1
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
2
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
3
|
Zheng C, Li R, Zheng S, Fang H, Xu M, Zhong L. The knockdown of lncRNA DLGAP1-AS2 suppresses osteosarcoma progression by inhibiting aerobic glycolysis via the miR-451a/HK2 axis. Cancer Sci 2023; 114:4747-4762. [PMID: 37817462 PMCID: PMC10728003 DOI: 10.1111/cas.15989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Osteosarcoma (OS) is one of the most aggressive bone tumors worldwide. Emerging documents have shown that long noncoding RNAs (lncRNAs) elicit crucial regulatory functions in the process of tumorigenesis. LncRNA DLGAP1-AS2 is recognized as a regulator in several types of cancers, but its biological functions and molecular mechanisms in OS remain to be elucidated. RT-qPCR and In situ hybridization (ISH) were used to evaluate DLGAP1-AS2 expression in OS samples. Western blotting was used for the measurement of the protein levels of hexokinase 2 (HK2) and epithelial-mesenchymal transition (EMT)-related markers. The proliferation of OS cells was determined using a CCK-8 assay and EdU assay. TUNEL assay and flow cytometry were performed to assess OS cell apoptosis. Glucose metabolism in vitro assays were used. The binding relations among miR-451a, HK2, and DLGAP1-AS2 were validated by luciferase reporter assay. The cellular distribution of DLGAP1-AS2 in OS cells was determined by FISH and subcellular fractionation assays. Mouse xenograft models were established to perform the experiments in vivo. We found that DLGAP1-AS2 expression was upregulated in OS tissues and cells. Downregulation of DLGAP1-AS2 expression suppressed the malignancy of OS cells by restraining cell proliferation, the EMT process, invasiveness, migration, and aerobic glycolysis and accelerating apoptotic behaviors. Of note, silenced DLGAP1-AS2 restrained tumor growth and metastasis in vivo. However, DLGAP1-AS2 overexpression accelerated the progression of OS. We further found that DLGAP1-AS2 upregulation was induced by hypoxia and low glucose. Additionally, DLGAP1-AS2 bound to miR-451a to upregulate HK2 expression. Rescue assays revealed that the DLGAP1-AS2/miR-451a/HK2 axis contributed to OS cell malignancy by promoting aerobic glucose metabolism. Overall, these findings revealed a new regulatory pathway where DLGAP1-AS2 upregulated HK2 expression by sponging miR-451a to accelerate OS development.
Collapse
Affiliation(s)
- Changjun Zheng
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Ronghang Li
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Shuang Zheng
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Hongjuan Fang
- Department of Electric DiagnosticThe Fourth Hospital of Jilin UniversityChangchunChina
| | - Meng Xu
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Lei Zhong
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Yang J, Zou Y, Wu J, Chen B, Luo C, Chen X, Shen H, Luo L. The Long Noncoding RNA ZEB2-AS1 Contributes to Proliferation and Epithelial-to-Mesenchymal Transition of Osteosarcoma. Cancer Biother Radiopharm 2023; 38:596-603. [PMID: 33085924 DOI: 10.1089/cbr.2019.3433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Long non-coding RNA Zinc finger E-box binding homeobox 2 (ZEB2) antisense RNA 1 (ZEB2-AS1) has been shown to promote tumor progression. However, the clinical significance and fundamental function role of ZEB2-AS1 in osteosarcoma (OS) has been poorly understood. Methods: The expression of ZEB2-AS1 was determined in tumor tissues and matched normal tissues from 67 OS patients using quantitative reverse transcriptase PCR analysis. Clinical value of ZEB2-AS1 was evaluated by χ2 test and Kaplan-Meier method. Cell proliferation was analyzed using CCK-8 assay, colony formation. Cell apoptosis status was determined by caspase-3 activity assay. Cell migration, invasion and epithelial-mesenchymal transition (EMT) were investigated by scratch wound healing, transwell invasion assays and Western blotting. Results: Clinical association analysis revealed that high ZEB2-AS1 expression correlated with tumor size, distant metastasis and poor prognosis of OS patients. Moreover, ZEB2-AS1 expression was identified as an independent prognostic factor for OS patients. Loss-of-function assays demonstrated that ZEB2-AS1 knockdown suppressed the proliferation and induced apoptosis in OS cells. In addition, ZEB2-AS1 knockdown inhibited cell migration, invasion, EMT of OS cells in vitro. Conclusions: Taken together, our data demonstrate that ZEB2-AS1 serves a putative oncogenic role and associates with unfavorable prognosis in OS.
