1
|
McGrath MS, Wentworth BJ. The Renin-Angiotensin System in Liver Disease. Int J Mol Sci 2024; 25:5807. [PMID: 38891995 PMCID: PMC11172481 DOI: 10.3390/ijms25115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.
Collapse
Affiliation(s)
- Mary S. McGrath
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Brian J. Wentworth
- Division of Gastroenterology & Hepatology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Siregar S, Rulianov R, Ksatriapraja RA, Stefanus D. The role of angiotensin receptor blocker (losartan) on decreasing fibrotic process of corpora cavernosa in priapism model of wistar rats. F1000Res 2024; 11:831. [PMID: 38046538 PMCID: PMC10690033 DOI: 10.12688/f1000research.123040.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 12/05/2023] Open
Abstract
Background Priapism induces regulation of Transforming Growth Factor-β1 (TGF-β1) expression and collagen-type-1 deposition. This will replace the normal corpora cavernosa with fibrotic tissue which eventually resulted in erectile dysfunction. It is also known that the fibrosis process of corpora cavernosa is related to Renin-Angiotensin II System (RAS). Angiotensin II receptor blockers (ARB), especially losartan, inhibit the inflammation process and fibrotic tissue formation. This study evaluated the effect of losartan in reducing fibrosis in priapism by evaluating TGF-β1 and collagen-type-1 in cavernous tissue and determined the effect of losartan in preventing fibrosis in priapism model of Wistar rats assessed by the metavir score. Methods A total of eighteen male Wistar rats mean were divided into five groups. For the priapism models, we applied negative pressure on the penis to make an artificial erection to mimic the priapism process. The control groups were observed and the treatment groups were orally given losartan 15 mg/kg/day. Corpora cavernosa was harvested for TGF-β1 and collagen-type-1 measurement using an enzyme-linked immunosorbent assay (ELISA). The fibrotic tissue of each rat was then collected and assessed histopathologically with the metavir scoring system. Results Penile TGF-β1 concentration in the losartan-treated group was not significantly different on day 10 and day 28 of observation (p10=0,30; p28=0,17). Meanwhile, collagen-type-1 concentration was significantly lower compared to control group (p10=0,002; p28=0,01). There was a significant difference in metavir scores in rats that received losartan and those who did not (p<0,05). Conclusion Losartan could suppress the fibrosis process in the priapism model. It could decrease the collagen type 1 deposition during corpora cavernosa tissue regeneration. Based on the metavir score, the group receiving losartan therapy was better than the control group.
Collapse
Affiliation(s)
- Safendra Siregar
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Rulianov Rulianov
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | | | - Dicky Stefanus
- Department of Urology, Universitas Padjadjaran, Bandung, 40161, Indonesia
| |
Collapse
|
3
|
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Int J Mol Sci 2023; 24:14019. [PMID: 37762322 PMCID: PMC10531003 DOI: 10.3390/ijms241814019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is one of the main conditions responsible for chronic kidney disease (CKD), including end-stage renal disease (ESRD) as a long-term complication. Besides short-term complications, such as electrolyte and acid-base disorders, fluid overload, bleeding complications or immune dysfunctions, AKI can develop chronic injuries and subsequent CKD through renal fibrosis pathways. Kidney fibrosis is a pathological process defined by excessive extracellular matrix (ECM) deposition, evidenced in chronic kidney injuries with maladaptive architecture restoration. So far, cited maladaptive kidney processes responsible for AKI to CKD transition were epithelial, endothelial, pericyte, macrophage and fibroblast transition to myofibroblasts. These are responsible for smooth muscle actin (SMA) synthesis and abnormal renal architecture. Recently, AKI progress to CKD or ESRD gained a lot of interest, with impressive progression in discovering the mechanisms involved in renal fibrosis, including cellular and molecular pathways. Risk factors mentioned in AKI progression to CKD are frequency and severity of kidney injury, chronic diseases such as uncontrolled hypertension, diabetes mellitus, obesity and unmodifiable risk factors (i.e., genetics, older age or gender). To provide a better understanding of AKI transition to CKD, we have selected relevant and updated information regarding the risk factors responsible for AKIs unfavorable long-term evolution and mechanisms incriminated in the progression to a chronic state, along with possible therapeutic approaches in preventing or delaying CKD from AKI.
Collapse
Affiliation(s)
- Andrei Niculae
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai-Emil Gherghina
- Department of Nephrology, Ilfov County Emergency Clinical Hospital, 022104 Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | | |
Collapse
|
4
|
Tapper EB. Use of Angiotensin-Converting Enzyme Inhibitors in Patients With Liver Disease. Gastroenterol Hepatol (N Y) 2023; 19:65-67. [PMID: 36865817 PMCID: PMC9972656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Fernandes RS, Netto MRT, Carvalho FB, Rigatto K. Alamandine: A promising treatment for fibrosis. Peptides 2022; 157:170848. [PMID: 35931236 DOI: 10.1016/j.peptides.2022.170848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
Angiotensin (Ang) II, the main active member of the renin angiotensin system (RAS), is essential for the maintenance of cardiovascular homeostasis. However, hyperactivation of the RAS causes fibrotic diseases. Ang II has pro-inflammatory actions, and moreover activates interstitial fibroblasts and/or dysregulates extracellular matrix degradation. The discovery of new RAS pathways has revealed the complexity of this system. Among the RAS peptides, alamandine (ALA, Ala1 Ang 1-7) has been identified in humans, rats, and mice, with protective actions in different pathological conditions. ALA has similar effects to its well-known congener, Ang-(1-7), as a vasodilator, anti-inflammatory, and antifibrotic. Its protective role against cardiovascular diseases is well-reviewed in the literature. However, the protective actions of ALA in fibrotic conditions have been little explored. Therefore, in this article, we review the ability of ALA to modulate the inflammatory process and collagen deposition, to serve as an antioxidant, and to mediate protection against functional disorders. In this scenario, we also explore ALA as a promising therapy for pulmonary fibrosis after COVID-19 infection.
