1
|
Thompson JT, Wood DM, Dargan PI. Review of the fluoropyrimidine antidote uridine triacetate. Br J Clin Pharmacol 2024. [PMID: 39468799 DOI: 10.1111/bcp.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
In 2015, the United States Food and Drug Administration (FDA) approved uridine triacetate to treat overdose and severe toxicity of the fluoropyrimidine chemotherapy agents 5-fluorouracil (5-FU) and its oral prodrug capecitabine. Uridine triacetate is as an oral prodrug of uridine that competes with cytotoxic fluoropyrimidine metabolites for incorporation into nucleotides. Two million people worldwide start fluoropyrimidine chemotherapy each year, with 20-30% developing severe or life-threatening adverse effects, often attributable to a genetic predisposition such as dihydropyrimidine dehydrogenase deficiency. Whilst genetic prescreening is recommended prior to starting fluoropyrimidine agents, this only prevents 20-30% of early-onset life-threatening toxicity and so does not obviate the need for an antidote. Initial in-human studies established that uridine triacetate more than doubles the maximum tolerated weekly 5-FU bolus dose. A lack of clinical equipoise meant a placebo-controlled phase III trial was not ethical and so the phase III trials used historical controls. These found that uridine triacetate improved survival in those with fluoropyrimidine overdose and severe toxicity from 16% to 94%, with 34% able to resume chemotherapy within 30 days. Five case reports of delayed fluoropyrimidine toxicity demonstrate improvement following uridine triacetate treatment 120-504 h after last fluoropyrimidine administration, suggesting efficacy beyond the FDA licencing indications. Mechanistically uridine triacetate would be expected to be effective for overdose and severe toxicity of tegafur (a 5-FU prodrug), but there are no published case reports describing this. Uridine triacetate is available internationally through an expanded access scheme and has been available in the UK since 2019 on a named patient basis.
Collapse
Affiliation(s)
- Jack T Thompson
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
van den Wildenberg SAH, Genet SAAM, Streng AS, Broeren MAC, Deenen MJ, van Dongen JLJ, Brunsveld L, Scharnhorst V, van de Kerkhof D. Partial protein binding of uracil and thymine affects accurate dihydropyrimidine dehydrogenase (DPD) phenotyping. J Pharm Biomed Anal 2024; 249:116381. [PMID: 39067280 DOI: 10.1016/j.jpba.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Fluorouracil is among the most used antimetabolite drugs for the chemotherapeutic treatment of various types of gastrointestinal malignancies. Dihydropyrimidine dehydrogenase (DPYD) genotyping prior to fluorouracil treatment is considered standard practice in most European countries. Yet, current pre-therapeutic DPYD genotyping procedures do not identify all dihydropyrimidine dehydrogenase (DPD)-deficient patients. Alternatively, DPD activity can be estimated by determining the DPD phenotype by quantification of plasma concentrations of the endogenous uracil and thymine concentrations and their respective metabolites dihydrouracil (DHU) and dihydrothymine (DHT). Liquid chromatography - mass spectrometry (LC-MS) detection is currently considered as the most adequate method for quantification of low-molecular weight molecules, although the sample preparation method is highly critical for analytical outcome. It was hypothesized that during protein precipitation, the recovery of the molecule of interest highly depends on the choice of precipitation agent and the extent of protein binding in plasma. In this work, the effect of protein precipitation using acetonitrile (ACN) compared to strong acid perchloric acid (PCA) on the recovery of uracil, thymine, DHU and DHT is demonstrated. Upon the analysis of plasma samples, PCA precipitation showed higher concentrations of uracil and thymine as compared to ACN precipitation. Using ultrafiltration, it was shown that uracil and thymine are significantly (60-65 %) bound to proteins compared to DHU and DHT. This shows that before harmonized cut-off levels of DPD phenotyping can be applied in clinical practice, the analytical methodology requires extensive further optimization.
Collapse
Affiliation(s)
- Sebastian A H van den Wildenberg
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Sylvia A A M Genet
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Alexander S Streng
- Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Clinical Laboratory Bernhoven, Siemens Healthineers, Uden, the Netherlands
| | - Maarten A C Broeren
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands; Clinical Laboratory, Máxima Medical Center, Veldhoven, Eindhoven, the Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Joost L J van Dongen
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Volkher Scharnhorst
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Daan van de Kerkhof
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands.
| |
Collapse
|
3
|
Larrue R, Fellah S, Hennart B, Sabaouni N, Boukrout N, Van der Hauwaert C, Delage C, Cheok M, Perrais M, Cauffiez C, Allorge D, Pottier N. Integrating rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-induced toxicity. THE PHARMACOGENOMICS JOURNAL 2024; 24:1. [PMID: 38216550 PMCID: PMC10786722 DOI: 10.1038/s41397-023-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France.
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Benjamin Hennart
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Naoual Sabaouni
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Clément Delage
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Meyling Cheok
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Delphine Allorge
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| |
Collapse
|
4
|
van den Wildenberg SA, Streng AS, van den Broek R, Broeren MA, Deenen MJ, van Dongen JL, Hanrath MA, Lapré C, Brunsveld L, Scharnhorst V, van de Kerkhof D. Quantification of uracil, dihydrouracil, thymine and dihydrothymine for reliable dihydropyrimidine dehydrogenase (DPD) phenotyping critically depend on blood and plasma storage conditions. J Pharm Biomed Anal 2022; 221:115027. [DOI: 10.1016/j.jpba.2022.115027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
|
5
|
Kang J, Kim AH, Jeon I, Oh J, Jang IJ, Lee S, Cho JY. Endogenous metabolic markers for predicting the activity of dihydropyrimidine dehydrogenase. Clin Transl Sci 2021; 15:1104-1111. [PMID: 34863048 PMCID: PMC9099117 DOI: 10.1111/cts.13203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022] Open
Abstract
Five‐fluorouracil (5‐FU) is a chemotherapeutic agent that is mainly metabolized by the rate‐limiting enzyme dihydropyrimidine dehydrogenase (DPD). The DPD enzyme activity deficiency involves a wide range of severities. Previous studies have demonstrated the effect of a DPYD single nucleotide polymorphism on 5‐FU efficacy and highlighted the importance of studying such genes for cancer treatment. Common polymorphisms of DPYD in European ancestry populations are less frequently present in Koreans. DPD is also responsible for the conversion of endogenous uracil (U) into dihydrouracil (DHU). We quantified U and DHU in plasma samples of healthy male Korean subjects, and samples were classified into two groups based on DHU/U ratio. The calculated DHU/U ratios ranged from 0.52 to 7.12, and the two groups were classified into the 10th percentile and 90th percentile for untargeted metabolomics analysis using liquid chromatography‐quantitative time‐of‐flight‐mass spectrometry. A total of 4440 compounds were detected and filtered out based on a coefficient of variation below 30%. Our results revealed that six metabolites differed significantly between the high activity group and low activity group (false discovery rate q‐value < 0.05). Uridine was significantly higher in the low DPD activity group and is a precursor of U involved in pyrimidine metabolism; therefore, we speculated that DPD deficiency can influence uridine levels in plasma. Furthermore, the cutoff values for detecting DPD deficient patients from previous studies were unsuitable for Koreans. Our metabolomics approach is the first study that reported the DHU/U ratio distribution in healthy Korean subjects and identified a new biomarker of DPD deficiency.
