1
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
2
|
Ebadi Sharafabad B, Abdoli A, Panahi M, Abdolmohammadi Khiav L, Jamur P, Abedi Jafari F, Dilmaghani A. Anti-tumor Effects of Cisplatin Synergist in Combined Treatment with Clostridium novyi-NT Spores Against Hypoxic Microenvironments in a Mouse Model of Cervical Cancer Caused by TC-1 Cell Line. Adv Pharm Bull 2023; 13:817-826. [PMID: 38022809 PMCID: PMC10676560 DOI: 10.34172/apb.2023.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Despite the development of anti-human papillomavirus (HPV) vaccines, cervical cancer is still a common disease in women, especially in developing countries. The presence of a hypoxic microenvironment causes traditional treatments to fail. In this study, we presented a combined treatment method based on the chemotherapeutic agent cisplatin and Clostridium novyi-NT spores to treat normoxic and hypoxic areas of the tumor. Methods TC-1 Cell line capable of expressing HPV-16 E6/7 oncoproteins was subcutaneously transplanted into female 6-8 week old C57/BL6 mice. The tumor-bearing mice were randomly divided into four groups and treated with different methods after selecting a control group. Group 1: Control without treatment (0.1 mL sterile PBS intratumorally), Group: C. novyi-NT (107 C. novyi-NT). Group 3: Receives cisplatin intraperitoneally (10 mg/kg). Fourth group: Intratumoral administration of C. novyi-NT spores + intraperitoneal cisplatin. Western blot analysis was used to examine the effects of anti-hypoxia treatment and expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins. Results The results clearly showed that combined treatment based on C. novyi-NT and cisplatin significantly reduced the expression of HIF-1 alpha and VEGF proteins compared to cisplatin alone. At the same time, the amount of necrosis of tumor cells in the combined treatment increased significantly compared to the single treatment and the control. At the same time, the mitotic count decreased significantly. Conclusion Our research showed that developing a combined treatment method based on C. novyi-NT and cisplatin against HPV-positive cervical cancer could overcome the treatment limitations caused by the existence of hypoxic areas of the tumor.
Collapse
Affiliation(s)
- Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Mohammad Panahi
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Jamur
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Fatemeh Abedi Jafari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azita Dilmaghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Ye J, Pang Y, Yang X, Zhang C, Shi L, Chen Z, Huang G, Wang X, Lu F. PPIH gene regulation system and its prognostic significance in hepatocellular carcinoma: a comprehensive analysis. Aging (Albany NY) 2023; 15:11448-11470. [PMID: 37874737 PMCID: PMC10637785 DOI: 10.18632/aging.205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Peptidyl-prolyl isomerase H (PPIH) is a member of the cyclophilin protein family, which functions as a molecular chaperone and is involved in the splicing of pre-mRNA. According to reports, the malignant progression of HCC related to hepatitis B virus (HBV) is tightly associated with RNA-binding proteins. Nevertheless, there is no research on PPIH expression or its function in the occurrence and progression of HCC. RESULTS We are the first to reveal that the mRNA and protein levels of Ppih are substantially overexpressed in HCC, as the outcomes show. A significant correlation existed between enriched expression of Ppih within HCC and more advanced, poorly differentiated, and TP53-mutated tumors. CONCLUSION These findings, which suggest that Ppih may serve as a predictive biomarker for people with HCC, serve as a starting point for further investigation into the function of Ppih in the progression of carcinogenesis. METHODS Accordingly, we utilized clinical samples and bioinformatics analysis to assess Ppih's mRNA, protein expression, and gene regulatory system in HCC. Additionally, Wilcoxon signed-rank testing and logistic regression were utilized to inspect the association between clinicopathological factors and Ppih. Clinical pathological traits linked to overall survival (OS) among HCC patients were examined via TCGA data via Cox regression and the Kaplan-Meier approach. Additionally, via TCGA data collection, gene set enrichment assessment was also conducted.
Collapse
Affiliation(s)
- Jun Ye
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuan Zhang
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Lei Shi
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Zhitao Chen
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Xianhe Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Fangyang Lu
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| |
Collapse
|
4
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
5
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
6
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
7
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
8
|
Devarajan N, Manjunathan R, Ganesan SK. Tumor hypoxia: The major culprit behind cisplatin resistance in cancer patients. Crit Rev Oncol Hematol 2021; 162:103327. [PMID: 33862250 DOI: 10.1016/j.critrevonc.2021.103327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is the most commonly used first-line drug for cancer treatment. However, many patients develop resistance to cisplatin therapy which ultimately results in therapy failure and increased mortality. A growing body of evidence shows that the hypoxic microenvironment is the prime factor underlying tumor insensitivity to cisplatin treatment. Since tumors in the majority of cancer patients are under hypoxic stress (low oxygen supply), it becomes necessary to understand the pathobiology behind hypoxia-induced cisplatin resistance in cancer cells. Here, we discuss the molecular events that render hypoxic tumors insensitive to cisplatin therapy. Furthermore, various drugs and tumor oxygenation techniques have been developed to circumvent cisplatin resistance in hypoxic tumors. However, their pharmaceutical applications are limited due to failures in clinical investigations and a lack of preclinical studies in the hypoxic tumor microenvironment. This review addresses these challenges and provides new directions for the strategic deployment of cisplatin sensitizers in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, 600095, Tamilnadu, India.
| | - Reji Manjunathan
- Multidisciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu, 603001, Tamilnadu, India.