Collapse
Affiliation(s)
- Jiexiang Yang
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Yonggen Zou
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Jian Wu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Bo Chen
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Cheng Luo
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Xiaojun Chen
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Huarui Shen
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| | - Lin Luo
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P.R. China
| |
Collapse
|
5
|
Xu JY, Lv YF, Cao Y, Ma HM, Hao XL, Huang L, Tang XF, Guo QN. Long noncoding RNA XLOC_006786 inhibits the proliferation, invasion and metastasis of osteosarcoma cells through NOTCH3 signaling pathway by targeting miR-491-5p. Hum Cell 2023; 36:2140-2151. [PMID: 37573513 DOI: 10.1007/s13577-023-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Recent research has indicated that Long noncoding RNAs (LncRNAs) are crucial in many disorders, especially tumors. However, the exact role of LncRNA XLOC_006786 (LncRNA-SPIDR-2:1) in malignancies, especially in human osteosarcoma, is unclear. The results of RT‒qPCR, western blotting, CCK-8 assays, and Transwell assays showed that LncRNA XLOC_006786 inhibited osteosarcoma cell proliferation, invasion, and migration, indicating that it may be a tumor suppressor gene in osteosarcoma. We found that LncRNA XLOC_006786 negatively regulated NOTCH3, which is an oncogenic gene in osteosarcoma, as we previously reported. Bioinformatics analysis showed that miR-491-5p may be a direct target of LncRNA XLOC_006786, while NOTCH3 is a key target of miR-491-5p. Then, we verified that LncRNA XLOC_006786 could prevent lung metastatic osteosarcoma in vivo. Taken together, our research showed that LncRNA XLOC_006786 suppresses osteosarcoma proliferation, invasion, and metastasis through the NOTCH3 signaling pathway by targeting miR-491-5p.
Collapse
Affiliation(s)
- Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong-Min Ma
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xue-Feng Tang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Motlagh FM, Kadkhoda S, Motamedrad M, Javidzade P, Khalilian S, Modarressi MH, Ghafouri-Fard S. Roles of non-coding RNAs in cell death pathways involved in the treatment of resistance and recurrence of cancer. Pathol Res Pract 2023; 247:154542. [PMID: 37244050 DOI: 10.1016/j.prp.2023.154542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Considering the burden of cancer, a number of methods have been applied to control or stop it. However, because of drug resistance or cancer recurrence, these treatments usually face failure. Combination of modulation of expression of non-coding RNAs (ncRNAs) with other treatments can increase treatment-sensitivity of tumors but these approaches still face some challenges. Gathering information in this field is a prerequisite to find more efficient cures for cancer. Cancer cells use ncRNAs to enhance uncontrolled proliferation originated from inactivation of cell death routs. In this review article, the main routes of cell death and involved ncRNAs in these routes are discussed. Moreover, extant information in the role of different ncRNAs on cell death pathways involved in the treatment resistance and cancer recurrence is summarized.
Collapse
Affiliation(s)
- Fatemeh Movahedi Motlagh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Motamedrad
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
| | - Parisa Javidzade
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Qiu H, Yang D, Li X, Feng F. LncRNA CASC9 promotes cell proliferation and invasion in osteosarcoma through targeting miR-874-3p/SOX12 axis. J Orthop Surg Res 2022; 17:460. [PMID: 36266695 PMCID: PMC9585709 DOI: 10.1186/s13018-022-03340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a common primary malignant bone tumor. This study aimed to explore the biological role of long on-coding RNA (lncRNA) CASC9 and its regulatory mechanism in OC. METHODS The CASC9 expressions in OS cells and tissues were measured using qRT-PCR. The functional role of CASC9 in OC was studied using MTT assay, colony formation assay, transwell invasion assay, and xenograft tumor assay. In addition, the mechanism of CASC9 function was determined using luciferase reporter assay. Western blot was used to analyze protein expressions in our paper. RESULTS LncRNA CASC9 was found to be up-regulated in OS. Knockdown of CASC9 inhibited the proliferation and invasion of OS cells. Besides, miR-874-3p was identified as the target of CASC9, and SOX12 acted as a potential target of miR-874-3p. The down-regulation of miR-874-3p recovered the reduction in cell invasion and proliferation in vitro which were induced by CASC9 knockdown and delayed the tumor progression in vivo. CONCLUSION LncRNA CASC9 promotes cell proliferation and invasion in OS via miR-874-3p/SOX12 axis. Our study might provide novel biomarkers and potential therapeutic targets for OS treatment.
Collapse
Affiliation(s)
- Haiyan Qiu
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310004, China
| | - Di Yang
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaolin Li
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Fabo Feng
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
8
|
Bioengineering of Extracellular Vesicles: Exosome-Based Next-Generation Therapeutic Strategy in Cancer. Bioengineering (Basel) 2021; 8:bioengineering8100139. [PMID: 34677212 PMCID: PMC8533396 DOI: 10.3390/bioengineering8100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular nano vesicles and exosomes hold compelling evidence in intercellular communication. Exosomal intracellular signal transduction is mediated by the transfer of cargo proteins, lipids, micro (mi)RNAs, long noncoding (lnc)RNAs, small interfering (si)RNAs, DNA, and other functional molecules that play a pivotal role in regulating tumor growth and metastasis. However, emerging research trends indicate that exosomes may be used as a promising tool in anticancer treatment. This review features a majority of the bioengineering applications of fabricated exosomal cargoes. It also encompasses how the manipulation and delivery of specific cargoes-noncoding RNAs (ncRNAs), recombinant proteins, immune-modulators, chemotherapeutic drugs, and other small molecules-may serve as a precise therapeutic approach in cancer management.