Collapse
Affiliation(s)
- Renata Streck Fernandes
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil; Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Brazil
| | | | | | - Katya Rigatto
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil; Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Brazil.
| |
Collapse
|
6
|
Yan C, Niu Y, Ma L, Tian L, Ma J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med 2022; 20:452. [PMID: 36195876 PMCID: PMC9531858 DOI: 10.1186/s12967-022-03630-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported. METHODS Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC. RESULTS Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells. CONCLUSION In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.
Collapse
Affiliation(s)
- Cheng Yan
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Yandie Niu
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Liukai Ma
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Lifang Tian
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Jiahao Ma
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan, China.
| |
Collapse
|
7
|
Savedchuk S, Raslan R, Nystrom S, Sparks MA. Emerging Viral Infections and the Potential Impact on Hypertension, Cardiovascular Disease, and Kidney Disease. Circ Res 2022; 130:1618-1641. [PMID: 35549373 DOI: 10.1161/circresaha.122.320873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Solomiia Savedchuk
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Rasha Raslan
- Internal Medicine, Virginia Commonwealth University, Richmond (R.R.)
| | - Sarah Nystrom
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
- Renal Section, Durham VA Health Care System, NC (M.A.S.)
| |
Collapse
|
8
|
Renin–Angiotensin System in Liver Metabolism: Gender Differences and Role of Incretins. Metabolites 2022; 12:metabo12050411. [PMID: 35629915 PMCID: PMC9143858 DOI: 10.3390/metabo12050411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The impaired hepatic lipids and carbohydrates metabolism result in various metabolic disorders, including obesity, diabetes, insulin resistance, hyperlipidemia and metabolic syndrome. The renin–angiotensin system (RAS) has been identified in the liver and it is now recognized as an important modulator of body metabolic processes. This review is intended to provide an update of the impact of the renin–angiotensin system on lipid and carbohydrate metabolism, regarding gender difference and prenatal undernutrition, specifically focused on the role of the liver. The discovery of angiotensin-converting enzyme 2 (ACE2) has renewed interest in the potential therapeutic role of RAS modulation. RAS is over activated in non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma. Glucagon-like peptide-1 (GLP-1) has been shown to modulate RAS. The GLP-I analogue liraglutide antagonizes hepatocellular steatosis and exhibits liver protection. Liraglutide has a negative effect on the ACE/AngII/AT1R axis and a positive impact on the ACE2/Ang(1-7)/Mas axis. Activation of the ACE2/Ang(1-7)/Mas counter-regulatory axis is able to prevent liver injuries. Angiotensin(1-7) and ACE2 shows more favorable effects on lipid homeostasis in males but there is a need to do more investigation in female models. Prenatal undernutrition exerts long-term effects in the liver of offspring and is associated with a number of metabolic and endocrine alterations. These findings provide a novel therapeutic regimen to prevent and treat many chronic diseases by accelerating the effect of the ACE2/Ang1-7/Mas axis and inhibiting the ACE/AngII/AT1R axis.