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, TRUE Campus, CN Block-6, Sector V, Salt Lake, Kolkata, 700 091, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat Med 2021; 27:491-503. [PMID: 33619369 DOI: 10.1038/s41591-021-01232-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a neoplastic plasma-cell disorder characterized by clonal proliferation of malignant plasma cells. Despite extensive research, disease heterogeneity within and between treatment-resistant patients is poorly characterized. In the present study, we conduct a prospective, multicenter, single-arm clinical trial (NCT04065789), combined with longitudinal single-cell RNA-sequencing (scRNA-seq) to study the molecular dynamics of MM resistance mechanisms. Newly diagnosed MM patients (41), who either failed to respond or experienced early relapse after a bortezomib-containing induction regimen, were enrolled to evaluate the safety and efficacy of a daratumumab, carfilzomib, lenalidomide and dexamethasone combination. The primary clinical endpoint was safety and tolerability. Secondary endpoints included overall response rate, progression-free survival and overall survival. Treatment was safe and well tolerated; deep and durable responses were achieved. In prespecified exploratory analyses, comparison of 41 primary refractory and early relapsed patients, with 11 healthy subjects and 15 newly diagnosed MM patients, revealed new MM molecular pathways of resistance, including hypoxia tolerance, protein folding and mitochondria respiration, which generalized to larger clinical cohorts (CoMMpass). We found peptidylprolyl isomerase A (PPIA), a central enzyme in the protein-folding response pathway, as a potential new target for resistant MM. CRISPR-Cas9 deletion of PPIA or inhibition of PPIA with a small molecule inhibitor (ciclosporin) significantly sensitizes MM tumor cells to proteasome inhibitors. Together, our study defines a roadmap for integrating scRNA-seq in clinical trials, identifies a signature of highly resistant MM patients and discovers PPIA as a potent therapeutic target for these tumors.
Collapse
|
10
|
Abbasov ME, Alvariño R, Chaheine CM, Alonso E, Sánchez JA, Conner ML, Alfonso A, Jaspars M, Botana LM, Romo D. Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nat Chem 2019; 11:342-350. [PMID: 30903037 PMCID: PMC6532426 DOI: 10.1038/s41557-019-0230-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
The architecture and bioactivity of natural products frequently serve as embarkation points for the exploration of biologically relevant chemical space. Total synthesis followed by derivative synthesis has historically enabled a deeper understanding of structure-activity relationships. However, synthetic strategies towards a natural product are not always guided by hypotheses regarding the structural features required for bioactivity. Here, we report an approach to natural product total synthesis that we term 'pharmacophore-directed retrosynthesis'. A hypothesized, pharmacophore of a natural product is selected as an early synthetic target and this dictates the retrosynthetic analysis. In an ideal application, sequential increases in the structural complexity of this minimal structure enable development of a structure-activity relationship profile throughout the course of the total synthesis effort. This approach enables the identification of simpler congeners retaining bioactivity at a much earlier stage of a synthetic effort, as demonstrated here for the spongiane diterpenoid, gracilin A, leading to simplified derivatives with potent neuroprotective and immunosuppressive activity.
Collapse
Affiliation(s)
- Mikail E Abbasov
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jon A Sánchez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Michael L Conner
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, Scotland, UK
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA.
| |
Collapse
|
11
|
Zhao X, Xia C, Wang X, Wang H, Xin M, Yu L, Liang Y. Cyclophilin J PPIase Inhibitors Derived from 2,3-Quinoxaline-6 Amine Exhibit Antitumor Activity. Front Pharmacol 2018. [PMID: 29520233 PMCID: PMC5826973 DOI: 10.3389/fphar.2018.00126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclophilin J (CyPJ), also called peptidylprolyl isomerase like 3, has been identified as a novel member of the cyclophilin family. Our previous research has resolved the three-dimensional structure of CyPJ and demonstrated the peptidylprolyl cis–trans isomerase (PPIase) activity of CyPJ, which can be inhibited by the common immunosuppressive drug cyclosporine A (CsA). Importantly, CyPJ is upregulated in hepatocellular carcinoma (HCC) and promotes tumor growth; CyPJ inhibition by CsA- or siRNA-based knockdown results in a remarkable suppression of HCC. These findings suggest that CyPJ may be a potential therapeutic target for HCC, and discovery of relevant inhibitors may facilitate development of a novel CyPJ-based targeting therapy. However, apart from the common inhibitor CsA, CyPJ has yet to be investigated as a target for cancer therapy. Here, we report structure-based identification of novel small molecule non-peptidic CyPJ inhibitors and their potential as antitumor lead compounds. Based on computer-aided virtual screening, in silico, and subsequently surface plasmon resonance analysis, 19 potential inhibitors of CyPJ were identified and selected for further evaluation of PPIase CyPJ inhibition in vitro. Thirteen out of 19 compounds exhibited notable inhibition against PPIase activity. Among them, the compound ZX-J-19, with a quinoxaline nucleus, showed potential for tumor inhibition; thus, we selected it for further structure–activity optimization. A total of 22 chemical derivatives with 2,3-substituted quinoxaline-6-amine modifications were designed and successfully synthesized. At least 2 out of the 22 derivatives, such as ZX-J-19j and ZX-J-19l, demonstrated remarkable inhibition of tumor cell growth, comparable to CsA but much stronger than 5-fluorouracil. These results indicate that these two small molecules represent novel potential lead compounds for CyPJ-based antitumor drug development.
