DOI: 10.1089/ars.2020.8107] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Cardiovascular disease (CVD) remains the major cause of morbidity and mortality worldwide. Accumulating evidence indicates that atherosclerosis and its sequelae, coronary artery disease, contribute to the majority of cardiovascular deaths. Atherosclerosis is a chronic inflammatory disease of the arteries in which atherosclerotic plaques form within the vessel wall. Epidemiological studies have identified various risk factors for atherosclerosis, such as diabetes, hyperlipidemia, smoking, genetic predisposition, and sedentary lifestyle. Recent Advances: Through the advancement of genetic manipulation techniques and their use in cardiovascular biology, it was shown that small RNAs, especially microRNAs (miRNAs), are dynamic regulators of disease pathogenesis. They are considered to be central during the regulation of gene expression through numerous mechanisms and provide a means to develop biomarkers and therapeutic tools for the diagnosis and therapy of atherosclerosis. Circulating miRNAs encapsulated within membrane-surrounded vesicles, which originate from diverse subcellular compartments, are now emerging as novel regulators of intercellular communication. The miRNAs, in both freely circulating and vesicle-bound forms, represent a valuable tool for diagnosing and monitoring CVD, recently termed as "liquid biopsy." Critical Issues: However, despite the recent advancements in miRNA-based diagnostics and therapeutics, understanding how miRNAs can regulate atherosclerosis is still crucial to achieving an effective intervention and reducing the disease burden. Future Directions: We provide a landscape of the current developmental progression of RNA therapeutics as a holistic approach for treating CVD in different animal models and clinical trials. Future interrogations are warranted for the development of miRNA-based therapeutics to overcome challenges for the treatment of the disease.
Collapse
Affiliation(s)
- Mohammed Rabiul Hosen
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Philip Roger Goody
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, Molecular Cardiology, Heart Center Bonn, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| |
Collapse
|
12
|
Afsar B, Afsar RE, Ertuglu LA, Kuwabara M, Ortiz A, Covic A, Kanbay M. Renin-angiotensin system and cancer: epidemiology, cell signaling, genetics and epigenetics. Clin Transl Oncol 2020; 23:682-696. [PMID: 32930920 DOI: 10.1007/s12094-020-02488-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Day by day, the health and economical burden of cancer increases globally. Indeed it can be considered that there is ''cancer pandemic''. Blocking the renin-angiotensin system (RAS) by angiotensin-converting enzyme (ACE) inhibitors (ACEI) or angiotensin-receptor blockers (ARB) are widely used measures to treat hypertension and heart failure. It has been recently suggested the activation and blocking of RAS has been associated with various types of cancer in epidemiological and experimental studies. Various studies have shown that RAS blockage is protective in some cancers. However, although fewer, contradictory data also showed that RAS blockage is either not related or adversely related to cancer. Although the reasons for these findings are not exactly known, different types of receptors and effectors in RAS may account for these findings. In the current review, we summarize the different RAS receptors and cancer development with regard to epidemiology, and pathogenesis including cell signaling pathways, apoptosis, genetic and epigenetic factors.
Collapse
Affiliation(s)
- B Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University, School of Medicine, 71100, Isparta, Turkey.