Collapse
Affiliation(s)
- Jihyun Kang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Poupore N, Chosed R, Arce S, Rainer R, Goodwin RL, Nathaniel TI. Metabolomic Profiles of Men and Women Ischemic Stroke Patients. Diagnostics (Basel) 2021; 11:diagnostics11101786. [PMID: 34679483 PMCID: PMC8534835 DOI: 10.3390/diagnostics11101786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Stroke is known to affect both men and women; however, incidence and outcomes differ between them. Therefore, the discovery of novel, sex-specific, blood-based biomarkers for acute ischemic stroke (AIS) patients has the potential to enhance the understanding of the etiology of this deadly disease in the content of sex. The objective of this study was to identify serum metabolites associated with male and female AIS patients. Methods: Metabolites were measured with the use of untargeted, reverse-phase ultra-performance liquid chromatography-tandem mass spectrometry quantification from blood specimens collected from AIS patients. Samples were collected from 36 patients comprising each of 18 men and women with matched controls. Metabolic pathway analysis and principal component analysis (PCA) was used to differentiate metabolite profiles for male and female AIS patients from the control, while logistic regression was used to determine differences in metabolites between male and female AIS patients. Results: In female AIS patients, 14 distinct altered metabolic pathways and 49 corresponding metabolites were identified, while 39 metabolites and 5 metabolic pathways were identified in male patients. Metabolites that are predictive of ischemic stroke in female patients were 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) (AUC = 0.914, 0.765–1.000), 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) (AUC = 0.840, 0.656–1.000), and 5,6-dihydrouracil (P-16:0/20:2) (AUC = 0.815, 0.601–1.000). Significant metabolites that were predictive of stroke in male patients were 5alpha-androstan-3alpha,17beta-diol disulfate (AUC = 0.951, 0.857–1.000), alpha-hydroxyisocaproate (AUC = 0.938, 0.832–1.000), threonate (AUC = 0.877, 0.716–1.000), and bilirubin (AUC = 0.817, 0.746–1.000). Conclusions: In the current study, the untargeted serum metabolomics platform identified multiple pathways and metabolites associated with male and female AIS patients. Further research is necessary to characterize how these metabolites are associated with the pathophysiology in male and female AIS patients.
Collapse
Affiliation(s)
- Nicolas Poupore
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Renee Chosed
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Sergio Arce
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | | | - Richard L. Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
- Correspondence: ; Tel.: +1-8644559846; Fax: +1-8644558404
| |
Collapse
|
7
|
Knikman JE, Gelderblom H, Beijnen JH, Cats A, Guchelaar H, Henricks LM. Individualized Dosing of Fluoropyrimidine-Based Chemotherapy to Prevent Severe Fluoropyrimidine-Related Toxicity: What Are the Options? Clin Pharmacol Ther 2021; 109:591-604. [PMID: 33020924 PMCID: PMC7983939 DOI: 10.1002/cpt.2069] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Fluoropyrimidines are widely used in the treatment of several types of solid tumors. Although most often well tolerated, severe toxicity is encountered in ~ 20-30% of the patients. Individualized dosing for these patients can reduce the incidence of severe fluoropyrimidine-related toxicity. However, no consensus has been achieved on which dosing strategy is preferred. The most established strategy for individualized dosing of fluoropyrimidines is upfront genotyping of the DPYD gene. Prospective research has shown that DPYD-guided dose-individualization significantly reduces the incidence of severe toxicity and can be easily applied in routine daily practice. Furthermore, the measurement of the dihydropyrimidine dehydrogenase (DPD) enzyme activity has shown to accurately detect patients with a DPD deficiency. Yet, because this assay is time-consuming and expensive, it is not widely implemented in routine clinical care. Other methods include the measurement of pretreatment endogenous serum uracil concentrations, the uracil/dihydrouracil-ratio, and the 5-fluorouracil (5-FU) degradation rate. These methods have shown mixed results. Next to these methods to detect DPD deficiency, pharmacokinetically guided follow-up of 5-FU could potentially be used as an addition to dosing strategies to further improve the safety of fluoropyrimidines. Furthermore, baseline characteristics, such as sex, age, body composition, and renal function have shown to have a relationship with the development of severe toxicity. Therefore, these baseline characteristics should be considered as a dose-individualization strategy. We present an overview of the current dose-individualization strategies and provide perspectives for a future multiparametric approach.
Collapse
Affiliation(s)
- Jonathan E. Knikman
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hans Gelderblom
- Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jos H. Beijnen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Annemieke Cats
- Department of Gastroenterology and HepatologyDivision of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Linda M. Henricks
- Department of Clinical Chemistry and Laboratory MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Conti V, De Bellis E, Manzo V, Sabbatino F, Iannello F, Dal Piaz F, Izzo V, Charlier B, Stefanelli B, Torsiello M, Iannaccone T, Coglianese A, Colucci F, Pepe S, Filippelli A. A Genotyping/Phenotyping Approach with Careful Clinical Monitoring to Manage the Fluoropyrimidines-Based Therapy: Clinical Cases and Systematic Review of the Literature. J Pers Med 2020; 10:jpm10030113. [PMID: 32899374 PMCID: PMC7564232 DOI: 10.3390/jpm10030113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Fluoropyrimidines (FP) are mainly metabolised by dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene. FP pharmacogenetics, including four DPYD polymorphisms (DPYD-PGx), is recommended to tailor the FP-based chemotherapy. These polymorphisms increase the risk of severe toxicity; thus, the DPYD-PGx should be performed prior to starting FP. Other factors influence FP safety, therefore phenotyping methods, such as the measurement of 5-fluorouracil (5-FU) clearance and DPD activity, could complement the DPYD-PGx. We describe a case series of patients in whom we performed DPYD-PGx (by real-time PCR), 5-FU clearance and a dihydrouracil/uracil ratio (as the phenotyping analysis) and a continuous clinical monitoring. Patients who had already experienced severe toxicity were then identified as carriers of DPYD variants. The plasmatic dihydrouracil/uracil ratio (by high-performance liquid chromatography (HPLC)) ranged between 1.77 and 7.38. 5-FU clearance (by ultra-HPLC with tandem mass spectrometry) was measured in 3/11 patients. In one of them, it reduced after the 5-FU dosage was halved; in the other case, it remained high despite a drastic dosage reduction. Moreover, we performed a systematic review on genotyping/phenotyping combinations used as predictive factors of FP safety. Measuring the plasmatic 5-FU clearance and/or dihydrouracil/uracil (UH2/U) ratio could improve the predictive potential of DPYD-PGx. The upfront DPYD-PGx combined with clinical monitoring and feasible phenotyping method is essential to optimising FP-based chemotherapy.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Emanuela De Bellis
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
- Correspondence: ; Tel.: +39-089-672-424
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Francesco Iannello
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Berenice Stefanelli
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Martina Torsiello
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
| | - Albino Coglianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
| | - Francesca Colucci
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
9
|
Qin W, Wang X, Chen W, Du W, Zhang D, Zhang X, Li P. An in vitro approach to simulate the process of 5-fluorouracil degradation with dihydropyrimidine dehydrogenase: the process in accordance to the first-order kinetic reaction. Xenobiotica 2020; 51:24-30. [PMID: 32686977 DOI: 10.1080/00498254.2020.1799451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Partial or complete deficiency in the dihydropyrimidine dehydrogenase (DPD) has been observed in 3%-5% and 0.1% of the general population, respectively. It causes severe toxicity in the context of 5-fluorouracil (5-FU) therapy. However, the current tests for determination of DPD deficiency have limitations in routine clinical usage. Therefore, an in vitro approach for simulating 5-FU degradation was established by mixing 5-FU with blank whole blood matrix in this study. The effects of initial 5-FU concentrations and temperatures on DPD activities were investigated as well. The degradation process followed the first-order kinetic reaction (r2 > 0.98). The degradation rates were determined by temperature and individually different. The DPD inhibitor, gimeracil, could block this degradation, which indicated that DPD was the main factor. The degradation process of 5-FU in patients' whole blood in vitro was consistent with it after mixing 5-FU with blank whole blood matrix. In conclusion, mixing 5-FU with blank matrix can simulate the process of 5-FU degradation with DPD.