Collapse
Affiliation(s)
- Xuemei Zhao
- College of Pharmacy, Taishan Medical University, Tai'an, China
| | - Chengcai Xia
- College of Pharmacy, Taishan Medical University, Tai'an, China
| | - Xiaodan Wang
- College of Pharmacy, Taishan Medical University, Tai'an, China
| | - Hao Wang
- College of Pharmacy, Taishan Medical University, Tai'an, China
| | - Ming Xin
- College of Pharmacy, Taishan Medical University, Tai'an, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Liang
- College of Pharmacy, Taishan Medical University, Tai'an, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Abstract
Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Jay P Garg
- Product Development, Departments of Immunology, Infectious Diseases, and Ophthalmology, Genentech, South San Francisco, CA
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, CA.
| |
Collapse
|
13
|
Tarenzi T, Calandrini V, Potestio R, Giorgetti A, Carloni P. Open Boundary Simulations of Proteins and Their Hydration Shells by Hamiltonian Adaptive Resolution Scheme. J Chem Theory Comput 2017; 13:5647-5657. [PMID: 28992702 DOI: 10.1021/acs.jctc.7b00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recently proposed Hamiltonian adaptive resolution scheme (H-AdResS) allows the performance of molecular simulations in an open boundary framework. It allows changing, on the fly, the resolution of specific subsets of molecules (usually the solvent), which are free to diffuse between the atomistic region and the coarse-grained reservoir. So far, the method has been successfully applied to pure liquids. Coupling the H-AdResS methodology to hybrid models of proteins, such as the molecular mechanics/coarse-grained (MM/CG) scheme, is a promising approach for rigorous calculations of ligand binding free energies in low-resolution protein models. Toward this goal, here we apply for the first time H-AdResS to two atomistic proteins in dual-resolution solvent, proving its ability to reproduce structural and dynamic properties of both the proteins and the solvent, as obtained from atomistic simulations.
Collapse
Affiliation(s)
- Thomas Tarenzi
- Computation-Based Science and Technology Research Center CaSToRC, The Cyprus Institute , 20 Konstantinou Kavafi Street, 2121, Aglantzia, Nicosia, Cyprus
- Department of Physics, Faculty of Mathematics, Computer Science and Natural Sciences, Aachen University , Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulation IAS-5, and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Raffaello Potestio
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5, and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Department of Biotechnology, University of Verona , Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Paolo Carloni
- Department of Physics, Faculty of Mathematics, Computer Science and Natural Sciences, Aachen University , Otto-Blumenthal-Straße, 52074 Aachen, Germany
- Computational Biomedicine, Institute for Advanced Simulation IAS-5, and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| |
Collapse
|
14
|
Cheng X, Zhang L, Chen Y, Qing C. Circulating cell-free DNA and circulating tumor cells, the "liquid biopsies" in ovarian cancer. J Ovarian Res 2017; 10:75. [PMID: 29132396 PMCID: PMC5683341 DOI: 10.1186/s13048-017-0369-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Limited understanding of ovarian cancer (OC) genome portrait has hindered the therapeutic advances. The serial monitoring of tumor genotypes is becoming increasingly attainable with circulating cell-free DNA (cf-DNA) and circulating tumor cells (CTCs) emerging as “liquid biopsies”. They represent non-invasive biomarkers and are viable, as they can be isolated from human plasma, serum and other body fluids. Molecular characterization of circulating tumor DNA (ct-DNA) and CTCs offer unique potentials to better understand the biology of metastasis and resistance to therapies. The liquid biopsies may also give innovative insights into the process of rapid and accurate identification, resistant genetic alterations and a real time monitoring of treatment responses. In addition, liquid biopsies are shedding light on elucidating signal pathways involved in invasiveness and metastasis competence; but the detection and molecular characterization of ct-DNA and CTCs are still challenging, since they are rare, and the amount of available samples are very limited. This review will focus on the clinical potential of ct-DNA and CTCs in both the early and advanced diagnosis, prognosis, and in the identification of resistance mutations in OC.
Collapse
Affiliation(s)
- Xianliang Cheng
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China
| | - Lei Zhang
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China.,Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yajuan Chen
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China
| | - Chen Qing
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
15
|
Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci 2017; 74:2795-2813. [PMID: 28378042 PMCID: PMC5977999 DOI: 10.1007/s00018-017-2502-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Rebecca Parodi-Rullán
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Zaza Khuchua
- Cincinnati Children's Research Foundation, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 54229, USA
| | - Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
16
|
Creaney J, Dick IM, Leon JS, Robinson BWS. A Proteomic Analysis of the Malignant Mesothelioma Secretome Using iTRAQ. Cancer Genomics Proteomics 2017; 14:103-117. [PMID: 28387650 DOI: 10.21873/cgp.20023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/30/2022] Open
Abstract
Backgound/Aim: Malignant mesothelioma (MM) is an aggressive and fatal pleural cancer. The cell secretome offers information allowing insight into the pathogenesis of MM while offering the possibility to identify potential therapeutic targets and biomarkers. In the present study the secretome protein profile of MM cell lines was compared to normal mesothelial cells. MATERIALS AND METHODS Six MM cell lines were compared against three primary mesothelial cell culture preparations using iTRAQ® mass spectrometry. RESULTS MM cell lines more abundantly secreted exosome-associated proteins than mesothelial cells. MM cell secretomes were enriched in proteins that are involved in response to stress, carbon metabolism, biosynthesis of amino acids, antigen processing and presentation and protein processing in the endoplasmic reticulum. CONCLUSION The MM cell secretome is enriched in proteins that are likely to enhance its growth and response to stress and help it inhibit an adaptive immune response. These are potential targets for therapeutic and biomarker discovery.