| | - R E Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University, School of Medicine, 71100, Isparta, Turkey
| | - L A Ertuglu
- Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - M Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan
| | - A Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Avd. Reyes Católicos 2, 28040, Madrid, Spain
| | - A Covic
- Nephrology Department, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Iași, Romania
| | - M Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Yin X, Xu C, Xu Q, Lang D. Docosahexaenoic acid inhibits vascular smooth muscle cell migration and proliferation by decreasing microRNA‑155 expression levels. Mol Med Rep 2020; 22:3396-3404. [PMID: 32945419 PMCID: PMC7453611 DOI: 10.3892/mmr.2020.11404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) hyperplasia is a common cause of carotid restenosis. In the present study, the potential protective effects of docosahexaenoic acid (DHA) in carotid restenosis and the underlying mechanism of its effects were examined. VSMCs were treated with DHA, a polyunsaturated ω-3 fatty acid. Cell migration and proliferation were assessed using wound healing and Cell Counting Kit-8 assays and by measuring Ki-67 protein levels. Additionally, the expression levels of microRNA-155 were determined by reverse transcription-quantitative PCR (RT-qPCR). The involvement of microRNA-155 in the regulation of migration and proliferation was evaluated by transfecting VSMCs with microRNA mimics and inhibitors. Moreover, the reversal of migration and proliferation after transfection of VSMCs with the microRNA mimics and subsequent treatment with DHA was investigated. A target gene of microRNA-155 was identified using RT-qPCR and luciferase assays. The migration and proliferation of VSMCs, as well as the expression of microRNA-155 was inhibited by DHA stimulation. MicroRNA-155 regulated the migration and proliferation of VSMCs. Finally, proliferation and migration of VSMCs were reduced following DHA treatment, which was mediated by an increase in the expression levels of microRNA-155. Suppressor of cytokine signalling 1 (Socs1) was the target gene of microRNA-155. In conclusion, DHA inhibited VSMC migration and proliferation by reducing microRNA-155 expression. This effect may be caused by the microRNA-155 target gene Socs1.
Collapse
Affiliation(s)
- Xiaoliang Yin
- Department of Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Chunbo Xu
- Department of Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Qiyang Xu
- Department of Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dehai Lang
- Department of Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
14
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
15
|
ACE-Triggered Hypertension Incites Stroke: Genetic, Molecular, and Therapeutic Aspects. Neuromolecular Med 2019; 22:194-209. [PMID: 31802381 DOI: 10.1007/s12017-019-08583-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/29/2019] [Indexed: 01/13/2023]
Abstract
Stroke is the second largest cause of death worldwide. Angiotensin converting enzyme (ACE) gene has emerged as an important player in the pathogenesis of hypertension and consequently stroke. It encodes ACE enzyme that converts the inactive decapeptide angiotensin I to active octapeptide, angiotensin II (Ang II). Dysregulation in the expression of ACE gene, on account of genetic variants or regulation by miRNAs, alters the levels of ACE in the circulation. Variable expression of ACE affects the levels of Ang II. Ang II acts through different signal transduction pathways via various tyrosine kinases (receptor/non-receptor) and protein serine/threonine kinases, initiating a downstream cascade of molecular events. In turn these activated molecular pathways might lead to hypertension and inflammation thereby resulting in cardiovascular and cerebrovascular diseases including stroke. In order to regulate the overexpression of ACE, many ACE inhibitors and blockers have been developed, some of which are still under clinical trials.
Collapse
|
16
|
Inflammation-Related MicroRNAs Are Associated with Plaque Stability Calculated by IVUS in Coronary Heart Disease Patients. J Interv Cardiol 2019; 2019:9723129. [PMID: 31866771 PMCID: PMC6915018 DOI: 10.1155/2019/9723129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/24/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Objectives This study aimed to investigate the association between inflammation-related microRNAs (miR-21, 146a, 155) and the plaque stability in coronary artery disease patients. Methods The expression of miR-21, 146a, and 155 was measured by real-time PCR in 310 consecutive patients. The level of hs-CRP, IL-6, and IL-8 was measured by ELISA. The plaque stability of coronary stenotic lesions was evaluated with intravascular ultrasound (IVUS). Results (1) The levels of hs-CRP, IL-6, and IL-8 were significantly increased in the UAP and AMI groups compared with the CPS group (P < 0.01). (2) The expression of miR-21 and miR-146a in peripheral blood mononuclear cells (PBMCs) and plasma was significantly higher in CAD patients compared with non-CAD patients, whereas the miR-155 expression in PBMCs and plasma was significantly lower in patients with CAD. (3) The miR-21 expression in PBMCs was higher in UAP and AMI groups compared with CPS group. The miR-146a expression in PBMCs was higher in SAP, UAP, and AMI groups than in CPS group. Although the level of miR-155 in PBMCs was lower in SAP, UAP, and AMI groups than in CPS group. The expression patterns of miR-21, miR-146a, and miR-155 in plasma were consistent with those of PBMCs. (4) The expressions of miR-21 and miR-146a in PBMCs and plasma were significantly higher in the vulnerable plaque group than those in stable plaque group. While miR-155 in PBMCs and plasma was significantly lower in vulnerable plaque group compared with stable plaque group. (5) The levels of miR-21 and miR-146a in PBMCs and plasma were significantly higher in soft plaque group than in fibrous plaque group and calcified plaque group. However, miR-155 in PBMCs and plasma was significantly lower in soft plaque group. Conclusions The expression of miR-21 and miR-146a are associated with the plaque stability in coronary stenotic lesions, whereas miR-155 expression is inversely associated with the plaque stability.