Collapse
Affiliation(s)
- Wei Qin
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| | - Xiaoxue Wang
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| | - Wenqian Chen
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| | - Wenwen Du
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| | - Dan Zhang
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| | - Xianglin Zhang
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| | - Pengmei Li
- Department of pharmacy, China-Japan Friendship Hospital, Beijing, PR China
| |
Collapse
|
10
|
Deac AL, Burz CC, Bocşe HF, Bocşan IC, Buzoianu AD. A review on the importance of genotyping and phenotyping in fluoropyrimidine treatment. Med Pharm Rep 2020; 93:223-230. [PMID: 32832886 PMCID: PMC7418836 DOI: 10.15386/mpr-1564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
Fluoropyrimidines, after more than 50 years from their discovery, are still the treatment of many types of cancer, and it is estimated that two million patients receive fluoropyrimidine therapy annually. The toxicity associated with fluoropyrimidines affects 30–40% of patients and some adverse effects can be lethal. Dihydroypyrimidine dehydrogenase is the main enzyme in the catabolism of 5-FU and DPD activity deficiency can cause important toxicity. This is an important reason to determine DPD activity in order to improve patient safety and to limit potential life-threating toxicity. At presentmultiple phenotypic and genotypic methods are available for the determination of DPD activity, some of these methods have proven their usefulness in practice, and yet they are not routinely recommended in clinical practice. This review is another statement of the importance of the determination of DPD status, the phenotypic and genotypic methods that are available and can be used.
Collapse
Affiliation(s)
| | - Claudia Cristina Burz
- "Prof. Dr. Ion Chiricuţă" Oncology Institute, Cluj-Napoca, Romania.,Immunology and Allergology, Department 2 - Functional Sciences, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Florin Bocşe
- "Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, 3 General Surgery Clinic, Cluj-Napoca, Romania
| | - Ioana Corina Bocşan
- Pharmacology, Toxicology and Clinical Pharmacology, Department 2 - Functional Biosciences, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department 2 - Functional Biosciences, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
5-Fluorouracil Response Prediction and Blood Level-Guided Therapy in Oncology: Existing Evidence Fundamentally Supports Instigation. Ther Drug Monit 2020; 42:660-664. [PMID: 32649488 DOI: 10.1097/ftd.0000000000000788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
5-Fluorouracil (5-FU) response prediction and therapeutic drug monitoring (TDM) are required to minimize toxicity while preserving efficacy. Conventional 5-FU dose normalization uses body surface area. It is characterized by up to 100-fold interindividual variability of pharmacokinetic (PK) parameters, and typically >50% of patients have plasma 5-FU concentrations outside the optimal range. This underscores the need for a different dose rationalization paradigm, hence there is a case for 5-FU TDM. An association between 5-FU PK parameters and efficacy/toxicity has been established. It is believed that 5-FU response is enhanced and toxicity is reduced by PK management of its dosing. The area under the concentration-time curve is the most relevant PK parameter associated with 5-FU efficacy/toxicity, and optimal therapeutic windows have been proposed. Currently, there is no universally applied a priori test for predicting 5-FU response and identifying individuals with an elevated risk of toxicity. The following two-step strategy: prediction of response/toxicity and TDM for subsequent doses seems plausible. Approximately 80% of 5-FU is degraded in a three-step sequential metabolic pathway. Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme. Its deficiency can cause toxicity with standard 5-FU doses. DPD also metabolizes uracil (U) into 5,6-dihydrouracil (UH2). The UH2/U ratio is an index of DPD activity and a credible biomarker of response and toxicity. This article outlines the UH2/U ratio as a parameter for 5-FU response/toxicity prediction and highlights key studies emphasizing the value of 5-FU TDM. Broad application of 5-FU response/toxicity prediction and blood level-guided therapy remains unmet, despite ever-increasing clinical interest. Considered collectively, existing evidence is compelling and fundamentally supports universal instigation of response/toxicity prediction and TDM.
Collapse
|
12
|
Carr DF, Turner RM, Pirmohamed M. Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response. Br J Clin Pharmacol 2020; 87:237-255. [PMID: 32501544 DOI: 10.1111/bcp.14407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The field of pharmacogenomics has made great strides in oncology over the last 20 years and indeed a significant number of pre-emptive genetic tests are now routinely undertaken prior to anticancer drug administration. Many of these gene-drug interactions are the fruits of candidate gene and genome-wide association studies, which have largely focused on common genetic variants (allele frequency>1%). Examples where there is clinical utility include genotyping or phenotyping for G6PD to prevent rasburicase-induced RBC haemolysis, and TPMT to prevent thiopurine-induced bone marrow suppression. Other associations such as CYP2D6 status in determining the efficacy of tamoxifen are more controversial because of contradictory evidence from different sources, which has led to variability in the implementation of testing. As genomic technology becomes ever cheaper and more accessible, we must look to the additional data our genome can provide to explain interindividual variability in anticancer drug response. Clearly genes do not act on their own and it is therefore important to investigate genetic factors in conjunction with clinical factors, interacting concomitant drug therapies and other factors such as the microbiome, which can all affect drug disposition. Taking account of all of these factors, in conjunction with the somatic genome, is more likely to provide better predictive accuracy in determining anticancer drug response, both efficacy and safety. This review summarises the existing knowledge related to the pharmacogenomics of anticancer drugs and discusses areas of opportunity for further advances in personalisation of therapy in order to improve both drug safety and efficacy.