Collapse
Affiliation(s)
- Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia and Australian Mesothelioma Tissue Bank, Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Ian M Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Justine S Leon
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia
| |
Collapse
|
17
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Holliday MJ, Camilloni C, Armstrong GS, Vendruscolo M, Eisenmesser EZ. Networks of Dynamic Allostery Regulate Enzyme Function. Structure 2017; 25:276-286. [PMID: 28089447 DOI: 10.1016/j.str.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
Many protein systems rely on coupled dynamic networks to allosterically regulate function. However, the broad conformational space sampled by non-coherently dynamic systems has precluded detailed analysis of their communication mechanisms. Here, we have developed a methodology that combines the high sensitivity afforded by nuclear magnetic resonance relaxation techniques and single-site multiple mutations, termed RASSMM, to identify two allosterically coupled dynamic networks within the non-coherently dynamic enzyme cyclophilin A. Using this methodology, we discovered two key hotspot residues, Val6 and Val29, that communicate through these networks, the mutation of which altered active-site dynamics, modulating enzymatic turnover of multiple substrates. Finally, we utilized molecular dynamics simulations to identify the mechanism by which one of these hotspots is coupled to the larger dynamic networks. These studies confirm a link between enzyme dynamics and the catalytic cycle of cyclophilin A and demonstrate how dynamic allostery may be engineered to tune enzyme function.
Collapse
Affiliation(s)
- Michael Joseph Holliday
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA
| | - Carlo Camilloni
- Department of Chemistry, Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | | | | | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells. Neurotoxicology 2016; 57:203-213. [PMID: 27725305 DOI: 10.1016/j.neuro.2016.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/22/2016] [Accepted: 10/06/2016] [Indexed: 01/28/2023]
Abstract
Mitochondria play a key role in the process of lead (Pb)-induced impairment in nervous system. To further clarify the underlying mechanism of Pb neurotoxicity, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and cyclophilin D (CyPD), a component of MPT pore (MPTP), in Pb-induced mitochondrial apoptosis in nerve cells. In SH-SY5Y and PC12 cells, Cyclosporin A (CSA), a special inhibitor of CyPD, could alleviate cell death, lactate dehydrogenase (LDH) leakage and adenosine 5 triphosphate (ATP) decrease caused by PbAc. In the following experiments, we found PbAc increased the protein level of CyPD and induced MPT pore (MPTP) opening. When cells were pretreated with CSA to inhibit MPTP opening, the Pb-induced impairment of mitochondrial morphology (swelling and rupture) and the loss of mitochondria were attenuated. In addition, CSA obviously ameliorated the Pb-induced damage of mitochondrial function, such as reactive oxygen species (ROS) boost and mitochondrial membrane potential (MMP) collapse, as well as the release of cytochrome C (Cyto C) and apoptosis-inducing factor (AIF) from mitochondria. These beneficial effects could finally result in cell survival under Pb-exposure conditions. Furthermore, scavenging ROS also significantly abrogated MPTP opening and attenuated Pb neurotoxicity. Therefore, we found that MPT played an important role in Pb-induced mitochondrial damage and, ultimately, cell death. Our results provided a potential strategy for inhibiting PbAc neurotoxicity. However, due to the high Pb concentrations used in this study further investigations at Pb concentrations closer to human exposure are needed to verify the results.
Collapse
|
20
|
Sánchez JA, Alfonso A, Thomas OP, Botana LM. Autumnalamide targeted proteins of the immunophilin family. Immunobiology 2016; 222:241-250. [PMID: 27720433 DOI: 10.1016/j.imbio.2016.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
Abstract
Previous works with autumnalamide reported that Store Operated Calcium (SOC) channels were blocked through mitochondrial modulation. In the present paper we studied the effect of autumnalamide on ionomycin Ca2+ fluxes. Thus, autumnalamide did not modify ionomycin-sensitive intracellular pools while the ionomycin-induced Ca2+ influx was blocked with similar potency whether the incubation was done before or after ionomycin-sensitive pools depletion. Nevertheless, autumnalamide was not able to inhibit ionomycin-induced Ca2+ influx once the membrane channels were activated. Moreover, the compound efficiently inhibited flufenamic acid (FFA) Ca2+ release induced in this organelle but no the next influx. Since in previous work the effect of autumnalamide was inhibited by cyclosporine A (CsA), structures that target this drug were studied. Therefore, the affinity of autumnalamide for cyclophilin D (Cyp D) was examined. The KD obtained for Cyp D- autumnalamide was 1.51±1.399. Moreover, the KD for Cyp A- autumnalamide was calculated. The peptide had a similar order of Cyp A binding affinity than CsA (8.08±1.23 and 6.85±1.1μM respectively). After testing autumnalamide-binding capacity for Cyp A, the activity of this compound on Cyp A pathway was tested. Thus, the effect on interleukin (IL)-2 release on activated T-lymphocytes was checked. Autumnalamide was able to reduce IL-2 levels near to T cells in resting conditions. Next, the effect over calcineurin and NFATc1 was also evaluated. While CsA inhibits both calcineurin and NFATc1, autumnalamide did not produce any effect. From these results we can conclude that, autumnalamide targeted mitochondrion and prevent T-cells from IL-2 production through the modulation of SOC Ca2+ channels.