Collapse
|
17
|
Asgharzadeh F, Hassanian SM, Ferns GA, Khazaei M, Hasanzadeh M. The Therapeutic Potential of Angiotensin-converting Enzyme and Angiotensin Receptor Inhibitors in the Treatment of Colorectal Cancer: Rational Strategies and Recent Progress. Curr Pharm Des 2019; 24:4652-4658. [PMID: 30636592 DOI: 10.2174/1381612825666190111145140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 01/18/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. There is a document that angiotensin (AT) which is found to be involved in the progression of CRC. Furthermore, Angiotensin receptor inhibitors (ARIs) and angiotensin-converting enzyme Inhibitors (ACE-Is) demonstrate activity in CRC by their inhibition of both Insulin-like growth factor 1 (IGF-1) and Vascular endothelial growth factor (VEGF), and therefore present a potentially novel therapeutic strategy in colorectal cancer, which have summarized in the current review. Preclinical studies have illustrated the direct effect of major active mediator angiotensin II (ATII) on the promotion of angiogenesis through VEGF and other proliferative mediators. Suppression of the angiotensin II type I receptor (AT1R) via ACE-Is has shown a reduction in the development of solid tumor and metastasis, particularly CRC incidence, polyp formation, and distant metastasis. MicroRNAs (miRs) are a family of small nucleotides without coding that plays an important role after transcribing hundreds to thousands of non-coding and coding gene. Against this background, the application of anti-hypertensive medications such as losartan might have a therapeutic impact, although further preclinical and clinical studies might provide novel insight into the potentially beneficial effect of ACE-Is in the treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Kasprzyk-Pawelec A, Wojciechowska A, Kuc M, Zielinski J, Parulski A, Kusmierczyk M, Lutynska A, Kozar-Kaminska K. microRNA expression profile in Smooth Muscle Cells isolated from thoracic aortic aneurysm samples. Adv Med Sci 2019; 64:331-337. [PMID: 31022558 DOI: 10.1016/j.advms.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Thoracic aortic aneurysm (TAA) is a cardiovascular disease characterized by increased aortic diameter, treated with surgery and endovascular therapy in order to avoid aortic dissection or rupture. The mechanism of TAA formation has not been thoroughly studied and many factors have been proposed to drive its progression; however strong focus is attributed to modification of smooth muscle cells (SMCs). Latest research indicates, that microRNAs (miRNAs) may play a significant role in TAA development - these are multifunctional molecules consisting of 19-24 nucleotides involved in regulation of the gene expression level related to many biological processes, i.e. cardiovascular disease pathophysiology, immunity or inflammation. MATERIALS AND METHODS Primary SMCs were isolated from aortic scraps of TAA patients and age- and sex-matched healthy controls. Purity of isolated SMCs was determined by flow cytometry using specific markers: α-SMA, CALP, MHC and VIM. Real-time polymerase chain reaction (RT-PCR) was conducted for miRNA analysis. RESULTS We established an isolation protocol and investigated the miRNA expression level in SMCs isolated from aneurysmal and non-aneurysmal aortic samples. We identified that let-7 g (0.71-fold, p = 0.01), miR-130a (0.40-fold, p = 0.04), and miR-221 (0.49-fold, p = 0.05) significantly differed between TAA patients and healthy controls. CONCLUSIONS Further studies are required to improve our understanding of the pathophysiology underlying TAA, which may aid the development of novel, targeted therapies. The pivotal role of miRNAs in the cardiovascular system provides a new perspective on the pathophysiology of thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Kasprzyk-Pawelec
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Anna Wojciechowska
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Mateusz Kuc
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Jakub Zielinski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Adam Parulski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Mariusz Kusmierczyk
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Anna Lutynska
- Department of Medical Biology, Institute of Cardiology, Warsaw, Poland
| | | |
Collapse
|
19
|