Collapse
|
9
|
Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2021; 22:191-206. [PMID: 34417760 DOI: 10.1007/s12012-021-09681-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200-1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.
Collapse
|
10
|
Liang C, Raza SHA, Naqvi MAR, Feng Y, Khan R, Mohammedsaleh ZM, Shater AF, Al-Ahmadi BM, Saleh FM, Bilal MA, Zan L. Construction of Adipogenic ceRNA Network Based on lncRNA Expression Profile of Adipogenic Differentiation of Human MSC Cells. Biochem Genet 2021; 60:543-557. [PMID: 34302581 DOI: 10.1007/s10528-021-10115-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
The Long non-coding RNA (lncRNA) expression profile data of ten samples including human Mesenchymal Stem Cell (MSC) adipogenic differentiation 0, 3, and 6 days from the GEO database, and then perform gene ID conversion, BLAST comparison, and annotation marking. Finally, group A (treatment group on day 3 of differentiation and control group on day 0 of differentiation) obtained a total of 1180 mRNA and 185 lncRNA; group B (treatment group on day 6 of differentiation and control group on day 0 of differentiation). A total of 1376 mRNA and 206 lncRNA were obtained. Finally, we processed the differential lncRNAs and mRNAs obtained in the two groups, and obtained 113 shared differential lncRNAs to further predict the targeted miRNA, a total of 815 lncRNA-miRNA pairs. The targeted mRNA was further predicted, and the grouped differential mRNAs were combined to obtain 64 differential mRNAs. In the end, we obtained 216 ceRNAs containing 26 lncRNAs, 27 miRNAs and 64 mRNAs. We found that the mRNAs in the ceRNA network were mainly enriched with 45 Gene Ontology (GO) terms, mainly including glucose homeostasis mechanism and insulin stimulation response. 69 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mainly enriched. It mainly includes many pathways related to lipid metabolism such as Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), Rap1, cAMP, mitogen-activated protein kinase (MAPK), Ras, hypoxia inducible factor-1 (HIF-1), PI3K-Akt, insulin signaling and so on. In the end, we identified 216 ceRNA regulatory relationships related to obesity research. Our research provides a clearer direction for understanding the molecular mechanism of obesity, the screening and determination of drug targets biomarkers in the future.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | - Yanrong Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Bassam M Al-Ahmadi
- Biology department, Faculty of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Muhammad Ahsan Bilal
- Department of Dermatology, Hospital, Xian Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Wang X, Chen X, Xu H, Zhou S, Zheng Y, Keller BB, Cai L. Emerging roles of microRNA-208a in cardiology and reverse cardio-oncology. Med Res Rev 2021; 41:2172-2194. [PMID: 33533026 DOI: 10.1002/med.21790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) and cancer, which are the leading causes of mortality globally, have been viewed as two distinct diseases. However, the fact that cancer and CVDs may coincide has been noted by cardiologists when taking care of patients with CVDs caused by cancer chemotherapy; this entity is designated cardio-oncology. More recently, patients with CVDs have also been found to have increased risk of cancers, termed reverse cardio-oncology. Although reverse cardio-oncology has been highlighted as an important disease state in recent studies, how the diseased heart affects cancer and the potential mediators of the crosstalk between CVDs and cancer are largely unknown. Here, we focus on the roles of cardiac-specific microRNA-208a (miR-208a) in cardiac and cancer biology and explore its essential roles in reverse cardio-oncology. Accumulating evidence has shown that within the heart, increased miR-208a promotes myocardial injury, arrhythmia, cardiac remodeling, and dysfunction and that secreted miR-208a in the circulation may have novel roles in promoting tumor proliferation and invasion. This review, therefore, provides insights into the novel roles of miR-208a in reverse cardio-oncology and strategies to prevent secondary carcinogenesis in patients with early- or late-stage heart failure.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xinxin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Hui Xu
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shanshan Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Bradley B Keller
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk. Semin Cancer Biol 2021; 74:121-133. [PMID: 34033894 DOI: 10.1016/j.semcancer.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Research on extracellular vesicles (EVs) has been expanded, especially in the field of cancer. The cargoes in EVs, especially those in small EVs such as exosomes include microRNAs (miRNAs), mRNA, proteins, and lipids, are assumed to work cooperatively in the tumor microenvironment. In 2007, it was reported that miRNAs were abundant among the non-coding RNAs present in exosomes. Since then, many studies have investigated the functions of miRNAs and have tried to apply these molecules to aid in the diagnosis of cancer. Accordingly, many reviews of non-coding RNAs in EVs have been published for miRNAs. This review focuses on relatively new cargoes, covering long noncoding (lnc) RNAs, circular RNAs, and repeat RNAs, among non-coding RNAs. These RNAs, regardless of EV or cell type, have newly emerged due to the innovation of sequencing technology. The poor conservation, low quantity, and technical difficulty in detecting these RNA types have made it difficult to elucidate their functions and expression patterns. We herein summarize a limited number of studies. Although lipids are major components of EVs, current research on EVs focuses on miRNA and protein biology, while the roles of lipids in exosomes have not drawn attention. However, several recent studies revealed that phospholipids, which are components of the EV membrane, play important roles in the intercommunication between cells and in the generation of lipid mediators. Here, we review the reported roles of these molecules, and describe their potential in cancer biology.