Collapse
|
9
|
Mostafa TM, El-Azab GA, Badra GA, Abdelwahed AS, Elsayed AA. Effect of Candesartan and Ramipril on Liver Fibrosis in Patients with Chronic Hepatitis C Viral Infection: A Randomized Controlled Prospective Study. Curr Ther Res Clin Exp 2021; 95:100654. [PMID: 34925649 PMCID: PMC8649584 DOI: 10.1016/j.curtheres.2021.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/04/2021] [Indexed: 10/28/2022] Open
Abstract
Objective: This study aimed at evaluating the effects of candesartan and ramipril on liver fibrosis in patients with chronic hepatitis C. Methods: This randomized controlled prospective study involved 64 patients with chronic hepatitis C and liver fibrosis. Participants were randomized into 3 groups: group I (control group; n = 21), members of which received traditional therapy only; group 2 (ramipril group; n = 21), members of which received traditional therapy plus 1.25 mg/d oral ramipril; and group 3 (candesartan group; n = 22), members of which received traditional therapy plus 8 mg/d oral candesartan. Patients were assessed at baseline and 6 months after intervention through measuring of liver stiffness (Fibro-Scan; Echosens, Paris, France); evaluation of the serum levels of hyaluronic acid and transforming growth factor beta-1; and calculation of indices of liver fibrosis, including fibrosis index based on the 4 factors and aspartate transaminase-to-platelet-ratio index. Data were analyzed using paired t test and 1-way ANOVA followed by Tukey's honest significant difference test for multiple pairwise comparisons. Results: At baseline, the 3 study groups were statistically similar in demographic and laboratory data. After treatment, the 3 study groups showed significant decrease in liver stiffness, serum levels of hyaluronic acid and transforming growth factor beta-1, and indices of liver fibrosis compared with baseline data (P < 0.001). Six months after treatment, patients taking ramipril and candesartan showed significant improvement in all measured parameters compared with the control group. Additionally, the candesartan-treated group showed significant decrease in liver stiffness, biomarkers, and indices of liver fibrosis compared with ramipril recipients. Conclusions: The administration of ramipril and candesartan in patients with chronic hepatitis C with hepatic fibrosis was well tolerated and effective in improving liver fibrosis. angiotensin II receptor 1 (AT1) antagonist candesartan maintained antifibrotic effects more effectively than ramipril and may represent a safe and effective therapeutic strategy for liver fibrosis in patients with chronic liver diseases. ClinicalTrials.gov identifier: NCT03770936. (Curr Ther Res Clin Exp. 2022; 83:XXX-XXX) © 2022 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Tarek M Mostafa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal A El-Azab
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal A Badra
- National Liver Institute, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Alyaa S Abdelwahed
- National Liver Institute, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Abeer A Elsayed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| |
Collapse
|
10
|
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021; 10:cells10102759. [PMID: 34685739 PMCID: PMC8534788 DOI: 10.3390/cells10102759] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis was previous thought to be an irreversible process, recent evidence convincingly demonstrated resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can be recapitulated in the following main points: removal of injurious factors causing chronic hepatic damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis, senescence, and reprogramming), inactivation of inflammatory response and induction of anti-inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis and the potential therapeutic approaches aimed at reversing the fibrogenic process.
Collapse
|
11
|
Rockey DC, Friedman SL. Fibrosis Regression After Eradication of Hepatitis C Virus: From Bench to Bedside. Gastroenterology 2021; 160:1502-1520.e1. [PMID: 33529675 PMCID: PMC8601597 DOI: 10.1053/j.gastro.2020.09.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection and its complications have been the major cause of cirrhosis and its complications for several decades in the Western world. Until recently, treatment for HCV with interferon-based regimens was associated with moderate success but was difficult to tolerate. More recently, however, an arsenal of novel and highly effective direct-acting antiviral (DAA) drugs has transformed the landscape by curing HCV in a broad range of patients, including those with established advanced fibrosis, cirrhosis, comorbidities, and even those with complications of cirrhosis. Fibrosis is a dynamic process comprising both extracellular matrix deposition, as well as its degradation. With almost universal sustained virologic response (SVR) (ie, elimination of HCV), it is timely to explore whether HCV eradication can reverse fibrosis and cirrhosis. Indeed, fibrosis in several types of liver disease is reversible, including HCV. However, we do not know with certainty in whom fibrosis regression can be expected after HCV elimination, how quickly it occurs, and whether antifibrotic therapies will be indicated in those with persistent cirrhosis. This review summarizes the evidence for reversibility of fibrosis and cirrhosis after HCV eradication, its impact on clinical outcomes, and therapeutic prospects for directly promoting fibrosis regression in patients whose fibrosis persists after SVR.
Collapse
Affiliation(s)
- Don C Rockey
- The Medical University of South Carolina, Charleston, South Carolina.
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
12
|
Update on New Aspects of the Renin-Angiotensin System in Hepatic Fibrosis and Portal Hypertension: Implications for Novel Therapeutic Options. J Clin Med 2021; 10:jcm10040702. [PMID: 33670126 PMCID: PMC7916881 DOI: 10.3390/jcm10040702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable experimental evidence that the renin angiotensin system (RAS) plays a central role in both hepatic fibrogenesis and portal hypertension. Angiotensin converting enzyme (ACE), a key enzyme of the classical RAS, converts angiotensin I (Ang I) to angiotensin II (Ang II), which acts via the Ang II type 1 receptor (AT1R) to stimulate hepatic fibrosis and increase intrahepatic vascular tone and portal pressure. Inhibitors of the classical RAS, drugs which are widely used in clinical practice in patients with hypertension, have been shown to inhibit liver fibrosis in animal models but their efficacy in human liver disease is yet to be tested in adequately powered clinical trials. Small trials in cirrhotic patients have demonstrated that these drugs may lower portal pressure but produce off-target complications such as systemic hypotension and renal failure. More recently, the alternate RAS, comprising its key enzyme, ACE2, the effector peptide angiotensin-(1–7) (Ang-(1–7)) which mediates its effects via the putative receptor Mas (MasR), has also been implicated in the pathogenesis of liver fibrosis and portal hypertension. This system is activated in both preclinical animal models and human chronic liver disease and it is now well established that the alternate RAS counter-regulates many of the deleterious effects of the ACE-dependent classical RAS. Work from our laboratory has demonstrated that liver-specific ACE2 overexpression reduces hepatic fibrosis and liver perfusion pressure without producing off-target effects. In addition, recent studies suggest that the blockers of the receptors of alternate RAS, such as the MasR and Mas related G protein-coupled receptor type-D (MrgD), increase splanchnic vascular resistance in cirrhotic animals, and thus drugs targeting the alternate RAS may be useful in the treatment of portal hypertension. This review outlines the role of the RAS in liver fibrosis and portal hypertension with a special emphasis on the possible new therapeutic approaches targeting the ACE2-driven alternate RAS.