Fuschi P, Maimone B, Gaetano C, Martelli F. Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxid Redox Signal 2019; 30:992-1010. [PMID: 28683564 DOI: 10.1089/ars.2017.7229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Redox homeostasis plays a pivotal role in vascular cell function and its imbalance has a causal role in a variety of vascular diseases. Accordingly, the response of mammalian cells to redox cues requires precise transcriptional and post-transcriptional modulation of gene expression patterns. Recent Advances: Mounting evidence shows that nonprotein-coding RNAs (ncRNAs) are important for the functional regulation of most, if not all, cellular processes and tissues. Not surprisingly, a prominent role of ncRNAs has been identified also in the vascular system response to oxidative stress. CRITICAL ISSUES The highly heterogeneous family of ncRNAs has been divided into several groups. In this article we focus on two classes of regulatory ncRNAs: microRNAs and long ncRNAs (lncRNAs). Although knowledge in many circumstances, and especially for lncRNAs, is still fragmentary, ncRNAs are clinically interesting because of their diagnostic and therapeutic potential. We outline ncRNAs that are regulated by oxidative stress as well as ncRNAs that modulate reactive oxygen species production and scavenging. More importantly, we describe the role of these ncRNAs in vascular physiopathology and specifically in disease conditions wherein oxidative stress plays a crucial role, such as hypoxia and ischemia, ischemia reperfusion, inflammation, diabetes mellitus, and atherosclerosis. FUTURE DIRECTIONS The therapeutic potential of ncRNAs in vascular diseases and in redox homeostasis is discussed.
Collapse
Affiliation(s)
- Paola Fuschi
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Biagina Maimone
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Carlo Gaetano
- 2 Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
20
|
Protein Arginine Methyltransferase 2 Inhibits Angiotensin II-Induced Proliferation and Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1547452. [PMID: 30186848 PMCID: PMC6110007 DOI: 10.1155/2018/1547452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022]
Abstract
Objectives Protein arginine methyltransferase 2 (PRMT2) protects against vascular injury-induced intimal hyperplasia; however, little is known about the role of PRMT2 in angiotensin II (Ang II)-induced VSMCs proliferation and inflammation. This research aims to determine whether PRMT2 inhibits Ang II-induced proliferation and inflammation of vascular smooth muscle cells (VSMCs). Materials and Methods PRMT2 overexpression was used to elucidate the role of PRMT2 in Ang II-induced VSMCs proliferation and inflammation. Western blotting and reverse transcriptional PCR were adopted to detect protein and mRNA expression severally. Cell viability was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and cell cycle distribution by flow cytometry. Results Ang II significantly reduced mRNA and protein levels of PRMT2 in VSMCs in time-dependent and dose-dependent manner. Results of PRMT2 overexpression indicated that PRMT2 inhibited proliferation of VSMCs stimulated with 100 nmol/L Ang II for 24 hours. Furthermore, overexpression of PRMT2 reduced Ang II-induced production of proinflammatory cytokines such as interleukin 6 (IL-6) and interleukin 1β (IL-1β) in VSMCs. Conclusions These findings suggest that PRMT2 alleviates Ang II-induced VSMCs proliferation and inflammation, providing a new mechanism about how Ang II mediated VSMCs proliferation and inflammation.
Collapse
|
21
|
Role of MicroRNAs in Renal Parenchymal Diseases-A New Dimension. Int J Mol Sci 2018; 19:ijms19061797. [PMID: 29914215 PMCID: PMC6032378 DOI: 10.3390/ijms19061797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
Since their discovery in 1993, numerous microRNAs (miRNAs) have been identified in humans and other eukaryotic organisms, and their role as key regulators of gene expression is still being elucidated. It is now known that miRNAs not only play a central role in the processes that ensure normal development and physiology, but they are often dysregulated in various diseases. In this review, we present an overview of the role of miRNAs in normal renal development and physiology, in maladaptive renal repair after injury, and in the pathogenesis of renal parenchymal diseases. In addition, we describe methods used for their detection and their potential as therapeutic targets. Continued research on renal miRNAs will undoubtedly improve our understanding of diseases affecting the kidneys and may also lead to new therapeutic agents.