Collapse
|
13
|
Hussen BM, Shoorei H, Mohaqiq M, Dinger ME, Hidayat HJ, Taheri M, Ghafouri-Fard S. The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition. Front Mol Biosci 2021; 8:665199. [PMID: 33842553 PMCID: PMC8033041 DOI: 10.3389/fmolb.2021.665199] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized epithelial cell to undertake numerous biochemical alterations that allow it to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studies in in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In the present paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Marcel E. Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M. The critical roles of lncRNAs in the development of osteosarcoma. Biomed Pharmacother 2021; 135:111217. [PMID: 33433358 DOI: 10.1016/j.biopha.2021.111217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is rare malignancy of childhood and adolescence, with high morbidity and mortality despite accomplishment of diverse therapeutic modalities. Identification of the underlying mechanism of osteosarcoma evolution would help in better management of this rare malignancy. Lots of investigations have described abnormal regulation of long non-coding RNAs (lncRNAs) in clinical specimens of osteosarcoma and the established cell lines. This malignancy has been associated with over-expression of TUG1, LOXL1-AS1, MIR100HG, NEAT1, HULC, ANRIL and a number of other lncRNAs, while under-expression of lots of lncRNAs including LncRNA-p21, FER1L4, GAS5, LncRNA NR_136400 and LINC-PINT. Expression amounts of LUCAT1, LINC00922, SNHG12, FOXC2-AS1 and OIP5-AS1 lncRNAs have been associated with response to a number of chemotherapeutic agents. Taken together, lncRNAs are possible targets for proposing novel advanced therapeutic modalities for osteosarcoma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhang GF, Zhou BS, An XC, An FM, Li SH. LINC01278 is Highly Expressed in Osteosarcoma and Participates in the Development of Tumors by Mediating the miR-134-5p/KRAS Axis. Onco Targets Ther 2021; 14:683-695. [PMID: 33531816 PMCID: PMC7847385 DOI: 10.2147/ott.s265591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose There is increasing evidence that non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), produce a critical regulatory effect on osteosarcoma (OS). LINC01278, as a newly discovered lncRNA, is found to be highly expressed in OS, but its related mechanism remains unclear. This research, therefore, is designed to study the mechanism of LINC01278 in OS and to find potential targets for clinical use. Methods qRT-PCR was applied to determine the relative expression of LINC01278 and analyze its diagnostic value in OS. CCK-8, Transwell and flow cytometry were utilized for the determination of cell proliferation, migration/invasion, and apoptosis. RIP and RNA pull-down experiments were used to verify the targeted binding effect of miR-134-5p and LINC01278. The relationship between miR-134-5p and LINC01278 or KRAS was analyzed using dual luciferase reporter gene. The effects of LINC01278 on tumor growth in nude mice was analyzed by in vivo experiment. Results qRT-PCR showed that LINC01278 increased in OS tissues and serum, indicating poor prognosis. In addition, LINC01278 was also of high value for OS diagnosis. Functional experiments showed that LINC01278 inhibited KRAS-mediated OS cell proliferation and metastasis through miR-134-5p. Finally, the results of an in vivo animal model indicated that LINC01278 promoted OS growth. Conclusion LINC01278 is expressed highly in OS, and patients with high LINC01278 expression have poor prognosis. Moreover, LINC01278 can suppress the proliferation and apoptosis of OS cells through mediating miR-134-5p/KRAS axis, which is expected to become a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Guo-Feng Zhang
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 261400, People's Republic of China
| | - Bai-Sui Zhou
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 261400, People's Republic of China
| | - Xiao-Chun An
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 261400, People's Republic of China
| | - Feng-Min An
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 261400, People's Republic of China
| | - Shan-Hui Li
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 261400, People's Republic of China
| |
Collapse
|
16
|
Song QH, Guo MJ, Zheng JS, Zheng XH, Ye ZH, Wei P. Study on Targeting Relationship Between miR-320b and FGD5-AS1 and Its Effect on Biological Function of Osteosarcoma Cells. Cancer Manag Res 2020; 12:13589-13598. [PMID: 33408528 PMCID: PMC7781231 DOI: 10.2147/cmar.s264682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Objective To probe into the expression of FGD5-AS1 in osteosarcoma and its relationship with miR-320b. Methods The tissue and serum samples of 97 patients with osteosarcoma were collected, and the serum samples of 100 healthy subjects who concurrently underwent physical examination were selected as the control. FGD5-AS1 expression in tissues and serum was detected, and osteosarcoma cells were transfected to measure cell behaviors such as proliferation, invasion and apoptosis. Results FGD5-AS1 was highly expressed in osteosarcoma, and its elevated expression indicated poor survival of patients. Serum FGD5-AS1 was related to tumor size and clinical stage and could be used for the diagnosis of osteosarcoma. The study of osteosarcoma cell lines U2OS and SaOS-2 showed that after inhibiting FGD5-AS1, the viability and invasion capacity of osteosarcoma cells decreased statistically compared with the control group (CG), while the apoptosis ability could be improved by further regulating apoptotic proteins (P<0.05). Detection of EMT-related proteins identified that E-cadherin increased while N-cadherin decreased significantly after FGD5-AS1 inhibition (P<0.05). Correlation analysis revealed a negative correlation between miR-320b and FGD5-AS1 (r = −0.410, P<0.001). Overexpression of miR-320b significantly inhibited cell viability, invasion and EMT ability, and increased the apoptosis rate, while inhibiting miR-320b expression produced the opposite results. The targeting relationship between miR-320b and FGD5-AS1 was confirmed through the biological prediction website, luciferase assay and RNA binding protein immunoprecipitation (RIP) assay. Inhibition of miR-320b could reverse the regulatory effect of FGD5-AS1 knockdown on osteosarcoma cells. Conclusion FGD5-AS1 is highly expressed in osteosarcoma and is involved in the biological procession of osteosarcoma by targeting miR-320b.