Collapse
Affiliation(s)
- Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Robin T, Saint-Marcoux F, Toinon D, Tafzi N, Marquet P, El Balkhi S. Automatic quantification of uracil and dihydrouracil in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122038. [PMID: 32169798 DOI: 10.1016/j.jchromb.2020.122038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
Fluoropyrimidines-based chemotherapies are the backbone in the treatment of many cancers. However, the use of 5-fluorouracil and its oral pre-prodrug, capecitabine, is associated with an important risk of toxicity. This toxicity is mainly due to a deficiency of dihydropyrimidine dehydrogenase (DPD). This deficiency may be detected by using a phenotypic approach that consists in the measurement of uracilemia or the calculation of dihydrouracil (UH2)/uracil (U) ratio. For uracilemia, a threshold value of 16 ng/ml has been proposed for partial deficiency, while a value of 150 ng/ml has been proposed for complete deficiency. We have developed a rapid, accurate and fully-automated procedure for the quantification of U and UH2 in plasma. Sample extraction was carried out by a programmable liquid handler directly coupled to a liquid chromatography - tandem mass spectrometry (LC-MS/MS) system. The method was validated according to the EMA guidelines and ISO 15189 requirements and was applied to real patient samples (n = 64). The limit of quantification was 5 and 10 ng/ml for U and UH2 respectively. Imprecision and inaccuracy were less than 15% for inter and intra-assay tests. Comparison with dedicated routine method showed excellent correlation. An automated procedure perfectly fulfills the need of low inaccuracy and CVs at the threshold values (less than 5% at 16 ng/ml) and is highly suitable for the characterization of DPD deficiency. Automatization should guaranty reliable and robust performances by minimizing the sources of variation such as volume inaccuracies, filtration or manual extraction related errors.
Collapse
Affiliation(s)
- Tiphaine Robin
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France
| | - Franck Saint-Marcoux
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France; INSERM UMR 1248, France.
| | | | - Naïma Tafzi
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France
| | - Pierre Marquet
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France; INSERM UMR 1248, France
| | - Souleiman El Balkhi
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France; INSERM UMR 1248, France
| |
Collapse
|
14
|
Determination of Endogenous Concentrations of Uracil and Dihydrouracil in Dried Saliva Spots by LC-MS/MS: Method Development, Validation, and Clinical Application. Ther Drug Monit 2019; 41:383-390. [DOI: 10.1097/ftd.0000000000000615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
DPYD and Fluorouracil-Based Chemotherapy: Mini Review and Case Report. Pharmaceutics 2019; 11:pharmaceutics11050199. [PMID: 31052357 PMCID: PMC6572291 DOI: 10.3390/pharmaceutics11050199] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil remains a foundational component of chemotherapy for solid tumour malignancies. While considered a generally safe and effective chemotherapeutic, 5-fluorouracil has demonstrated severe adverse event rates of up to 30%. Understanding the pharmacokinetics of 5-fluorouracil can improve the precision medicine approaches to this therapy. A single enzyme, dihydropyrimidine dehydrogenase (DPD), mediates 80% of 5-fluorouracil elimination, through hepatic metabolism. Importantly, it has been known for over 30-years that adverse events during 5-fluorouracil therapy are linked to high systemic exposure, and to those patients who exhibit DPD deficiency. To date, pre-treatment screening for DPD deficiency in patients with planned 5-fluorouracil-based therapy is not a standard of care. Here we provide a focused review of 5-fluorouracil metabolism, and the efforts to improve predictive dosing through screening for DPD deficiency. We also outline the history of key discoveries relating to DPD deficiency and include relevant information on the potential benefit of therapeutic drug monitoring of 5-fluorouracil. Finally, we present a brief case report that highlights a limitation of pharmacogenetics, where we carried out therapeutic drug monitoring of 5-fluorouracil in an orthotopic liver transplant recipient. This case supports the development of robust multimodality precision medicine services, capable of accommodating complex clinical dilemmas.
Collapse
|
16
|
Henricks LM, Jacobs BAW, Meulendijks D, Pluim D, van den Broek D, de Vries N, Rosing H, Beijnen JH, Huitema ADR, Guchelaar H, Cats A, Schellens JHM. Food-effect study on uracil and dihydrouracil plasma levels as marker for dihydropyrimidine dehydrogenase activity in human volunteers. Br J Clin Pharmacol 2018; 84:2761-2769. [PMID: 30047584 PMCID: PMC6256055 DOI: 10.1111/bcp.13719] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS This study aimed to determine the effect of food intake on uracil and dihydrouracil plasma levels. These levels are a promising marker for dihydropyrimidine dehydrogenase activity and for individualizing fluoropyrimidine anticancer therapy. METHODS A randomized, cross-over study in 16 healthy volunteers was performed, in which subjects were examined in fasted and fed state on two separate days. In fed condition, a high-fat, high-caloric breakfast was consumed between 8:00 h and 8:30 h. Whole blood for determination of uracil, dihydrouracil and uridine plasma levels was drawn on both test days at predefined time points between 8:00 h and 13:00 h. RESULTS Uracil levels were statistically significantly different between fasting and fed state. At 13:00 h, the mean uracil level in fasting state was 12.6 ± 3.7 ng ml-1 and after a test meal 9.4 ± 2.6 ng ml-1 (P < 0.001). Dihydrouracil levels were influenced by food intake as well (mean dihydrouracil level at 13:00 h in fasting state 147.0 ± 36.4 ng ml-1 and in fed state 85.7 ± 22.1 ng ml-1 , P < 0.001). Uridine plasma levels showed curves with similar patterns as for uracil. CONCLUSIONS It was shown that both uracil and dihydrouracil levels were higher in fasting state than in fed state. This is hypothesized to be an direct effect of uridine plasma levels, which were previously shown to be elevated in fasting state and reduced after intake of food. These findings show that, when assessing plasma uracil and dihydrouracil levels for adaptive fluoropyrimidine dosing in clinical practice, sampling should be done between 8:00 h and 9:00 h after overnight fasting to avoid bias caused by circadian rhythm and food effects.