Collapse
|
22
|
Yi F, Hao Y, Chong X, Zhong W. Overexpression of microRNA-506-3p aggravates the injury of vascular endothelial cells in patients with hypertension by downregulating Beclin1 expression. Exp Ther Med 2018; 15:2844-2850. [PMID: 29456688 PMCID: PMC5795718 DOI: 10.3892/etm.2018.5733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to measure the expression of microRNA (miRNA)-506-3p in the peripheral blood of patients with hypertension and to determine the biological functions and mechanisms of action of miR-506-3p. A total of 61 patients with primary hypertension were included in the present study. Peripheral blood was collected from all patients, as well as 31 healthy subjects who were included in a control group. The expression of miR-506-3p in peripheral blood was determined by reverse transcription-quantitative polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-506-3p mimics or miR-506-3p inhibitor. The proliferation and migration of HUVECs were determined using cell-counting kit 8 and Transwell assays, respectively. The cell cycle and apoptosis of HUVECs were detected by flow cytometry. The expression of Beclin1 (BECN1) protein, a potential target of miR-506-3p, was measured using western blotting. A dual-luciferase reporter assay was performed to determine the interaction between BECN1 and miR-506-3p. It was demonstrated that miR-506-3p expression in the peripheral blood of patients with patients was upregulated and dependent on the severity of hypertension. miR-506-3p overexpression inhibited the proliferation and migration of HUVECs. In addition, miR-506-3p inhibited the transition from the G1 phase to the S-phase in HUVECs. Overexpression of miR-506-3p promoted the apoptosis of HUVECs. Notably, miR-506-3p downregulated the expression of BECN1 by directly binding to its 3′-untranslated region. The present study demonstrated that miR-506-3p expression is elevated in the peripheral blood of patients with hypertension and is associated with the severity of hypertension. By downregulating BECN1 expression, miR-506-3p aggravates injury in vascular endothelial cells by inhibiting the proliferation and migration of HUVECs, as well as promoting their apoptosis.
Collapse
Affiliation(s)
- Fanfan Yi
- Department of Emergency, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Yugui Hao
- Department of Emergency, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Xiaoyi Chong
- Department of Clinical Medicine, Medical College of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Wei Zhong
- Cadre Ward, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| |
Collapse
|
23
|
Nanoudis S, Pikilidou M, Yavropoulou M, Zebekakis P. The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature. Front Genet 2017; 8:209. [PMID: 29312437 PMCID: PMC5733083 DOI: 10.3389/fgene.2017.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Arterial stiffness is an independent risk factor for fatal and non-fatal cardiovascular events, such as systolic hypertension, coronary artery disease, stroke, and heart failure. Moreover it reflects arterial aging which in many cases does not coincide with chronological aging, a fact that is in large attributed to genetic factors. In addition to genetic factors, microRNAs (miRNAs) seem to largely affect arterial aging either by advancing or by regressing arterial stiffness. MiRNAs are small RNA molecules, ~22 nucleotides long that can negatively control their target gene expression posttranscriptionally. Pathways that affect main components of stiffness such as fibrosis and calcification seem to be influenced by up or downregulation of specific miRNAs. Identification of this aberrant production of miRNAs can help identify epigenetic changes that can be therapeutic targets for prevention and treatment of vascular diseases. The present review summarizes the specific role of the so far discovered miRNAs that are involved in pathways of arterial stiffness.