Collapse
Affiliation(s)
- Qing-Hua Song
- Department of Repair and Reconstruction Surgery, The First Hospital of Ningbo, Ningbo, Zhejiang Province 315000, People's Republic of China
| | - Ming-Jun Guo
- Department of Repair and Reconstruction Surgery, The First Hospital of Ningbo, Ningbo, Zhejiang Province 315000, People's Republic of China
| | - Jun-Shui Zheng
- Medical College, Ningbo University, Ningbo, Zhejiang Province 315000, People's Republic of China
| | - Xue-Hong Zheng
- Department of Repair and Reconstruction Surgery, The First Hospital of Ningbo, Ningbo, Zhejiang Province 315000, People's Republic of China
| | - Zhao-Hui Ye
- Department of Repair and Reconstruction Surgery, The First Hospital of Ningbo, Ningbo, Zhejiang Province 315000, People's Republic of China
| | - Peng Wei
- Department of Repair and Reconstruction Surgery, The First Hospital of Ningbo, Ningbo, Zhejiang Province 315000, People's Republic of China
| |
Collapse
|
17
|
Wang X, Bian Z, Hou C, Li M, Jiang W, Zhu L. Neuropilin and tolloid-like 2 regulates the progression of osteosarcoma. Gene 2020; 768:145292. [PMID: 33157203 DOI: 10.1016/j.gene.2020.145292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/11/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Neuropilin and tolloid-like 2 (NETO2) is aberrantly expressed in various malignancies. However, its role in osteosarcoma (OS) remains to be elucidated. This study aimed to identify the function of NETO2 in OS cells. The expression of NETO2 in sarcoma tissues was determined using the GEPIA database, and the mRNA and protein expression of NETO2 in OS cells and OS tissue was also assessed. The biological effects of NETO2 on OS cells were determined by overexpressing and downregulating NETO2. Cell proliferation, invasion, migration, colony formation, and epithelial-mesenchymal transition in OS cells were evaluated. Consistent with the GEPIA database, expression of NETO2 was upregulated in human OS samples and cell lines. NETO2 overexpression not only promoted the proliferation, colony formation, invasion, and epithelial-mesenchymal transition of OS cells, but also activated the PI3K/AKT signaling. NETO2 downregulation resulted in opposite effects. Furthermore, after using an AKT inhibitor, the effects of NETO2 on OS cells were attenuated. In conclusion, this study showed that NETO2 functions as an oncogene of osteosarcomas by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Zhenyu Bian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Changju Hou
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Wu Jiang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310006, China.
| |
Collapse
|
18
|
Steroid receptor RNA activator inhibits the migration, invasion and stemness characteristics of renal cell carcinoma cells. Int J Mol Med 2020; 46:1765-1776. [PMID: 33000206 PMCID: PMC7521558 DOI: 10.3892/ijmm.2020.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) has a high mortality rate among urological malignancies, and its underlying mechanisms remain unclear. Steroid receptor RNA coactivator (SRA) belongs to the long non-coding RNAs (lncRNAs) and has been demonstrated to be closely related to various types of cancer. In the present study, the decreased expression level of SRA was first confirmed in RCC tissues and cell lines by RT-qPCR. Using knockdown or overexpression systems, it was then found that SRA inhibited the proliferation of RCC cell lines and promoted their apoptosis. In addition, SRA suppressed the migration and invasion, and altered EMT-related markers in RCC cells. More importantly, it was demonstrated that SRA reduced percentage of CD44+/CD24− cells and the sphere-forming efficiency. SRA also attenuated the expression levels of CD44, SOX-2, ABCG2 and OCT-4, which are all associated with cancer cell stemness characteristics. Although SRA increased the phosphorylation of extracellular-regulated protein kinase (ERK), the ERK1/2 pathway could not further interfere with the alteration of EMT-related markers mediated by SRA. Notably, the ERK inhibitor, PD98059, abolished ERK1/2 phosphorylation, whereas it did not exert any marked effects on cell proliferation and EMT-related markers mediated by SRA. Taken together, the findings of the present study indicate that SRA is an important molecule that inhibits the migration, invasion and stem cell characteristics of RCC cells; the ERK signaling pathway may not be involved in this process.