Collapse
Affiliation(s)
- Linda M. Henricks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Bart A. W. Jacobs
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Didier Meulendijks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Dutch Medicines Evaluation Board (CBG‐MEB)UtrechtThe Netherlands
| | - Dick Pluim
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daan van den Broek
- Department of Clinical ChemistryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Niels de Vries
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hilde Rosing
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jan H. M. Schellens
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
17
|
DPD functional tests in plasma, fresh saliva and dried saliva samples as predictors of 5-fluorouracil exposure and occurrence of drug-related severe toxicity. Clin Biochem 2018; 56:18-25. [DOI: 10.1016/j.clinbiochem.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023]
|
18
|
Chavani O, Jensen BP, Strother RM, Florkowski CM, George PM. Development, validation and application of a novel liquid chromatography tandem mass spectrometry assay measuring uracil, 5,6-dihydrouracil, 5-fluorouracil, 5,6-dihydro-5-fluorouracil, α-fluoro-β-ureidopropionic acid and α-fluoro-β-alanine in human plasma. J Pharm Biomed Anal 2017; 142:125-135. [DOI: 10.1016/j.jpba.2017.04.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
|
19
|
García-González X, López-Fernández LA. Using pharmacogenetics to prevent severe adverse reactions to capecitabine. Pharmacogenomics 2017; 18:1199-1213. [DOI: 10.2217/pgs-2017-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Xandra García-González
- Servicio de Farmacia, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis A López-Fernández
- Servicio de Farmacia, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
20
|
Pan W, Li Y, Feng Y, Yang F, Liu H. A new sample preparation and separation combination for the precise, accurate, and simultaneous determination of uracil and dihydrouracil in human plasma by reversed-phase HPLC. J Sep Sci 2017; 40:3763-3770. [PMID: 28726286 DOI: 10.1002/jssc.201700279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022]
Abstract
We have developed an efficient procedure and detection method using reversed-phase high-performance liquid chromatography for the simultaneous measurement of uracil and dihydrouracil in human plasma. The procedure, including chromatographic conditions and sample preparation, was optimized and validated. Optimization of the sample preparation included deproteinization, extraction, and cleanup. A new sample preparation method which resulted in an improved extraction yield of analytes and significantly reduced interference at low-wavelength UV detection was developed. The developed method was validated for specificity, linearity, limits of detection and quantitation, precision, and accuracy. All calibration curves showed excellent linear regression (R2 > 0.9990) within the testing range. The limit of detection for uracil and dihydrouracil was 2.5 and 5.0 ng/mL, respectively. The extraction yields were >94% for uracil and 91% for dihydrouracil. Intra- and interassay precision and accuracy for uracil and dihydrouracil were lower than 8% at all tested concentrations. The proposed method was successfully applied to measure plasma concentrations of uracil and dihydrouracil in colorectal cancer patients scheduled to receive fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
- Wen Pan
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yuandong Li
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan Feng
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Fan Yang
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Haizhou Liu
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
21
|
Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer 2017; 116:1415-1424. [PMID: 28427087 PMCID: PMC5520099 DOI: 10.1038/bjc.2017.94] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background: We investigated the predictive value of dihydropyrimidine dehydrogenase (DPD) phenotype, measured as pretreatment serum uracil and dihydrouracil concentrations, for severe as well as fatal fluoropyrimidine-associated toxicity in 550 patients treated previously with fluoropyrimidines during a prospective multicenter study. Methods: Pretreatment serum concentrations of uracil and dihydrouracil were measured using a validated LC-MS/MS method. The primary endpoint of this analysis was global (any) severe fluoropyrimidine-associated toxicity, that is, grade ⩾3 toxicity according to the NCI CTC-AE v3.0, occurring during the first cycle of treatment. The predictive value of uracil and the uracil/dihydrouracil ratio for early severe fluoropyrimidine-associated toxicity were compared. Pharmacogenetic variants in DPYD (c.2846A>T, c.1679T>G, c.1129-5923C>G, and c.1601G>A) and TYMS (TYMS 5′-UTR VNTR and TYMS 3′-UTR 6-bp ins/del) were measured and tested for associations with severe fluoropyrimidine-associated toxicity to compare predictive value with DPD phenotype. The Benjamini-Hochberg false discovery rate method was used to control for type I errors at level q<0.050 (corresponding to P<0.010). Results: Uracil was superior to the dihydrouracil/uracil ratio as a predictor of severe toxicity. High pretreatment uracil concentrations (>16 ng ml−1) were strongly associated with global severe toxicity (OR 5.3, P=0.009), severe gastrointestinal toxicity (OR 33.7, P<0.0001), toxicity-related hospitalisation (OR 16.9, P<0.0001), as well as fatal treatment-related toxicity (OR 44.8, P=0.001). None of the DPYD variants alone, or TYMS variants alone, were associated with severe toxicity. Conclusions: High pretreatment uracil concentration was strongly predictive of severe, including fatal, fluoropyrimidine-associated toxicity, and is a highly promising phenotypic marker to identify patients at risk of severe fluoropyrimidine-associated toxicity.
Collapse
|
22
|
Meulendijks D, Cats A, Beijnen JH, Schellens JHM. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice? Cancer Treat Rev 2016; 50:23-34. [PMID: 27589829 DOI: 10.1016/j.ctrv.2016.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
Fluoropyrimidines remain the cornerstone of treatment for different types of cancer, and are used by an estimated two million patients annually. The toxicity associated with fluoropyrimidine therapy is substantial, however, and affects around 30% of the patients, with 0.5-1% suffering fatal toxicity. Activity of the main 5-fluorouracil (5-FU) metabolic enzyme, dihydropyrimidine dehydrogenase (DPD), is the key determinant of 5-FU pharmacology, and accounts for around 80% of 5-FU catabolism. There is a consistent relationship between DPD activity and 5-FU exposure on the one hand, and risk of severe and potentially lethal fluoropyrimidine-associated toxicity on the other hand. Therefore, there is a sound rationale for individualizing treatment with fluoropyrimidines based on DPD status in order to improve patient safety. The field of individualized treatment with fluoropyrimidines is now rapidly developing. The main strategies that are available, are based on genotyping of the gene encoding DPD (DPYD) and measuring of pretreatment DPD phenotype. Clinical validity of additional approaches, including genotyping of MIR27A has also recently been demonstrated. Here, we critically review the evidence on clinical validity and utility of strategies available to clinicians to identify patients at risk of developing severe and potentially fatal toxicity as a result of DPD deficiency. We evaluate the advantages and limitations of these methods when used in clinical practice, and discuss for which strategies clinical implementation is currently justified based on the available evidence and, in addition, which additional data will be required before implementing other, as yet less developed strategies.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| | - Annemieke Cats
- Department of Gastroenterology & Hepatology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Galarza AFA, Linden R, Antunes MV, Hahn RZ, Raymundo S, da Silva ACC, Staggemeier R, Spilki FR, Schwartsmann G. Endogenous plasma and salivary uracil to dihydrouracil ratios and DPYD genotyping as predictors of severe fluoropyrimidine toxicity in patients with gastrointestinal malignancies. Clin Biochem 2016; 49:1221-1226. [PMID: 27399164 DOI: 10.1016/j.clinbiochem.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the use of plasma and saliva uracil (U) to dihydrouracil (UH2) metabolic ratio and DPYD genotyping, as a means to identify patients with dihydropyrimidine dehydrogenase (DPD) deficiency and fluoropyrimidine toxicity. METHODS Paired plasma and saliva samples were obtained from 60 patients with gastrointestinal cancer, before fluoropyrimidine treatment. U and UH2 concentrations were measured by LC-MS/MS. DPYD was genotyped for alleles *7, *2A, *13 and Y186C. Data on toxicity included grade 1 to 4 neutropenia, mucositis, diarrhea, nausea/vomiting and cutaneous rash. RESULTS 35% of the patients had severe toxicity. There was no variant allele carrier for DPYD. The [UH2]/[U] metabolic ratios were 0.09-26.73 in plasma and 0.08-24.0 in saliva, with higher correlation with toxicity grade in saliva compared to plasma (rs=-0.515 vs rs=-0.282). Median metabolic ratios were lower in patients with severe toxicity as compared to those with absence of toxicity (0.59 vs 2.83 saliva; 1.62 vs 6.75 plasma, P<0.01). A cut-off of 1.16 for salivary ratio was set (AUC 0.842), with 86% sensitivity and 77% specificity for the identification of patients with severe toxicity. Similarly, a plasma cut-off of 4.0 (AUC 0.746), revealed a 71% sensitivity and 76% specificity. CONCLUSIONS DPYD genotyping for alleles 7, *2A, *13 and Y186C was not helpful in the identification of patients with severe DPD deficiency in this series of patients. The [UH2]/[U] metabolic ratios, however, proved to be a promising functional test to identify the majority of cases of severe DPD activity, with saliva performing better than plasma.