Collapse
|
13
|
Kusnik A, Hunter N, Rasbach E, Miethke T, Reissfelder C, Ebert MP, Teufel A. Co-Medication and Nutrition in Hepatocellular Carcinoma: Potentially Preventative Strategies in Hepatocellular Carcinoma. Dig Dis 2021; 39:526-533. [PMID: 33429390 DOI: 10.1159/000514277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, with about 841,000 new cases and 782,000 deaths annually. Given the clearly defined population at risk, mostly patients with liver cirrhosis, prevention of HCC could be highly effective. SUMMARY Besides regular ultrasound surveillance, numerous publications have suggested protective effects of diverse drugs and nutrients. However, none of those preventive options has made it into clinical routine or practice guidelines. We therefore summarize the current status of preventive effects of drugs such as statins, acetylsalicylic acid (ASA), and metformin, but also dietary aspects and nutrients such as coffee, tea, and vitamin D supplementation. A successful implementation of some of these strategies may potentially lead to improved prevention of HCC development in patients with liver cirrhosis. Key Messages: Accumulating data suggest that particularly ASA, antidiabetic therapies, and statins may substantially decrease HCC incidence in patients at risk.
Collapse
Affiliation(s)
- Alexander Kusnik
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Hunter
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erik Rasbach
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Miethke
- Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Murad H, Ahmed O, Ghabrah T, Gari M. Telmisartan Self-Nanoemulsifying Drug Delivery System, Compared With Standard Telmisartan, More Effectively Improves Hepatic Fibrosis in Rats. Dose Response 2020; 18:1559325820982190. [PMID: 33414695 PMCID: PMC7750776 DOI: 10.1177/1559325820982190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022] Open
Abstract
Background This study was designed to examine effects of telmisartan; an angiotensin receptor blocker; self-nanoemulsifying drug delivery system (SNEDDS) in reversing already-established hepatic fibrosis. Method Forty rats were given thioacetamide (200 mg/kg, intraperitoneally) twice/week for 8 weeks then divided into 5 groups (n = 8), PC and 4 treated groups. Treatments were given orally for another 2 months as follows: telmisartan low and high doses (TL and TH: 1.8 and 3.6 mg/kg/day) and telmisartan SNEDDS at the same doses (TLS and THS). At end of treatment, blood was obtained and liver was isolated. Results Rats showed significant elevations of plasma ALT and AST and hepatic IL-6, TNF-α, and MDA, significant reductions of plasma albumin, hepatic GSH, and body weight, and hepatic histopathological damage. All treatments except for TL significantly reversed these thioacetamide-induced changes. THS group showed significant differences from all groups. Regarding ratio of free telmisartan concentration in hepatic homogenate to that of plasma, TH and TLS groups showed non-significant variation between each other while THS group showed significant differences from them. No significant changes were detected in blood pressure, hemoglobin, white blood cells, and platelets. Conclusion Telmisartan SNEDDS, compared with telmisartan, more effectively reversed chronic hepatic fibrosis with good safety profile.
Collapse
Affiliation(s)
- Hussam Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Osama Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tawfik Ghabrah
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdooh Gari
- Department of Molecular Genetics, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Wijarnpreecha K, Aby ES, Ahmed A, Kim D. Evaluation and management of extrahepatic manifestations of nonalcoholic fatty liver disease. Clin Mol Hepatol 2020; 27:221-235. [PMID: 33317243 PMCID: PMC8046623 DOI: 10.3350/cmh.2020.0239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a multisystemic disease and a rapidly growing cause of chronic liver disease in children and adults worldwide. Diagnosis and management of extrahepatic manifestations of NAFLD, including cardiovascular disease (CVD), type 2 diabetes mellitus, metabolic syndrome, chronic kidney disease, obstructive sleep apnea, polycystic ovarian syndrome, hypothyroidism, psoriasis, and extrahepatic malignancy are crucial for the treatment of patients with NAFLD. The leading cause of death in NAFLD is primarily from CVD, followed by liver-related mortality, extrahepatic cancer, liver cancer, and diabetes-related mortality. Therefore, clinicians need to identify high-risk patients earlier in the disease course and be aware of the extrahepatic manifestations of NAFLD to improve liver disease outcomes. In this review, we focus on the monitoring and management of the extrahepatic manifestations of NAFLD.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Elizabeth S Aby
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol 2020; 26:6111-6140. [PMID: 33177789 PMCID: PMC7596642 DOI: 10.3748/wjg.v26.i40.6111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 blockers, which target the components of the classical renin angiotensin system (RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant off-target effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective -blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs. Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.
Collapse
Affiliation(s)
- Lakmie S Gunarathne
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Harinda Rajapaksha
- School of Molecular Science, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Peter W Angus
- Department of Gastroenterology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170, Australia
| |
Collapse
|
17
|
Siddiqui MT, Amin H, Garg R, Chadalavada P, Al-Yaman W, Lopez R, Singh A. Medications in type-2 diabetics and their association with liver fibrosis. World J Gastroenterol 2020; 26:3249-3259. [PMID: 32684739 PMCID: PMC7336333 DOI: 10.3748/wjg.v26.i23.3249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prevalence of nonalcoholic fatty liver disease (NAFLD) is significantly rising worldwide. Type-2 diabetes (T2D) is a major risk factor for NAFLD progression.