Collapse
|
19
|
Born LJ, Harmon JW, Jay SM. Therapeutic potential of extracellular vesicle-associated long noncoding RNA. Bioeng Transl Med 2020; 5:e10172. [PMID: 33005738 PMCID: PMC7510462 DOI: 10.1002/btm2.10172] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Both extracellular vesicles (EVs) and long noncoding RNAs (lncRNAs) have been increasingly investigated as biomarkers, pathophysiological mediators, and potential therapeutics. While these two entities have often been studied separately, there are increasing reports of EV-associated lncRNA activity in processes such as oncogenesis as well as tissue repair and regeneration. Given the powerful nature and emerging translational impact of other noncoding RNAs such as microRNA (miRNA) and small interfering RNA, lncRNA therapeutics may represent a new frontier. While EVs are natural vehicles that transport and protect lncRNAs physiologically, they can also be engineered for enhanced cargo loading and therapeutic properties. In this review, we will summarize the activity of lncRNAs relevant to both tissue repair and cancer treatment and discuss the role of EVs in enabling the potential of lncRNA therapeutics.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - John W. Harmon
- Department of Surgery and Hendrix Burn/Wound LaboratoryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
20
|
Zhang Y, Pu Y, Wang J, Li Z, Wang H. Research progress regarding the role of long non-coding RNAs in osteosarcoma. Oncol Lett 2020; 20:2606-2612. [PMID: 32782578 PMCID: PMC7400499 DOI: 10.3892/ol.2020.11807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a malignant tumor that occurs in children and adolescents. Although treatments for osteosarcoma have improved, the likelihood of survival remains low for most patients with metastasis and recurrence. Elucidating the mechanism underlying the development of osteosarcoma and chemotherapy resistance will be important to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length and do not encode for proteins, have been shown to play a regulatory role in the occurrence and development of osteosarcoma, and are expected to serve as biomarkers and molecular targets. This review discusses the progress in the study of the role of lncRNAs in osteosarcoma, and highlights the recent developments in this field.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Yanchuan Pu
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Hulin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| |
Collapse
|
21
|
Yin R, Liu J, Zhao D, Wang F. Long Non-Coding RNA ASB16-AS1 Functions as a miR-760 Sponge to Facilitate the Malignant Phenotype of Osteosarcoma by Increasing HDGF Expression. Onco Targets Ther 2020; 13:2261-2274. [PMID: 32214826 PMCID: PMC7081065 DOI: 10.2147/ott.s240022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose ASB16 antisense RNA 1 (ASB16-AS1) is a cancer-associated long non-coding RNA that contributes to tumorigenesis and tumor development. Nevertheless, to the best of our knowledge, whether and how ASB16-AS1 is implicated in osteosarcoma (OS) malignancy remains unclear and therefore warrants exploration. Our current study focused on making in-depth investigation of ASB16-AS1 in OS. In the present study, the expression pattern of ASB16-AS1 in OS tissues and cell lines was analyzed. In addition, we examined the clinical value of ASB16-AS1 for OS patients. Furthermore, we explored the impacts of ASB16-AS1 on the malignant phenotype of OS cells in vitro and in vivo as well as the underlying mechanism. Methods ASB16-AS1, microRNA-760 (miR-760) and hepatoma-derived growth factor (HDGF) expressions were measured using reverse transcription-quantitative PCR. Cell proliferation and apoptosis were evaluated using CCK-8 and flow cytometry analyses, respectively, and cell migration and invasion were determined via cell migration and invasion assays. Results ASB16-AS1 expression was significantly elevated in OS tissues and cell lines, and increased ASB16-AS1 expression was related to patients' tumor size, TNM stage, and distant metastasis. The overall survival rate of OS patients presenting high ASB16-AS1 expression was shorter than that of patients presenting low ASB16-AS1 expression. Reduced ASB16-AS1 expression inhibited OS cell proliferation, migration, and invasion; promoted cell apoptosis; and impaired tumor growth in vivo. Mechanistically, ASB16-AS1 served as a sponge for miR-760 and positively modulated the expression of its target HDGF. Finally, inhibiting miR-760 and restoring HDGF expression abolished the impacts of ASB16-AS1 knockdown on the malignant characteristics of OS cells. Conclusion ASB16-AS1 is a novel oncogenic lncRNA in OS cells. ASB16-AS1 increased HDGF expression by sponging miR-760, thereby conferring cancer-promoting roles in OS. ASB16-AS1 is a potential early diagnostic and therapeutic target in OS.