Collapse
Affiliation(s)
- Andrés Fernando Andrade Galarza
- Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Oncologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael Linden
- Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | - Roberta Zilles Hahn
- Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Suziane Raymundo
- Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | - Rodrigo Staggemeier
- Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | - Gilberto Schwartsmann
- Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Oncologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity. Case Rep Oncol Med 2016; 2016:7510901. [PMID: 27195162 PMCID: PMC4853945 DOI: 10.1155/2016/7510901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/20/2015] [Indexed: 11/17/2022] Open
Abstract
Over the past decades, 5-Fluorouracil (5-FU) has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD) activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.
Collapse
|
25
|
Jacobs BAW, Rosing H, de Vries N, Meulendijks D, Henricks LM, Schellens JHM, Beijnen JH. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of uracil and dihydrouracil in human plasma. J Pharm Biomed Anal 2016; 126:75-82. [PMID: 27179185 DOI: 10.1016/j.jpba.2016.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022]
Abstract
Quantification of the endogenous dihydropyrimidine dehydrogenase (DPD) substrate uracil (U) and the reaction product dihydrouracil (UH2) in plasma might be suitable for identification of patients at risk of fluoropyrimidine-induced toxicity as a result of DPD deficiency. In this paper, we describe the development and validation of a rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay for quantification of U and UH2 in human plasma. Analytes were extracted by protein precipitation, chromatographically separated on an Acquity UPLC(®) HSS T3 column with gradient elution and analyzed with a tandem mass spectrometer equipped with an electrospray ionization source. U was quantified in the negative ion mode and UH2 in the positive ion mode. Stable isotopes for U and UH2 were used as internal standards. Total chromatographic run time was 5min. Validated concentration ranges for U and UH2 were from 1 to 100ng/mL and 10 to 1000ng/mL, respectively. Inter-assay bias and inter-assay precision for U were within ±2.8% and ≤12.4%. For UH2, inter-assay bias and inter-assay precision were within ±2.9% and ≤7.2%. Adequate stability of U and UH2 in dry extract, final extract, stock solution and plasma was demonstrated. Stability of U and UH2 in whole blood was only satisfactory when stored up to 4hours at 2-8°C, but not at ambient temperatures. An accurate, precise and sensitive UPLC-MS/MS assay for quantification of U and UH2 in plasma was developed. This assay is now applied to support clinical studies with fluoropyrimidine drugs.
Collapse
Affiliation(s)
- Bart A W Jacobs
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.
| | - Hilde Rosing
- The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Niels de Vries
- The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Didier Meulendijks
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Linda M Henricks
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jan H M Schellens
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Utrecht University, Department of Pharmaceutical Sciences, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands; Utrecht University, Department of Pharmaceutical Sciences, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
26
|
Thomas F, Hennebelle I, Delmas C, Lochon I, Dhelens C, Garnier Tixidre C, Bonadona A, Penel N, Goncalves A, Delord JP, Toulas C, Chatelut E. Genotyping of a family with a novel deleteriousDPYDmutation supports the pretherapeutic screening of DPD deficiency with dihydrouracil/uracil ratio. Clin Pharmacol Ther 2015; 99:235-42. [DOI: 10.1002/cpt.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- F Thomas
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - I Hennebelle
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - C Delmas
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - I Lochon
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| | - C Dhelens
- UJF Grenoble I, University Hospital Albert Michallon, Department of Pharmacy; Grenoble France
| | - C Garnier Tixidre
- Institut Daniel Hollard, Department of Medical Oncology; Grenoble France
| | - A Bonadona
- University Hospital Albert Michallon, Medical Intensive Care Unit, UJF Grenoble I; Grenoble France
| | - N Penel
- Centre Oscar Lambret, Department of Medical Oncology; Lille France
| | - A Goncalves
- Institut Paoli Calmettes, Department of Medical Oncology; Marseille France
| | - JP Delord
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
- Institut Claudius Regaud, IUCT-O, Department of Medical Oncology; Toulouse France
| | - C Toulas
- Institut Claudius Regaud, IUCT-O, Laboratory of Oncogenetics; Toulouse France
| | - E Chatelut
- Institut Claudius Regaud, IUCT-O, Department of Pharmacology; Toulouse France
- EA4553; Univ. Toulouse III Paul Sabatier; Toulouse France
| |
Collapse
|
27
|
Sistonen J, Büchel B, Froehlich TK, Kummer D, Fontana S, Joerger M, van Kuilenburg ABP, Largiadèr CR. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 2015; 15:1653-66. [PMID: 25410891 DOI: 10.2217/pgs.14.126] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Decreased DPD activity is a major cause of 5-fluorouracil (5-FU) toxicity, but known reduced-function variants in the DPD gene (DPYD) explain only a part of DPD-related 5-FU toxicities. Here, we evaluated the baseline (pretherapeutic) plasma 5,6-dihydrouracil:uracil (UH2:U) ratio as a marker of DPD activity in the context of DPYD genotypes. MATERIALS & METHODS DPYD variants were genotyped and plasma U, UH2 and 5-FU concentrations were determined by liquid chromatography-tandem mass spectrometry in 320 healthy blood donors and 28 cancer patients receiving 5-FU-based chemotherapy. RESULTS Baseline UH2:U ratios were strongly correlated with generally low and highly variable U concentrations. Reduced-function DPYD variants were only weakly associated with lower baseline UH2:U ratios. However, the interindividual variability in the UH2:U ratio was reduced and a stronger correlation between ratios and 5-FU exposure was observed in cancer patients during 5-FU administration. CONCLUSION These results suggest that the baseline UH2:U plasma ratio in most individuals reflects the nonsaturated state of DPD and is not predictive of decreased DPD activity. It may, however, be highly predictive at increased substrate concentrations, as observed during 5-FU administration.