Collapse
Affiliation(s)
- Jon Andoni Sánchez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Olivier P Thomas
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 250 rue Albert Einstein, 06560, Valbonne, France; Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Luís M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
21
|
Weiland F, Arentz G, Klingler-Hoffmann M, McCarthy P, Lokman NA, Kaur G, Oehler MK, Hoffmann P. Novel IEF Peptide Fractionation Method Reveals a Detailed Profile of N-Terminal Acetylation in Chemotherapy-Responsive and -Resistant Ovarian Cancer Cells. J Proteome Res 2016; 15:4073-4081. [DOI: 10.1021/acs.jproteome.6b00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Florian Weiland
- Adelaide
Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- The Institute for Photonics & Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Georgia Arentz
- Adelaide
Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- The Institute for Photonics & Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Manuela Klingler-Hoffmann
- Adelaide
Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- The Institute for Photonics & Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter McCarthy
- Department
of Human Immunology, Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Noor A. Lokman
- Adelaide
Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Robinson
Institute, Research Centre for Reproductive Health, School of Paediatrics
and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gurjeet Kaur
- Institute
for Research in Molecular Medicine, Universiti Sains Malaysia, 11800
Minden, Pulau Pinang, Malaysia
| | - Martin K. Oehler
- Adelaide
Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Robinson
Institute, Research Centre for Reproductive Health, School of Paediatrics
and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department
of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia 5005, Australia
| | - Peter Hoffmann
- Adelaide
Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- The Institute for Photonics & Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
22
|
BERTUCCELLI GIUSEPPE, ZERBINATI NICOLA, MARCELLINO MASSIMILIANO, NANDA KUMAR NAVALPURSHANMUGAM, HE FANG, TSEPAKOLENKO VLADIMIR, CERVI JOSEPH, LORENZETTI ALDO, MAROTTA FRANCESCO. Effect of a quality-controlled fermented nutraceutical on skin aging markers: An antioxidant-control, double-blind study. Exp Ther Med 2016; 11:909-916. [PMID: 26998011 PMCID: PMC4774357 DOI: 10.3892/etm.2016.3011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine whether oral supplementation with a fermented papaya preparation (FPP-treated group) or an antioxidant cocktail (antioxidant-control group, composed of 10 mg trans-resveratrol, 60 µg selenium, 10 mg vitamin E and 50 mg vitamin C) was able to improve the skin antioxidant capacity and the expression of key skin genes, while promoting skin antiaging effects. The study enrolled 60 healthy non-smoker males and females aged 40-65 years, all of whom showed clinical signs of skin aging. The subjects were randomly divided into two matched groups, and were administered FPP or antioxidant treatment of a 4.5 g/day sachet sublingually twice a day for 90 days in a double-blind fashion. The parameters investigated were: Skin surface, brown spots, skin evenness, skin moisturization, elasticity (face), redox balance, nitric oxide (NO) concentration, and the expression levels of key genes (outer forearm sample). As compared with the baseline (day 0) and antioxidant-control values, FPP-treated subjects showed a significant improvement in skin evenness, moisturization and elasticity. The two treatments improved the MDA and SOD skin concentrations, but only the FPP-treated group showed a higher SOD level and a significant NO increase, along with significant upregulation of acquaporin-3 and downregulation of the potentially pro-aging/carcinogenetic cyclophilin-A and CD147 genes (P<0.05). Progerin was unaffected in both treatment groups. In conclusion, these findings suggest that orally-administered FPP showed a consistent biological and gene-regulatory improvement in the skin, as was also demonstrated in previous experimental and clinical trials testing other tissues, while common oral antioxidants had only a minor effect.