Collapse
Affiliation(s)
- Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Junzhi Liu
- Department of Quality Control, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Dongxu Zhao
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
22
|
Yang X, Xin N, Qu HJ, Wei L, Han Z. Long noncoding RNA TUG1 facilitates cell ovarian cancer progression through targeting MiR-29b-3p/MDM2 axis. Anat Rec (Hoboken) 2020; 303:3024-3034. [PMID: 31930662 DOI: 10.1002/ar.24367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
Ovarian cancer (OC) is one of the most aggressive female cancers in the world. OC trends to be diagnosed at an advanced stage with abdominal metastasis. Our study explored the biological function and underlying mechanism of lncRNA on OC cell proliferation and migration. The expression of turine up-regulated gene 1 (TUG1) in human OC tissues and cell lines was measured by qRT-PCR. OC cell proliferation, viability, migration, and invasion were measured by MTT assays, colony formation assays, and transwell assays in vitro. Furthermore, the nude mice xenograft model was established to determine the effects of TUG1 in vivo. The relationship between TUG1 and miR-29b-3p, as well as miR-29b-3p and MDM2 were identified using the luciferase reporter assays. We showed that the expression of TUG1 and MDM2 were significantly increased, but the expression of miR-29b-3p was remarkably decreased in OC tissues and cell lines. Knockdown of TUG1 strongly inhibited the ability of cell proliferation, colony formation, migration, and invasion in vitro. The relationship between TUG1 and miR-29b-3p, or miR-29b-3p and MDM2 were predicted by StarBase and miRanda online software. Besides, miR-29b-3p reversed the positive effect of TUG1 on the OC cell proliferation, migration, and invasion through inhibiting MDM2 expression and increasing p53 phosphorylation level. Moreover, knockdown of TUG1 suppressed tumor growth in vivo. Taken all together, this study shows that TUG1 plays a crucial oncogenic role and facilitates cell proliferation, migration, and invasion in OC through regulating miR-29b-3p/MDM2 axis.
Collapse
Affiliation(s)
- Xiaoqiu Yang
- Department of Pharmacy, Huangdao District Central Hospital, Qingdao, China
| | - Nana Xin
- Department of Pharmacy, Songshan Hospital, Medical College of Qingdao University, Qingdao, China
| | - Hai-Jun Qu
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lina Wei
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiwu Han
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Lu X, Qiao L, Liu Y. Long noncoding RNA LEF1-AS1 binds with HNRNPL to boost the proliferation, migration, and invasion in osteosarcoma by enhancing the mRNA stability of LEF1. J Cell Biochem 2020; 121:4064-4073. [PMID: 31930565 DOI: 10.1002/jcb.29579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most frequent type of cancer that starts in the bones, with a rather high tendency to metastasize to other bones at the early stages. Although many types of research have demonstrated that long noncoding RNAs commonly take part in the development of various cancers, the modulating mechanism of LEF1-AS1 in OS was unknown yet. In this study, our results disclosed that LEF1-AS1, as well as LEF1, had higher expression levels in OS cells than that in normal bone cells. LEF1-AS1 knockdown dramatically inhibited the proliferation, migration, as well as invasion in OS, which proved that LEF1-AS1 contributed to the growth of OS. Furthermore, HNRNPL knockdown suppressed the expression of LEF1. LEF1-AS1 was confirmed to sponge HNRNPL and HNRNPL could bind with LEF1. Both LEF1-AS1 and HNRNPL could enhance the stability of LEF1 mRNA. LEF1-AS1 acted as a promoter in stimulating the Wnt signaling pathway in OS. In rescue experiments, overexpression of LEF1 partially offset the inhibition LEF1-AS1 knockdown brought in the proliferation, migration as well as invasion of OS cells. Collectively, this study had investigated that LEF1-AS1 bound with HNRNPL to promote OS cell proliferation, migration as well as invasion by enhancing the messenger RNA stability of LEF1.
Collapse
Affiliation(s)
- Xiangdong Lu
- Department of Orthopedics, The Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, China
| | - Lin Qiao
- Department of Orthopaedic Surgery, The Third Hospital of Chinese, PLA, Baoji, Shaanxi, China
| | - Yanxiong Liu
- Department of Spinal Surgery, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
24
|
Huang S, Zhu X, Ke Y, Xiao D, Liang C, Chen J, Chang Y. LncRNA FTX inhibition restrains osteosarcoma proliferation and migration via modulating miR-320a/TXNRD1. Cancer Biol Ther 2020; 21:379-387. [PMID: 31920141 DOI: 10.1080/15384047.2019.1702405] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It was well established that long non-coding RNAs (LncRNAs) could serve as oncogene or tumor suppressor in terms of the tumor type. FTX, as a member of lncRNA family, has been reported to be associated with several tumor progressions, such as hepatocellular carcinoma (HCC), renal cell carcinoma (RCC) and colorectal cancer. However, the regulatory role of FTX in osteosarcoma (OS) still lacks research analysis. This paper aims to explore how FTX exerts its regulatory role on OS by modulating TXNRD1/miR-320a, so as to provide a novel lncRNA theoretical framework for the diagnosis and treatment of OS. QRT-PCR revealed that FTX and TXNRD1 were abnormally upregulated in OS, whereas miR-320a expression was significantly decreased. Luciferase reporter analysis showed that both FTX and TXNRD1 could combine with miR-320a. A series of functional experiments indicated that knockdown of FTX could suppress OS cell proliferation and migration, while facilitating apoptosis ability simultaneously. However, TXNRD1 overexpression or miR-320a inhibition could rescue the oncogenic function of FTX. Taken all the experiment results together, this paper indicated that FTX impacted osteosarcoma cell proliferation and migration by modulating TXNRD1/miR-320a.