Collapse
Affiliation(s)
- Johanna Sistonen
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hahn RZ, Galarza AFA, Schneider A, Antunes MV, Schwartsmann G, Linden R. Improved determination of uracil and dihydrouracil in plasma after a loading oral dose of uracil using high-performance liquid chromatography with photodiode array detection and porous graphitic carbon stationary phase. Clin Biochem 2015; 48:915-8. [DOI: 10.1016/j.clinbiochem.2015.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
29
|
Henricks LM, Lunenburg CATC, Meulendijks D, Gelderblom H, Cats A, Swen JJ, Schellens JHM, Guchelaar HJ. Translating DPYD genotype into DPD phenotype: using the DPYD gene activity score. Pharmacogenomics 2015; 16:1277-86. [PMID: 26265346 DOI: 10.2217/pgs.15.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The dihydropyrimidine dehydrogenase enzyme (DPD, encoded by the gene DPYD) plays a key role in the metabolism of fluoropyrimidines. DPD deficiency occurs in 4-5% of the population and is associated with severe fluoropyrimidine-related toxicity. Several SNPs in DPYD have been described that lead to absent or reduced enzyme activity, including DPYD*2A, DPYD*13, c.2846A>T and c.1236G>A/haplotype B3. Since these SNPs differ in their effect on DPD enzyme activity, a differentiated dose adaption is recommended. We propose the gene activity score for translating DPYD genotype into phenotype, accounting for differences in functionality of SNPs. This method can be used to standardize individualized fluoropyrimidine dose adjustments, resulting in optimal safety and effectiveness.
Collapse
Affiliation(s)
- Linda M Henricks
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carin A T C Lunenburg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Meulendijks
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Cats
- Department of Gastroenterology & Hepatology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jan H M Schellens
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
30
|
Kummer D, Froehlich TK, Joerger M, Aebi S, Sistonen J, Amstutz U, Largiadèr CR. Dihydropyrimidinase and β-ureidopropionase gene variation and severe fluoropyrimidine-related toxicity. Pharmacogenomics 2015; 16:1367-77. [DOI: 10.2217/pgs.15.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: To assess the association of DPYS and UPB1 genetic variation, encoding the catabolic enzymes downstream of dihydropyrimidine dehydrogenase, with early-onset toxicity from fluoropyrimidine-based chemotherapy. Patients & methods: The coding and exon-flanking regions of both genes were sequenced in a discovery subset (164 patients). Candidate variants were genotyped in the full cohort of 514 patients. Results & conclusions: Novel rare deleterious variants in DPYS (c.253C > T and c.1217G > A) were detected once each in toxicity cases and may explain the occurrence of severe toxicity in individual patients, and associations of common variants in DPYS (c.1–1T > C: padjusted = 0.003; OR = 2.53; 95% CI: 1.39–4.62, and c.265–58T > C: padjusted = 0.039; OR = 0.61; 95% CI: 0.38–0.97) with 5-fluorouracil toxicity were replicated.
Collapse
Affiliation(s)
- Dominic Kummer
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
- Graduate School for Cellular & Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Tanja K Froehlich
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, CH-9007 St. Gallen, Switzerland
| | - Stefan Aebi
- Division of Medical Oncology, Cantonal Hospital Lucerne, Spitalstrasse, CH-6000 Lucerne 16, Switzerland
| | - Johanna Sistonen
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Ursula Amstutz
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Carlo R Largiadèr
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| |
Collapse
|
31
|
Relationship Between the DPD and TS mRNA Expression and the Response to S-1-Based Chemotherapy and Prognosis in Patients with Advanced Gastric Cancer. Cell Biochem Biophys 2014; 71:1653-61. [DOI: 10.1007/s12013-014-0387-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Carlsson G, Odin E, Gustavsson B, Wettergren Y. Pretherapeutic uracil and dihydrouracil levels in saliva of colorectal cancer patients are associated with toxicity during adjuvant 5-fluorouracil-based chemotherapy. Cancer Chemother Pharmacol 2014; 74:757-63. [DOI: 10.1007/s00280-014-2553-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
|
33
|
Dong L, Li J, Lou XP, Miao JH, Lu P, Chang ZW, Han ZF. Comparison of short-term efficacy and safety of TIROX and DCF regimens for advanced gastric cancer. J Int Med Res 2014; 42:737-43. [PMID: 24717407 PMCID: PMC8280548 DOI: 10.1177/0300060513510657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To compare the short-term efficacy and safety profile of the S-1 + irinotecan + oxaliplatin (TIROX) and docetaxel + cisplatin + flurouracil (DCF) anticancer regimens in patients with advanced gastric cancer. METHODS Patients with recurrent or metastatic gastric cancer diagnosed by pathology were randomly divided into two groups to receive six cycles of either the TIROX regimen (21-day cycle) or the DCF regimen (21-day cycle). After six chemotherapy cycles, the short-term efficacy was evaluated according to the Response Evaluation Criteria in Solid Tumors guidelines and adverse reactions were recorded according to National Cancer Institute Common Toxicity Criteria 2.0 standards. RESULTS A total of 60 patients were enrolled in the study. The response rate (complete response + partial response) was significantly higher in the TIROX group (18/30 patients; 60.0%) compared with the DCF group (10/30 patients; 33.3%). The rates of grade III-IV leucopenia and neurotoxicity were significantly higher in the TIROX group than the DCF group. CONCLUSION The TIROX regimen was effective for the treatment of advanced gastric cancer, but it was associated with leucopenia and neurotoxicity.
Collapse
Affiliation(s)
- Lei Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Li
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao-Ping Lou
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jin-Hong Miao
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pei Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhi-Wei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhao-Feng Han
- Department of Burns, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
34
|
Boisdron-Celle M, Biason P, Gamelin E, Morel A. Dihydropyrimidine dehydrogenase and fluoropyrimidines: a review of current dose adaptation practices and the impact on the future of personalized medicine using 5-fluorouracil. COLORECTAL CANCER 2013. [DOI: 10.2217/crc.13.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SUMMARY 5-fluorouracil (5-FU) is widely used in chemotherapeutic treatments of solid tumors. However, adverse events after its administration occur in about 30% of patients. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme in the 5-FU catabolic pathway: several studies have focused on its genetics and/or pharmacokinetics in order to explain the wide interpatient variability in the DPD activity, including the rare event of its complete absence of activity. The pretreatment screening for DPD activity with a multiparametric approach (genotyping, phenotyping, clinico–pathological characteristics) shows the greatest specificity and sensitivity to avoid severe early-onset toxicity to fluoropyrimidines. In addition, using the pharmacokinetics of 5-FU, the dose adaptation can be used to properly dose each cycle for optimal efficacy and reduction of early-onset toxicities.