AIM To assess the association of commonly used medications to advanced fibrosis (AF) in patients with biopsy-proven NAFLD and T2D.
METHODS We used the International Classification of Disease 9th Revision Clinical Modification coding system to identify patients with T2D and included patients who underwent liver biopsy for suspected NAFLD between January 1, 2000 to December 31, 2015. We compared demographics, clinical characteristics, and differences in pattern of medication use in patients who had biopsy-proven AF to those without it. A univariate and multivariate analysis was performed to assess the association of different classes of medication with the presence of AF.
RESULTS A total of 1183 patients were included in the final analysis, out of which 32% (n = 381) had AF on liver biopsy. Mean age of entire cohort was 52 years and majority were females (65%) and Caucasians (85%). Among patients with AF, 51% were on oral hypoglycemics, 30% were on insulin, 66% were on antihypertensives and 27% were on lipid lowering agents for the median duration of 19 mo, 10 mo, 26 mo, and 24 mo respectively. Medications associated with decreased risk of AF included metformin, liraglutide, lisinopril, hydrochlorothiazide, atorvastatin and simvastatin while the use of furosemide and spironolactone were associated with higher prevalence of AF.
CONCLUSION In our cohort of T2D with biopsy proven NAFLD, the patients who were receiving metformin, liraglutide, lisinopril, hydrochlorothiazide, atorvastatin and simvastatin were less likely to have AF on biopsy, while patients who were receiving furosemide and spironolactone had a higher likelihood of having AF when they underwent liver biopsy. Future studies are needed to confirm these findings and to establish measures for prevention of NAFLD progression in patients with T2D.
Collapse
Affiliation(s)
- Mohamed Tausif Siddiqui
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Hina Amin
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Rajat Garg
- Department of Hospital Medicine, Cleveland Clinic, OH 44195, United States
| | | | - Wael Al-Yaman
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Rocio Lopez
- Department of Quantitative Health Sciences, Cleveland Clinic, OH 44195, United States
| | - Amandeep Singh
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| |
Collapse
|
18
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
19
|
Song DS, Chang UI, Kang SG, Song SW, Yang JM. Noninvasive Serum Fibrosis Markers are Associated with Coronary Artery Calcification in Patients with Nonalcoholic Fatty Liver Disease. Gut Liver 2020; 13:658-668. [PMID: 30970434 PMCID: PMC6860032 DOI: 10.5009/gnl18439] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/10/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Advanced hepatic fibrosis is associated with cardiovascular disease (CVD) in patients with nonalcoholic fatty liver disease (NAFLD). We investigated the association between noninvasive serum fibrosis markers and the coronary artery calcium score (CACS) in subjects with NAFLD. Methods We analyzed 665 NAFLD subjects without chronic liver disease or heart disease between 2011 and 2015. The noninvasive fibrosis markers that were used to evaluate the severity of hepatic fibrosis included the NAFLD fibrosis score (NFS), fibrosis-4 (FIB-4) score, Forn's index, and the aspartate aminotransferase to platelet ratio index (APRI). Results The areas under the receiver operating characteristics curves for the NFS, FIB-4 score, Forn's index and APRI for predicting CACS >100 were 0.689, 0.683, 0.659, and 0.595, respectively. According to the multivariate analysis, older age, increased body mass index (BMI), and decreased estimated glomerular filtration rate (eGFR) were significant factors associated with CACS >100. The NFS, FIB-4 score and APRI were significantly associated with CACS >100 after adjusting for age and gender (p=0.006, p=0.012, and p=0.012, respectively) and after adjusting for age, gender, BMI and eGFR (p=0.013, p=0.022, and p=0.027, respectively). Scores integrating noninvasive fibrosis markers and other risk factors improved the predictive accuracy. Conclusions The NFS and FIB-4 score were associated with coronary atherosclerosis in subjects with NAFLD. Furthermore, scores integrating these noninvasive scores and risk factors for CVD showed good discriminatory power in predicting CACS >100. Therefore, noninvasive serum fibrosis markers may be useful tools for identifying NAFLD subjects at a high risk for CVD.