Collapse
Affiliation(s)
| | - NICOLA ZERBINATI
- Dermatology Unit, CMP-Medical Center and Laboratories, Pavia 27100, Italy
| | | | - NAVALPUR SHANMUGAM NANDA KUMAR
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - FANG HE
- Department of Nutrition and Food Hygiene, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - VLADIMIR TSEPAKOLENKO
- Virtus Medical Center, Ukraine Institute of Plastic Surgery and Dermatology, Odessa 68355, Ukraine
| | - JOSEPH CERVI
- ReGenera Research Group for Aging Intervention, Milan 20154, Italy
| | - ALDO LORENZETTI
- ReGenera Research Group for Aging Intervention, Milan 20154, Italy
| | - FRANCESCO MAROTTA
- ReGenera Research Group for Aging Intervention, Milan 20154, Italy
- Correspondence to: Professor Francesco Marotta, ReGenera Research Group for Aging-Intervention, 12 Piazza Firenze, Milan 20154, Italy, E-mail:
| |
Collapse
|
23
|
Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol 2015; 12:117-23. [PMID: 26656091 PMCID: PMC4718742 DOI: 10.1038/nchembio.1981] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022]
Abstract
Cyclophilin A (CypA) is overexpressed in a number of human cancer types, but the mechanisms by which the protein promotes oncogenic properties of cells are not understood. Here we demonstrate that CypA binds the CrkII adaptor protein and prevents it from switching to the inhibited state. CrkII influences cell motility and invasion by mediating signaling through its SH2 and SH3 domains. CrkII Tyr221 phosphorylation by the Abl or EGFR kinases induces an inhibited state of CrkII by means of an intramolecular SH2-pTyr221 interaction, causing signaling interruption. We show that the CrkII phosphorylation site constitutes a binding site for CypA. Recruitment of CypA sterically restricts the accessibility of Tyr221 to kinases, thereby suppressing CrkII phosphorylation and promoting the active state. Structural, biophysical and in vivo data show that CypA augments CrkII-mediated signaling. A strong stimulation of cell migration is observed in cancer cells wherein both CypA and CrkII are greatly upregulated.
Collapse
|
24
|
Enhanced molecular dynamics sampling of drug target conformations. Biopolymers 2015; 105:35-42. [DOI: 10.1002/bip.22740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022]
|
25
|
Holliday MJ, Armstrong GS, Eisenmesser EZ. Determination of the Full Catalytic Cycle among Multiple Cyclophilin Family Members and Limitations on the Application of CPMG-RD in Reversible Catalytic Systems. Biochemistry 2015; 54:5815-27. [PMID: 26335054 DOI: 10.1021/acs.biochem.5b00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclophilins catalyze cis ↔ trans isomerization of peptidyl-prolyl bonds, influencing protein folding along with a breadth of other biological functions such as signal transduction. Here, we have determined the microscopic rate constants defining the full enzymatic cycle for three human cyclophilins and a more distantly related thermophilic bacterial cyclophilin when catalyzing interconversion of a biologically representative peptide substrate. The cyclophilins studied here exhibit variability in on-enzyme interconversion as well as an up to 2-fold range in rates of substrate binding and release. However, among the human cyclophilins, the microscopic rate constants appear to have been tuned to maintain remarkably similar isomerization rates without a concurrent conservation of apparent binding affinities. While the structures and active site compositions of the human cyclophilins studied here are highly conserved, we find that the enzymes exhibit significant variability in microsecond to millisecond time scale mobility, suggesting a role for the inherent conformational fluctuations that exist within the cyclophilin family as being functionally relevant in regulating substrate interactions. We have additionally modeled the relaxation dispersion profile given by the commonly employed Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD) experiment when applied to a reversible enzymatic system such as cyclophilin isomerization and identified a significant limitation in the applicability of this approach for monitoring on-enzyme turnover. Specifically, we show both computationally and experimentally that the CPMG-RD experiment is sensitive to noncatalyzed substrate binding and release in reversible systems even at saturating substrate concentrations unless the on-enzyme interconversion rate is much faster than the substrate release rate.
Collapse
Affiliation(s)
- Michael J Holliday
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver , 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| | - Geoffrey S Armstrong
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver , 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
26
|
Chen J, Chen S, Wang J, Zhang M, Gong Z, Wei Y, Li L, Zhang Y, Zhao X, Jiang S, Yu L. Cyclophilin J is a novel peptidyl-prolyl isomerase and target for repressing the growth of hepatocellular carcinoma. PLoS One 2015; 10:e0127668. [PMID: 26020957 PMCID: PMC4447340 DOI: 10.1371/journal.pone.0127668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
Cyclophilin J (CYPJ) is a new member of the peptidyl-prolyl cis/trans-isomerase (PPIase) identified with upregulated expression in human glioma. However, the biological function of CYPJ remained unclear. We aimed to study the role of CYPJ in hepatocellular carcinoma (HCC) carcinogenesis and its therapeutic potential. We determined the expression of CYPJ in HCC/adjacent normal tissues using Western blot, Northern blot and semi-quantitative RT-PCR, analyzed the biochemical characteristics of CYPJ, and resolved the 3D-structure of CYPJ/Cyclosporin A (CsA) complex. We also studied the roles of CYPJ in cell cycle, cyclin D1 regulation, in vitro and in vivo tumor growth. We found that CYPJ expression was upregulated in over 60% HCC tissues. The PPIase activity of CYPJ could be inhibited by the widely used immunosuppressive drug CsA. CYPJ was found expressed in the whole cell of HCC with preferential location at the cell nucleus. CYPJ promoted the transition of cells from G1 phase to S phase in a PPIase-dependent manner by activating cyclin D1 promoter. CYPJ overexpression accelerated liver cell growth in vitro (cell growth assay, colony formation) and in vivo (xenograft tumor formation). Inhibition of CYPJ by its inhibitor CsA or CYPJ-specific RNAi diminished the growth of liver cancer cells in vitro and in vivo. In conclusion, CYPJ could facilitate HCC growth by promoting cell cycle transition from G1 to S phase through the upregulation of cyclin D1. Suppression of CYPJ could repress the growth of HCC, which makes CYPJ a potential target for the development of new strategies to treat this malignancy.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Shandong Research Center of Stem Cell Engineering, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
- * E-mail: (SJ); (JC)
| | - Shuai Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jiahui Wang
- Shandong Research Center of Stem Cell Engineering, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Mingjun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Li Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xuemei Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Songmin Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- * E-mail: (SJ); (JC)
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
27
|
The roles of CD147 and/or cyclophilin A in kidney diseases. Mediators Inflamm 2014; 2014:728673. [PMID: 25580061 PMCID: PMC4281390 DOI: 10.1155/2014/728673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/30/2014] [Accepted: 11/26/2014] [Indexed: 12/31/2022] Open
Abstract
CD147 is a widely expressed integral plasma membrane glycoprotein and has been involved in a variety of physiological and pathological activities in combination with different partners, including cyclophilins, caveolin-1, monocarboxylate transporters, and integrins. Recent data demonstrate that both CyPA and CD147 significantly contribute to renal inflammation, acute kidney injury, renal fibrosis, and renal cell carcinoma. Here we review the current understanding of cyclophilin A and CD147 expression and functions in kidney diseases and potential implications for treatment of kidney diseases.