Collapse
Affiliation(s)
- Sideris Nanoudis
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Maria Pikilidou
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Maria Yavropoulou
- Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
24
|
de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, Rengo G. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Front Med (Lausanne) 2017; 4:74. [PMID: 28660188 PMCID: PMC5466994 DOI: 10.3389/fmed.2017.00074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
Collapse
Affiliation(s)
- Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| |
Collapse
|
25
|
Gu Q, Zhao G, Wang Y, Xu B, Yue J. Silencing miR-16 Expression Promotes Angiotensin II Stimulated Vascular Smooth Muscle Cell Growth. ACTA ACUST UNITED AC 2017; 6. [PMID: 29104843 DOI: 10.4172/2168-9296.1000181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
miRNAs are a class of non-coding endogenous small RNAs that control gene expression at the posttranscriptional level and involved in cell proliferation, migration and differentiation. Dysregulation of miRNA expression is involved in a variety of human diseases including cardiovascular diseases. miRNAs have been shown to regulate vascular smooth muscle cell (VSMC) function and play vital roles in hypertension, restenosis and atherosclerosis. Here we reported that miR-16 as one of miRNAs in the miR-15 family was highly expressed in vascular smooth muscle cells (VSMCs) and involved in angiotensin II (Ang II) mediated VSMC signaling pathways. Ang II downregulated miR-16 expression in VSMCs. Lentiviral vector mediated miR-16 knockdown promoted Ang II-induced cell proliferation and migration. Moreover, silencing miR-16 enhanced Ang II induced cell cycle associated gene expression and promoted Ang II-activated cell proliferative pathways ERK1/2 and p38. Our finding demonstrated for the first time that miR-16 was a potential therapeutic target by participating in the Ang II-associated multiple signaling pathways in cardiovascular diseases.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Cardiology, the Affiliated Hospital of Nantong University, Nantong, Jiangsu.,Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| | - Guannan Zhao
- Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| | - Yinan Wang
- Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China
| | - Junming Yue
- Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| |
Collapse
|
26
|
Zhang ZW, Guo RW, Lv JL, Wang XM, Ye JS, Lu NH, Liang X, Yang LX. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin. Biochem Biophys Res Commun 2017; 486:414-422. [PMID: 28315335 DOI: 10.1016/j.bbrc.2017.03.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis.
Collapse
Affiliation(s)
- Zi-Wei Zhang
- Department of Postgraduate, Kunming Medical University, Yunnan, 650500, China; Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Rui-Wei Guo
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Jin-Lin Lv
- Department of Postgraduate, Kunming Medical University, Yunnan, 650500, China; Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Xian-Mei Wang
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Jin-Shan Ye
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Ni-Hong Lu
- Department of Postgraduate, Kunming Medical University, Yunnan, 650500, China; Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Xing Liang
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China
| | - Li-Xia Yang
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, China.
| |
Collapse
|
27
|
Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6021394. [PMID: 28097140 PMCID: PMC5209603 DOI: 10.1155/2016/6021394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Vascular aging, a specific type of organic aging, is related to age-dependent changes in the vasculature, including atherosclerotic plaques, arterial stiffness, fibrosis, and increased intimal thickening. Vascular aging could influence the threshold, process, and severity of various cardiovascular diseases, thus making it one of the most important risk factors in the high mortality of cardiovascular diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cell biological basis of these pathology changes of the vasculature, the structure and function of ECs and VSMCs play a key role in vascular aging. MicroRNAs (miRNAs), small noncoding RNAs, have been shown to regulate the expression of multiple messenger RNAs (mRNAs) posttranscriptionally, contributing to many crucial aspects of cell biology. Recently, miRNAs with functions associated with aging or aging-related diseases have been studied. In this review, we will summarize the reported role of miRNAs in the process of vascular aging with special emphasis on EC and VSMC functions. In addition, the potential application of miRNAs to clinical practice for the diagnosis and treatment of cardiovascular diseases will also be discussed.
Collapse
|
28
|
Klimczak D, Jazdzewski K, Kuch M. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy. Blood Press 2016; 26:2-8. [PMID: 27177042 DOI: 10.3109/08037051.2016.1167355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.