Collapse
Affiliation(s)
- Do Seon Song
- Departments of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - U Im Chang
- Departments of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sung-Goo Kang
- Departments of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sang-Wook Song
- Departments of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Mo Yang
- Departments of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
20
|
Li S, Zhao W, Tao Y, Liu C. Fugan Wan alleviates hepatic fibrosis by inhibiting ACE/Ang II/AT-1R signaling pathway and enhancing ACE2/Ang 1-7/Mas signaling pathway in hepatic fibrosis rat models. Am J Transl Res 2020; 12:592-601. [PMID: 32194907 PMCID: PMC7061829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Hepatic fibrosis is a repair and healing reaction for chronic injuries of liver. This study aimed to investigate protective effects of Fugan Wan (FGW) on hepatic fibrosis and clarify associated mechanisms. Hepatic fibrosis model was established by administrating dimethyl nitrosamine (DMN) to rats. Rats were divided into control, DMN and FGW groups. Haematoxylin and eosin (HE) staining was conducted to evaluate inflammatory response in hepatic fibrosis tissues. Sirius red staining was used to assess collagen disposition. Quantitative real-time PCR (qRT-PCR) was employed to detect antiotensin-converting enzyme homologue 2 (ACE2), Mas, transforming growth factor β1 (TGF-β1) mRNA. Western blot was used to examine collagen I, smooth muscle actin α (α-SMA), angiotensin type 1 receptor (AT-1R), extra-cellular regulated protein kinase (ERK), phosphorylated ERK (p-ERK), c-Jun and phosphorylated-c-Jun (p-c-Jun) expression. The results indicated that FGW significantly reduced inflammatory response of hepatic fibrosis tissues. FGW significantly decreased collagen deposition compared to that of DMN group (P < 0.01). FGW significantly down-regulated α-SMA expression compared to that of DMN group (P < 0.01). FGW significantly decreased AT-1R levels compared to that of DMN group (P < 0.01). Comparing with DMN group, ACE2 and Mas mRNA levels were significantly increased in FGW group (P < 0.01). FGW significantly down-regulated p-c-Jun and p-ERK1/2 compared to DMN group (P < 0.01). GFW significantly inhibited compared to DMN group (P < 0.01). In conclusion, FGW alleviated hepatic fibrosis by inhibiting ACE/Ang II/AT-1R signaling and enhancing ACE2/Ang 1-7/Mas signaling pathway in hepatic fibrosis rat models.
Collapse
Affiliation(s)
- Shu Li
- Department of Gastroenterology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Wei Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical MedicineShanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of EducationShanghai 201203, China
| |
Collapse
|
21
|
Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease: Mechanisms and Therapeutic Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173104. [PMID: 31455011 PMCID: PMC6747357 DOI: 10.3390/ijerph16173104] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
New evidence suggests that non-alcoholic fatty liver disease (NAFLD) has a strong multifaceted relationship with diabetes and metabolic syndrome, and is associated with increased risk of cardiovascular events, regardless of traditional risk factors, such as hypertension, diabetes, dyslipidemia, and obesity. Given the pandemic-level rise of NAFLD—in parallel with the increasing prevalence of obesity and other components of the metabolic syndrome—and its association with poor cardiovascular outcomes, the question of how to manage NAFLD properly, in order to reduce the burden of associated incident cardiovascular events, is both timely and highly relevant. This review aims to summarize the current knowledge of the association between NAFLD and cardiovascular disease, and also to discuss possible clinical strategies for cardiovascular risk assessment, as well as the spectrum of available therapeutic strategies for the prevention and treatment of NAFLD and its downstream events.
Collapse
|
22
|
Manka P, Zeller A, Syn WK. Fibrosis in Chronic Liver Disease: An Update on Diagnostic and Treatment Modalities. Drugs 2019; 79:903-927. [DOI: 10.1007/s40265-019-01126-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
de Miranda AS, Simões e Silva AC. Liver. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7121918 DOI: 10.1007/978-3-030-22696-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery that renin–angiotensin system (RAS) components are locally expressed in the liver tissue, pointed out to a role for this system in the pathogenesis of hepatic fibrosis and cirrhosis. The RAS counter-regulatory axis composed by the angiotensin converting enzyme 2 (ACE2), angiotensin-(1-7) [Ang-(1-7)] and Mas receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes, frequently opposing the classical RAS arm (ACE-Ang II-AT1 receptor) actions. Therefore, the balance between both RAS axes most likely affects the clinical and histopathological expression of liver diseases. It is worth noticing that liver diseases are major causes of morbidity and mortality worldwide. Without proper treatment, all types of chronic hepatitis will progress to end-stage liver diseases, including cirrhosis, liver failure, and hepatocellular carcinoma, which ultimately lead to death. In this context, to better comprehend the role of RAS components in liver failure might pave the way for the search of potential predictive biomarkers as well as the development of novel therapeutic approaches. Valuable data have been generated from preclinical and clinical studies. Herein, we summarize the current evidence, mainly focusing in the ACE2-Ang-(1-7)-Mas receptor arm, regarding the role of RAS in liver diseases. The therapeutic potential of the modulation of RAS molecules in liver diseases is also discussed.
Collapse
|
24
|
Vallejo-Ardila DL, Fifis T, Burrell LM, Walsh K, Christophi C. Renin-angiotensin inhibitors reprogram tumor immune microenvironment: A comprehensive view of the influences on anti-tumor immunity. Oncotarget 2018; 9:35500-35511. [PMID: 30464806 PMCID: PMC6231452 DOI: 10.18632/oncotarget.26174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Renin-angiotensin system inhibitors (RASi) have shown potential anti-tumor effects that may have a significant impact in cancer therapy. The components of the renin-angiotensin system (RAS) including both, conventional and alternative axis, appear to have contradictory effects on tumor biology. The mechanisms by which RASi impair tumor growth extend beyond their function of modulating tumor vasculature. The major focus of this review is to analyze other mechanisms by which RASi reprogram the tumor immune microenvironment. These involve impairing hypoxia and acidosis within the tumor stroma, regulating inflammatory signaling pathways and oxidative stress, modulating the function of the non-cellular components and immune cells, and regulating the cross-talk between kalli krein kinin system and RAS.