Collapse
|
28
|
Doshi U, Hamelberg D. The dilemma of conformational dynamics in enzyme catalysis: perspectives from theory and experiment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:221-43. [PMID: 24446364 DOI: 10.1007/978-3-319-02970-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of protein dynamics in catalysis is a contemporary issue that has stirred intense debate in the field. This chapter provides a brief overview of the approaches and findings of a wide range of experimental, computational and theoretical studies that have addressed this issue. We summarize the results of our recent atomistic molecular dynamic studies on cis-trans isomerase. Our results help to reconcile the disparate perspectives regarding the complex role of enzyme dynamics in the catalytic step and emphasize the major contribution of transition state stabilization in rate enhancement.
Collapse
Affiliation(s)
- Urmi Doshi
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302-3965, USA,
| | | |
Collapse
|
29
|
Li Y, Guo H, Dong D, Wu H, Li E. Expression and prognostic relevance of cyclophilin A and matrix metalloproteinase 9 in esophageal squamous cell carcinoma. Diagn Pathol 2013; 8:207. [PMID: 24351116 PMCID: PMC3878405 DOI: 10.1186/1746-1596-8-207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/06/2013] [Indexed: 01/07/2023] Open
Abstract
Aims To guide clinicians in selecting treatment options for esophageal squamous cell carcinoma (ESCC) patients, reliable markers predictive of clinical outcome are desirable. This study analyzed the correlation of cyclophilin A (CypA) and matrix metalloproteinase 9 (MMP9) in ESCC and their relationships to clinicopathological features and survival. Methods We immunohistochemically investigated 70 specimens of ESCC tissues using CypA and MMP9 antibodies. Then, the correlations between CypA and MMP9 expression and clinicopathological features and its prognostic relevance were determined. Results Significant correlations were only found in high level of CypA and MMP9 expression with tumor differentiation and lymph node status. Significant positive correlations were found between the expression status of CypA and that of MMP9. Overexpression of CypA and metastasis were significantly associated with shorter progression free survival times in univariate analysis. Multivariate analysis confirmed that CypA expression was an independent prognostic factor. Conclusions CypA might be correlated with the differentiation, and its elevated expression may be an adverse prognostic indicator for the patients of ESCC. CypA/MMP9 signal pathway may be attributed to the malignant transformation of ESCC, and attention should be paid to a possible target for therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1166551968105508.
Collapse
Affiliation(s)
- Yi Li
- Department of Oncology, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Yanta West Road No, 277, Xi'an 710061, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
30
|
Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol 2013; 4:76. [PMID: 23596421 PMCID: PMC3622878 DOI: 10.3389/fphys.2013.00076] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022] Open
Abstract
Mitochondria serve as a “powerhouse” which provides near 90% of ATP necessary for cell life. However, recent studies provide strong evidence that mitochondria also play a central role in cell death. Mitochondrial permeability transition (mPT) at high conductance in response to oxidative or other cellular stresses is accompanied by pathological and non-specific mPT pore (mPTP) opening in the inner membrane of mitochondria. Mitochondrial PTP can serve as a target to prevent cell death under pathological conditions such as cardiac and brain ischemia/reperfusion injury and diabetes. On the other hand, mPTP can be used as an executioner to specifically induce cell death thus blocking tumorigenesis in cancer diseases. Despite many studies, the molecular identity of the mPTP remains unclear. Cyclophilin D (CyP-D) plays an essential regulatory role in pore opening. This review will discuss direct and indirect mechanisms underlying CyP-D interaction with a target protein of the mPTP complex. Understanding of the mechanisms of mPTP opening will be helpful to further develop new pharmacological agents targeting mitochondria-mediated cell death.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | | |
Collapse
|
31
|
McGowan LC, Hamelberg D. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover. Biophys J 2013; 104:216-26. [PMID: 23332074 DOI: 10.1016/j.bpj.2012.11.3815] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 01/15/2023] Open
Abstract
Enzyme catalysis is central to almost all biochemical processes, speeding up rates of reactions to biological relevant timescales. Enzymes make use of a large ensemble of conformations in recognizing their substrates and stabilizing the transition states, due to the inherent dynamical nature of biomolecules. The exact role of these diverse enzyme conformations and the interplay between enzyme conformational dynamics and catalysis is, according to the literature, not well understood. Here, we use molecular dynamics simulations to study human cyclophilin A (CypA), in order to understand the role of enzyme motions in the catalytic mechanism and recognition. Cyclophilin A is a tractable model system to study using classical simulation methods, because catalysis does not involve bond formation or breakage. We show that the conformational dynamics of active site residues of substrate-bound CypA is inherent in the substrate-free enzyme. CypA interacts with its substrate via conformational selection as the configurations of the substrate changes during catalysis. We also show that, in addition to tight intermolecular hydrophobic interactions between CypA and the substrate, an intricate enzyme-substrate intermolecular hydrogen-bonding network is extremely sensitive to the configuration of the substrate. These enzyme-substrate intermolecular interactions are loosely formed when the substrate is in the reactant and product states and become well formed and reluctant to break when the substrate is in the transition state. Our results clearly suggest coupling among enzyme-substrate intermolecular interactions, the dynamics of the enzyme, and the chemical step. This study provides further insights into the mechanism of peptidyl-prolyl cis/trans isomerases and the general interplay between enzyme conformational dynamics and catalysis.