Collapse
Affiliation(s)
- Dominika Klimczak
- a Division of Heart Failure and Cardiac Rehabilitation, Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine , Medical University of Warsaw , Warsaw , Poland.,b Department of Immunology, Transplantology and Internal Diseases , Medical University of Warsaw , Warsaw , Poland
| | - Krystian Jazdzewski
- c Genomic Medicine , Medical University of Warsaw , Warsaw , Poland.,d Laboratory of Human Cancer Genetics, Centre of New Technologies, CENT , University of Warsaw , Warsaw , Poland
| | - Marek Kuch
- e Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
29
|
Huang Y, Chen J, Zhou Y, Tang S, Li J, Yu X, Mo Y, Wu Y, Zhang Y, Feng Y. Circulating miR155 expression level is positive with blood pressure parameters: Potential markers of target-organ damage. Clin Exp Hypertens 2016; 38:331-6. [PMID: 27028953 DOI: 10.3109/10641963.2015.1116551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the relationship of miR155 with office and ambulatory blood pressure (BP) parameters and left ventricular hypertrophy (LVH) in patients with hypertension and healthy controls. METHODS We assessed the expression level of the miR155 in 50 patients with essential hypertension and 30 healthy individuals. All patients underwent two-dimensional echocardiography, office BP monitoring and ambulatory blood pressure monitoring (ABPM). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to evaluate the expression of selected miR155. The miR155 correlations between BP parameters and left ventricular mass index (LVMI) were assessed using the Spearman correlation coefficient. RESULTS We observed higher expression level of miR155 (33.22 ± 2.59 vs. 27.30 ± 1.76; p < 0.001) in hypertensive patients compared with healthy control individuals, as well as in LVH to nLVH group (33.00 ± 2.78 vs. 27.28 ± 1.76; p < 0.001). MiR155 expression level showed significant positive correlations with office measurement of systolic blood pressure (SBP) (r = 0.634, p < 0.001), diastolic blood pressure (DBP) (r = 0.222, p < 0.05), pulse pressure (PP) (r = 0.564, p < 0.001), respectively. And explored miR155 expression level in relation to 24-h ABPM parameters showed significant positive correlation with 24 h mean SBP (r = 0.67, p < 0.001), 24 h mean DBP (r = 0.257, p < 0.05), 24 h mean PP (r = 0.597, p < 0.001), respectively, as well as with LVMI (r = 0.591, p < 0.001). CONCLUSION Circulating miR155 may possibly represent potential non-invasive marker of hypertension and target organ damage (TOD) in essential hypertensive patients.
Collapse
Affiliation(s)
- Yuqing Huang
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Jiyan Chen
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Yingling Zhou
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Songtao Tang
- b Community Health Center of Liaobu County , Donguang , Guangdong , China
| | - Jie Li
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Xueju Yu
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Yujing Mo
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Ying Wu
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Ying Zhang
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Yingqing Feng
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| |
Collapse
|
30
|
Role of MicroRNAs in Renin-Angiotensin-Aldosterone System-Mediated Cardiovascular Inflammation and Remodeling. Int J Inflam 2015; 2015:101527. [PMID: 26064773 PMCID: PMC4438140 DOI: 10.1155/2015/101527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/18/2015] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs are endogenous regulators of gene expression either by inhibiting translation or protein degradation. Recent studies indicate that microRNAs play a role in cardiovascular disease and renin-angiotensin-aldosterone system- (RAAS-) mediated cardiovascular inflammation, either as mediators or being targeted by RAAS pharmacological inhibitors. The exact role(s) of microRNAs in RAAS-mediated cardiovascular inflammation and remodeling is/are still in early stage of investigation. However, few microRNAs have been shown to play a role in RAAS signaling, particularly miR-155, miR-146a/b, miR-132/122, and miR-483-3p. Identification of specific microRNAs and their targets and elucidating microRNA-regulated mechanisms associated RAS-mediated cardiovascular inflammation and remodeling might lead to the development of novel pharmacological strategies to target RAAS-mediated vascular pathologies. This paper reviews microRNAs role in inflammatory factors mediating cardiovascular inflammation and RAAS genes and the effect of RAAS pharmacological inhibition on microRNAs and the resolution of RAAS-mediated cardiovascular inflammation and remodeling. Also, this paper discusses the advances on microRNAs-based therapeutic approaches that may be important in targeting RAAS signaling.