Collapse
Affiliation(s)
- Dora L Vallejo-Ardila
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Theodora Fifis
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.,Department of Cardiology, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Katrina Walsh
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| |
Collapse
|
25
|
Chen DQ, Feng YL, Cao G, Zhao YY. Natural Products as a Source for Antifibrosis Therapy. Trends Pharmacol Sci 2018; 39:937-952. [PMID: 30268571 DOI: 10.1016/j.tips.2018.09.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/15/2023]
Abstract
Although fibrosis is a final pathological feature of many chronic diseases, few interventions are available that specifically target the pathogenesis of fibrosis. Natural products are becoming increasingly recognized as effective therapies for fibrosis. The highlights of common cellular and molecular mechanisms of fibrosis facilitate the discovery of effective antifibrotic drugs. We describe some new profibrotic mechanisms and corresponding therapeutic targets using natural products. Interleukin, ephrin-B2, Gas6/TAM, Wnt/β-catenin, hedgehog pathway, PPARγ, lysophosphatidic acid, and CTGF are promising therapeutic targets. Natural products can target these mediators and inhibit chronic inflammation, myofibroblast activation, epithelial-mesenchymal transition, and extracellular matrix accumulation to alleviate fibrosis. Of note, natural products have the potential to inhibit fibrosis in one organ, simultaneously targeting fibrosis in multiple other organs, which provides us new strategies to find antifibrotic drugs.
Collapse
Affiliation(s)
- Dan-Qian Chen
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
26
|
Corey SJ, Jha J, McCart EA, Rittase WB, George J, Mattapallil JJ, Mehta H, Ognoon M, Bylicky MA, Summers TA, Day RM. Captopril mitigates splenomegaly and myelofibrosis in the Gata1 low murine model of myelofibrosis. J Cell Mol Med 2018; 22:4274-4282. [PMID: 29971909 PMCID: PMC6111823 DOI: 10.1111/jcmm.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/05/2018] [Indexed: 01/06/2023] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative therapy for primary myelofibrosis (MF), while the JAK2 inhibitor, ruxolitinib. Has been approved only for palliation. Other therapies are desperately needed to reverse life-threatening MF. However, the cell(s) and cytokine(s) that promote MF remain unclear. Several reports have demonstrated that captopril, an inhibitor of angiotensin-converting enzyme that blocks the production of angiotensin II (Ang II), mitigates fibrosis in heart, lung, skin and kidney. Here, we show that captopril can mitigate the development of MF in the Gata1low mouse model of primary MF. Gata1low mice were treated with 79 mg/kg/d captopril in the drinking water from 10 to 12 months of age. At 13 months of age, bone marrows were examined for fibrosis, megakaryocytosis and collagen expression; spleens were examined for megakaryocytosis, splenomegaly and collagen expression. Treatment of Gata1low mice with captopril in the drinking water was associated with normalization of the bone marrow cellularity; reduced reticulin fibres, splenomegaly and megakaryocytosis; and decreased collagen expression. Our findings suggest that treating with the ACE inhibitors captopril has a significant benefit in overcoming pathological changes associated with MF.
Collapse
Affiliation(s)
- Seth J. Corey
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Jyoti Jha
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - William B. Rittase
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Jeffy George
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Joseph J. Mattapallil
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Hrishikesh Mehta
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Mungunsukh Ognoon
- Department of AnesthesiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Michelle A. Bylicky
- Neuroscience Graduate ProgramUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Thomas A. Summers
- Department of PathologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Regina M. Day
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
27
|
Shim KY, Eom YW, Kim MY, Kang SH, Baik SK. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension. Korean J Intern Med 2018; 33:453-461. [PMID: 29462546 PMCID: PMC5943664 DOI: 10.3904/kjim.2017.317] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/05/2017] [Indexed: 02/08/2023] Open
Abstract
The renin-angiotensin system (RAS) is an important regulator of cirrhosis and portal hypertension. As hepatic fibrosis progresses, levels of the RAS components angiotensin (Ang) II, Ang-(1-7), angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R) are increased. The primary effector Ang II regulates vasoconstriction, sodium homoeostasis, fibrosis, cell proliferation, and inflammation in various diseases, including liver cirrhosis, through the ACE/Ang II/AT1R axis in the classical RAS. The ACE2/Ang-(1-7)/Mas receptor and ACE2/Ang-(1-9)/AT2R axes make up the alternative RAS and promote vasodilation, antigrowth, proapoptotic, and anti-inflammatory effects; thus, countering the effects of the classical RAS axis to reduce hepatic fibrogenesis and portal hypertension. Patients with portal hypertension have been treated with RAS antagonists such as ACE inhibitors, Ang receptor blockers, and aldosterone antagonists, with very promising hemodynamic results. In this review, we examine the RAS, its roles in hepatic fibrosis and portal hypertension, and current therapeutic approaches based on the use of RAS antagonists in patients with portal hypertension.