Collapse
Affiliation(s)
- Lauren C McGowan
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, USA
| | | |
Collapse
|
32
|
Molecular characterization of circulating tumor cells in patients with ovarian cancer improves their prognostic significance -- a study of the OVCAD consortium. Gynecol Oncol 2012; 128:15-21. [PMID: 23017820 DOI: 10.1016/j.ygyno.2012.09.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/03/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The study aims at identifying novel markers for circulating tumor cells (CTCs) in patients with epithelial ovarian cancer (EOC), and at evaluating their impact on outcome. METHODS Microarray analysis comparing matched EOC tissues and peripheral blood leucocytes (N=35) was performed to identify novel CTC markers. Gene expression of these novel markers and of EpCAM was analyzed using RT-qPCR in blood samples taken from healthy females (N=39) and from EOC patients (N=216) before primary treatment and six months after adjuvant chemotherapy. All samples were enriched by density gradient centrifugation. CTC positivity was defined by over-expression of at least one gene as compared to the healthy control group. RESULTS CTC were detected in 24.5% of the baseline and 20.4% of the follow-up samples, of which two thirds were identified by overexpression of the cyclophilin C gene (PPIC), and just a few by EpCAM overexpression. The presence of CTCs at baseline correlated with the presence of ascites, sub-optimal debulking, and elevated CA-125 and HE-4 levels, whereas CTC during follow-up occurred more often in older and platinum resistant patients. PPIC positive CTCs during follow-up were significantly more often detected in the platinum resistant than in the platinum sensitive patient group, and indicated poor outcome independent from classical prognostic parameters. CONCLUSIONS Molecular characterization of CTC is superior to a mere CTC enumeration or even be the rationale for CTC diagnostics at all. Ultimately CTC diagnostics may lead to more personalized treatment of EOC, especially in the recurrent situation.
Collapse
|
33
|
Han W, Soltani K, Ming M, He YY. Deregulation of XPC and CypA by cyclosporin A: an immunosuppression-independent mechanism of skin carcinogenesis. Cancer Prev Res (Phila) 2012; 5:1155-62. [PMID: 22846842 DOI: 10.1158/1940-6207.capr-12-0185-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin cancer is the most common malignancy in organ transplant recipients, causing serious morbidity and mortality. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, cyclosporin A (CsA) has been used as an effective immunosuppressive to prevent rejection. Therefore immunosuppression has been widely assumed to be the major cause for increased skin carcinogenesis. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression dependent or independent. Here, using both immunocompromised nude mice which are defective in mature T lymphocytes as an in vivo model and human keratinocytes as an in vitro model, we showed that CsA impairs genomic integrity in the response of keratinocytes to ultra violet B (UVB). Following UVB radiation, CsA inhibited UVB-induced DNA damage repair by suppressing the transcription of the DNA repair factor xeroderma pigmentosum C (XPC). In addition, CsA compromised the UVB-induced checkpoint function by upregulating the molecular chaperone protein cyclophilin A (CypA). XPC mRNA levels were lower, whereas CypA mRNA and protein levels were higher in human skin cancers than in normal skin. CsA-induced phosphoinositide 3-kinase(PI3K)/AKT activation was required for both XPC suppression and CypA upregulation. Blocking UVB damage or inhibiting the PI3K/AKT pathway prevented CsA-sensitized skin tumorigenesis. Our findings identified deregulation of XPC and CypA as key targets of CsA, and UVB damage and PI3K/AKT activation as two principal drivers for CsA-sensitized skin tumorigenesis, further supporting an immunosuppression-independent mechanism of CsA action on skin tumorigenesis.
Collapse
Affiliation(s)
- Weinong Han
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Prolyl cis/trans isomerase signalling pathways in cancer. Curr Opin Pharmacol 2011; 11:281-7. [DOI: 10.1016/j.coph.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 01/05/2023]
|