Collapse
Affiliation(s)
- Michèle Boisdron-Celle
- Institut de Cancérologie de l’Ouest, Centre Recherche Cancérologie Nantes Angers-INSERM U892, Angers, France
| | - Paola Biason
- ODPM SAS (Onco Drug Personalized Medicine), Angers, France
| | - Erick Gamelin
- Institut de Cancérologie de l’Ouest, Centre Recherche Cancérologie Nantes Angers-INSERM U892, Angers, France
| | - Alain Morel
- Institut de Cancérologie de l’Ouest, Centre Recherche Cancérologie Nantes Angers-INSERM U892, Angers, France
- Département de Biopathologie du Cancer, Unité d’Oncopharmacologie et Pharmacogénétique, CRCNA INSERM U892, ICO Paul Papin, 2 Rue Moll, 49933 Angers Cedex 9, France
| |
Collapse
|
35
|
13C-uracil breath test to predict 5-fluorouracil toxicity in gastrointestinal cancer patients. Cancer Chemother Pharmacol 2013; 72:1273-82. [DOI: 10.1007/s00280-013-2309-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022]
|
36
|
van Staveren MC, Guchelaar HJ, van Kuilenburg ABP, Gelderblom H, Maring JG. Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. THE PHARMACOGENOMICS JOURNAL 2013; 13:389-95. [PMID: 23856855 DOI: 10.1038/tpj.2013.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022]
Abstract
5-Fluorouracil (5-FU) is rapidly degraded by dihyropyrimidine dehydrogenase (DPD). Therefore, DPD deficiency can lead to severe toxicity or even death following treatment with 5-FU or capecitabine. Different tests based on assessing DPD enzyme activity, genetic variants in DPYD and mRNA variants have been studied for screening for DPD deficiency, but none of these are implemented broadly into clinical practice. We give an overview of the tests that can be used to detect DPD deficiency and discuss the advantages and disadvantages of these tests.
Collapse
Affiliation(s)
- M C van Staveren
- Department of Pharmacy, Scheper Hospital Emmen and Röpcke Zweers Hospital Hardenberg, Emmen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Phenotyping drug disposition in oncology. Cancer Treat Rev 2012; 38:715-25. [DOI: 10.1016/j.ctrv.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
|
38
|
A rapid HPLC-ESI-MS/MS method for determination of dihydrouracil/uracil ratio in plasma: evaluation of toxicity to 5-flurouracil in patients with gastrointestinal cancer. Ther Drug Monit 2012; 34:59-66. [PMID: 22210098 DOI: 10.1097/ftd.0b013e318240405f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A liquid chromatography-tandem mass spectrometry method for the simultaneous quantitation of endogenous uracil (U) and dihydrouracil (UH2) was developed and tested in a Brazilian population of patients with gastrointestinal cancer previously exposed to 5-fluorouracil (5FU). METHODS The analytes were extracted by a liquid-liquid method using 5-clorouracil as internal standard. The separation was performed on a reversed-phase XTerra C18 column with a mobile phase composed of methanol and aqueous 0.1% ammonium hydroxide (15:85). Mass spectrometry detection was carried out using negative electrospray ionization and selected reaction monitoring. Bovine serum albumin was employed as an alternative matrix to prepare the calibration standards, aiming to avoid the measurement of physiologic U and UH2. Calibration curves were constructed over the range of 5-200 ng/mL for U and 10-500 ng/mL for UH2. RESULTS The mean RSD values in the intrarun precision were 6.5% and 10.0% and in the interrun precision were 7.8% and 9.0% for U and UH2, respectively. The mean accuracy values were within the range of 90%-110% for both analytes. The analytes were stable in plasma under different conditions of temperature and time. The validated method was successfully applied to determine the plasma concentrations of U and UH2 in patients with gastrointestinal cancer (n = 32) previously treated with 5FU and for whom clinical toxicity was well documented. U concentrations varied from 21.8 to 56.6 ng/mL, whereas UH2 concentrations varied from 57.7 to 271.5 ng/mL. UH2/U ratio ranged from 1.56 to 6.18. CONCLUSIONS The method has proved to provide a quick, reliable, and reproducible quantitation of the plasma concentrations of U and its metabolite UH2. The UH2/U ratios did not discriminate patients previously exposed to 5FU with and without severe toxicities, possibly due to the small sample. Further studies in a larger population are desirable.
Collapse
|
39
|
van Staveren MC, Theeuwes-Oonk B, Guchelaar HJ, van Kuilenburg ABP, Maring JG. Pharmacokinetics of orally administered uracil in healthy volunteers and in DPD-deficient patients, a possible tool for screening of DPD deficiency. Cancer Chemother Pharmacol 2011; 68:1611-7. [PMID: 21590448 PMCID: PMC3220818 DOI: 10.1007/s00280-011-1661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/16/2011] [Indexed: 01/12/2023]
Abstract
Purpose Dihydropyrimidine dehydrogenase (DPD) deficiency can lead to severe toxicity in patients treated with standard doses of 5-fluorouracil (5-FU). Oral uracil administration and subsequent measurement of uracil and dihydrouracil (DHU) plasma concentrations might detect patients with DPD deficiency. This study compares the pharmacokinetics of uracil and DHU after oral uracil administration in subjects with normal and deficient DPD status. Methods Five hundred milligrams of uracil per metre square was administered orally to 11 subjects with normal DPD status and to 10 subjects with reduced DPD activity. Repeated administration (n = 3) of this dose was performed in 4 subjects, and 1,000 mg uracil/m2 was administered to 4 subjects to assess intra-individual variation and linearity of pharmacokinetics. Results In subjects with normal DPD status, 500 mg/m2 uracil resulted in uracil Cmax levels of 14.4 ± 4.7 mg/L at Tmax = 30.0 ± 11.6 min, and in DPD-deficient subjects, 20.0 ± 4.5 mg/L at 31.5 ± 1.1 min. The uracil AUC0>180 was 31.2 ± 5.1 mg L/h in DPD-deficient subjects, which was significantly higher (P < 0.05) than in the subjects with normal DPD status (13.8 ± 3.9 mg L/h). Repeated uracil dosing showed reproducible uracil PK in subjects with normal DPD status, and dose elevation of uracil suggested linear pharmacokinetics. Conclusion The pharmacokinetics of uracil differs significantly between subjects with a normal DPD activity and those with a deficient DPD status. The AUC and Cmax of uracil can be useful as a diagnostic tool to differentiate patients with regard to DPD status.
Collapse
Affiliation(s)
- Maurice C van Staveren
- Department of Pharmacy, Scheper Hospital Emmen and Röpcke Zweers Hospital Hardenberg, Boermarkeweg 60, 7824 AA Emmen, The Netherlands.
| | | | | | | | | |
Collapse
|