Collapse
Affiliation(s)
- Kwang Yong Shim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seong Hee Kang
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Evidence Based Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Soon Koo Baik, M.D. Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-1223 Fax: +82-33-745-6782 E-mail:
| |
Collapse
|
28
|
Comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in chemoprevention of hepatocellular carcinoma: a nationwide high-risk cohort study. BMC Cancer 2018; 18:401. [PMID: 29631561 PMCID: PMC5891974 DOI: 10.1186/s12885-018-4292-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background Research has revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) may prevent cancers such as hepatocellular carcinoma (HCC). The comparative chemopreventive effects of ACEIs and ARBs in high-risk populations with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection have yet to be investigated. Methods From 2005 to 2014, high-risk HBV and HCV cohorts of hypertensive patients without HCC history were recruited from three linked national databases of Taiwan, and were classified into two groups based on the ACEI or ARB exposure within the initial six months after initiating antiviral agent. Intergroup differences in clinical characteristics and duration of drug exposure within study period were evaluated. HCC-free survival was compared using the log-rank test. Multivariate Cox regression including time-dependent variables for the use of ACEIs or ARBs and other medications was applied to adjust for confounders. Results Among the 7724 patients with HBV and 7873 with HCV, 46.3% and 42.5%, respectively, had an initial exposure to ACEIs or ARBs. The median durations of exposure were 36.4 and 38.9 months for the HBV and HCV cohorts, respectively. The median durations of ACEI or ARB use during study period between initial exposure and nonexposure groups were 41.8 vs. 18.3 months and 46.4 vs. 22.7 months for the HBV and HCV cohorts, respectively. No significant difference was observed in HCC risk within 7 years between the initial exposure and non-exposure groups. After adjustment for comorbidities, namely liver cirrhosis, diabetes mellitus (DM), and hyperlipidemia, and medications, namely aspirin, metformin, and statins, the hazard ratios (HRs) for ACEI or ARB exposure for HCC risk were 0.97 (95% confidence interval [CI]: 0.81–1.16) and 0.96 (0.80–1.16) in the HBV and HCV cohorts, respectively. In the HCV cohort, the increased HCC risk was associated with ACEI or ARB use in patients without cirrhosis, DM, and hyperlipidemia (HR: 4.53, 95% CI: 1.46–14.1). Conclusion Compared with other significant risk and protective factors for HCC, ACEI or ARB use in the HBV and HCV cohorts was not associated with adequate protective effectiveness under standard dosages and may not be completely safe. Electronic supplementary material The online version of this article (10.1186/s12885-018-4292-y) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL. Renin angiotensin system in liver diseases: Friend or foe? World J Gastroenterol 2017; 23:3396-3406. [PMID: 28596676 PMCID: PMC5442076 DOI: 10.3748/wjg.v23.i19.3396] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/17/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
In the last three decades, the understanding of the renin angiotensin system (RAS) has been changed by the discoveries of functional local systems, novel biologically active peptides, additional specific receptors, alternative pathways of angiotensin (Ang) II generation, and new roles for enzymes and precursor components other than those in Ang II synthesis. In this regard, the discovery that Ang-(1-7) opposes the pressor, proliferative, pro-fibrotic, and pro-inflammatory effects mediated by Ang II has contributed to the realization that the RAS is composed of two axes. The first axis consists of the angiotensin-converting enzyme (ACE), with Ang II as the end product, and the angiotensin type 1 (AT1) receptor as the main effector mediating the biological actions of Ang II. The second axis results from ACE2-mediated hydrolysis of Ang II, leading to the production of Ang-(1-7), with the Mas receptor as the main effector conveying the vasodilatory, anti-proliferative, anti-fibrotic, and anti-inflammatory effects of Ang-(1-7). Experimental and clinical studies have shown that both axes of the RAS may take part in the pathogenesis of liver diseases. In this manuscript, we summarize the current evidence regarding the role of RAS in hepatic cirrhosis and its complications, including hemodynamic changes and hepatorenal syndrome. The therapeutic potential of the modulation of RAS molecules in liver diseases is also discussed.
Collapse
|
30
|
Ge P, Jiang R, Yao X, Li J, Dai J, Zhang L, Ye B. The angiotensin-converting enzyme inhibitor captopril rescues mice from endotoxin-induced lethal hepatitis. Innate Immun 2016; 23:128-135. [DOI: 10.1177/1753425916680037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The renin–angiotensin system is classically regarded as a crucial regulator of circulatory homeostasis, but recent studies also revealed its pro-inflammatory roles. The beneficial effects of the angiotensin-converting enzyme inhibitor (ACEI) in severe inflammatory injury in the lung and heart have been previously reported, but its potential effects on lethal hepatitis were unknown. In this study, a mouse model with LPS/d-galactosamine (GalN)-induced fulminant hepatitis were used to test the protective potential of captopril, a representative ACEI. The results indicated that treatment with captopril significantly decreased the plasma level of alanine aminotransferase and aspartate aminotransferase, alleviated the histopathological damage of the liver tissue and improve the survival rate of LPS/GalN-challenged mice. These effects were accompanied by reduced mRNA levels of TNF-α and IL-6 in the liver, and decreased protein level of TNF-α and IL-6 in the plasma. In addition, the activation of caspases 3, 8 and 9, and the presence of TUNEL-positive apoptotic cells, were also suppressed by captopril treatment. The above evidence suggested that the renin–angiotensin system might be involved in the development of LPS/GalN-induced fulminant hepatitis and ACEI might have potential value in lethal hepatitis.
Collapse
Affiliation(s)
- Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Yao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing, China
| |
Collapse
|