Collapse
|
31
|
The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. Int J Hypertens 2015; 2015:896861. [PMID: 25815211 PMCID: PMC4359877 DOI: 10.1155/2015/896861] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
The renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the development of hypertension. Angiotensin converting enzyme 2 (ACE2), which primarily metabolises angiotensin (Ang) II to generate the beneficial heptapeptide Ang-(1-7), serves as a negative regulator of the RAAS. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardiovascular protective peptide. The physiological effects of Apelin are exerted through binding to its receptor APJ, a seven-transmembrane G protein-coupled receptor that shares significant homology with the Ang II type 1 receptor (AT1R). The deregulation of microRNAs, a class of short and small noncoding RNAs, has been shown to involve cardiovascular remodeling and pathogenesis of hypertension via the activation of the Ang II/AT1R pathway. MicroRNAs are linked with modulation of the ACE2/Apelin signaling, which exhibits beneficial effects in the cardiovascular system and hypertension. The ACE2-coupled crosstalk among the RAAS, the Apelin system, and microRNAs provides an important mechanistic insight into hypertension. This paper focuses on what is known about the ACE2/Apelin signaling and its biological roles, paying particular attention to interactions and crosstalk among the ACE2/Apelin signaling, microRNAs, and hypertension, aiming to facilitate the exploitation of new therapeutic medicine to control hypertension.
Collapse
|
32
|
Wang F, Chen C, Wang D. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets. Front Med 2014; 8:404-18. [PMID: 25445171 DOI: 10.1007/s11684-014-0379-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 10/15/2014] [Indexed: 12/31/2022]
Abstract
microRNAs (miRNAs) are a class of conserved, short, non-coding RNAs that have important and potent capacities to regulate gene expression at the posttranscriptional level. In the past several years, the aberrant expressions of miRNAs in the cardiovascular system have been widely reported, and the crucial roles of some special miRNAs in heart development and pathophysiology of various cardiovascular diseases have been gradually recognized. Recently, it was discovered that miRNAs are presented in peripheral circulation abundantly and stably. This has raised the possibility of using circulating miRNAs as biomarkers for diseases. Furthermore, some studies demonstrated that circulating miRNAs may serve as novel extracellular communicators of cell-cell communication. These discoveries not only reveal the functions of circulating miRNAs in cardiovascular system but also inform the development of miRNAs therapeutic strategies. In this review, we discuss the potential roles of circulating miRNAs in a variety of cardiovascular diseases from biomarkers to therapeutic targets to clearly understand the roles of circulating miRNAs in cardiovascular system.
Collapse
Affiliation(s)
- Feng Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | |
Collapse
|
33
|
Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol 2014; 23:298-305. [PMID: 25087597 DOI: 10.1016/j.carpath.2014.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION It is well known that exercise alleviates aortic remodeling and preserves endothelial function in spontaneously hypertensive rats (SHRs). However, the underlying molecular mechanism remains unclear. This study aimed to investigate the role of renin-angiotensin system (RAS) components in exercise-induced attenuation of aortic remodeling and improvement of endothelial function in an animal model of human essential hypertension. METHODS The 10-week-old male SHR and age-matched normotensive Wistar-Kyoto rats were given moderate-intensity exercise for 12weeks (four groups, n=80-86 in each group). RESULTS In this work, exercise training reduced blood pressure and effectively attenuated aortic remodeling, marked by a reduction in aortic weight/length, wall thickness, and aortic levels of elastin and hydroxyproline, and improved endothelium-mediated vascular relaxations of aortas in response to acetylcholine. Exercise training in SHR reduced angiotensin II (AngII) levels and enhanced Ang-(1-7) levels in aortas. Exercise training in SHR suppressed aortic angiotensin-converting enzyme (ACE) and AngII type 1 receptor (AT1R) messenger RNA (mRNA) levels and protein expression and up-regulated ACE2, AngII type 2 receptor, and Mas mRNA levels and protein expression. In addition, exercise training in SHR increased levels of microRNA-27a (targeting ACE) and microRNA-155 (targeting AT1R) and decreased levels of microRNA-143 (targeting ACE2) in the aortas. CONCLUSION Chronic aerobic exercise training improved RAS balance in the aortas, which may in part explain the protective effect of exercise on aortic function and structure. SUMMARY Chronic aerobic exercise training improved RAS balance in the aortas, which may explain the protective effect of exercise on aortic function and structure, at least in part.
Collapse
|