Collapse
Affiliation(s)
- Shuaihao Huang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaowen Zhu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yuhong Ke
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dan Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Changxiang Liang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Junfeng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Chen R, Zhang X, Wang C. LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J Cell Biochem 2019; 121:4043-4051. [PMID: 31886581 DOI: 10.1002/jcb.29573] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is defined as the second most common hematological tumor in the globe. Long noncoding RNAs (lncRNAs) have been reported to play stimulative or suppressive role in the progression of different carcinomas. The investigation of lncRNAs in MM is still inadequate. LncRNA HOXB cluster antisense RNA 1 (HOXB-AS1) was once revealed to facilitate glioma progression by affecting cellular activities of glioma cells. However, whether HOXB-AS1 participates in the development of MM still remains an enigma. In this study, we unveiled that HOXB-AS1 was highly expressed in MM and loss-of-function assays certified that HOXB-AS1 obstruction suppressed MM cell proliferation, and stimulated cell apoptosis. In addition, HOXB-AS1 could modulate fucosyltransferase 4 (FUT4) and FUT4-mediated Wnt/β-catenin pathway. In subsequence, it was observed from mechanism assays that HOXB-AS1 enhanced the interaction between ELAVL1 and FUT4 so as to stabilize FUT4 messenger RNA. In the end, rescue experiments affirmed that HOXB-AS1 affected the cell growth through FUT4 in MM. In conclusion, the whole modulation mechanism of HOXB-AS1/ELAVL1/FUT4 axis in MM was validated in this study, which suggested that HOXB-AS1 might function as a powerful and promising therapeutic biomarker for the clinical treatment of patients with MM.
Collapse
Affiliation(s)
- Rongsheng Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobo Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Changsheng Wang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
26
|
de Azevedo JWV, de Medeiros Fernandes TAA, Fernandes JV, de Azevedo JCV, Lanza DCF, Bezerra CM, Andrade VS, de Araújo JMG, Fernandes JV. Biology and pathogenesis of human osteosarcoma. Oncol Lett 2019; 19:1099-1116. [PMID: 31966039 PMCID: PMC6955653 DOI: 10.3892/ol.2019.11229] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone tumor of mesenchymal origin, most frequently occurring during the rapid growth phase of long bones, and usually located in the epiphyseal growth plates of the femur or the tibia. Its most common feature is genome disorganization, aneuploidy with chromosomal alterations, deregulation of tumor suppressor genes and of the cell cycle, and an absence of DNA repair. This suggests the involvement of surveillance failures, DNA repair or apoptosis control during osteogenesis, allowing the survival of cells which have undergone alterations during differentiation. Epigenetic events, including DNA methylation, histone modifications, nucleosome remodeling and expression of non-coding RNAs have been identified as possible risk factors for the tumor. It has been reported that p53 target genes or those genes that have their activity modulated by p53, in addition to other tumor suppressor genes, are silenced in OS-derived cell lines by hypermethylation of their promoters. In osteogenesis, osteoblasts are formed from pluripotent mesenchymal cells, with potential for self-renewal, proliferation and differentiation into various cell types. This involves complex signaling pathways and multiple factors. Any disturbance in this process can cause deregulation of the differentiation and proliferation of these cells, leading to the malignant phenotype. Therefore, the origin of OS seems to be multifactorial, involving the deregulation of differentiation of mesenchymal cells and tumor suppressor genes, activation of oncogenes, epigenetic events and the production of cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | - Christiane Medeiros Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Vânia Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
27
|
Li S, Zheng K, Pei Y, Wang W, Zhang X. Long noncoding RNA NR2F1-AS1 enhances the malignant properties of osteosarcoma by increasing forkhead box A1 expression via sponging of microRNA-483-3p. Aging (Albany NY) 2019; 11:11609-11623. [PMID: 31801112 PMCID: PMC6932892 DOI: 10.18632/aging.102563] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
The long noncoding RNA NR2F1-AS1 has been found to promote the development of hepatocellular carcinoma and endometrial cancer. In this study, we measured NR2F1-AS1 expression in osteosarcoma (OS), determined the involvement of NR2F1-AS1 in the malignant properties of OS, and investigated the underlying mechanisms. NR2F1-AS1 was found to be upregulated in OS tumors and cell lines. The increased NR2F1-AS1 level was closely associated with advanced clinical stage and distant metastasis in patients with OS. Patients with OS in an NR2F1-AS1 high-expression group demonstrated significantly shorter overall survival than did patients in an NR2F1-AS1 low-expression group. NR2F1-AS1 knockdown inhibited OS cell proliferation, migration, and invasion and promoted cell cycle arrest and apoptosis in vitro and slowed tumor growth in vivo. NR2F1-AS1 was found to function as a competing endogenous RNA by directly sponging microRNA-483-3p (miR-483-3p) and upregulating its target oncogene forkhead box A1 (FOXA1). Finally, rescue experiments revealed that knockdown of miR-483-3p and recovery of FOXA1 expression both attenuated the influence of the NR2F1-AS1 knockdown on OS cells. Thus, NR2F1-AS1 plays an oncogenic role in OS through sponging miR-483-3p and thereby upregulating FOXA1, suggesting an additional target for osteosarcoma therapeutics.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Ke Zheng
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|