1
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
2
|
El-Ashmawy NE, Khedr EG, Darwish RT, Ibrahim AO. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1868:195073. [PMID: 39631541 DOI: 10.1016/j.bbagrm.2024.195073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Different diseases may arise from the dysregulation of non-coding RNAs (ncRNAs), which regulation is necessary for maintaining cellular homeostasis. ncRNAs are regulated by transcriptional, post-transcriptional, translational and post-translational processes. Post-transcriptional regulation of gene expression is carried out by microRNAs (miRNAs), a class of small ncRNA molecules, which can identify their target sites by a brief nucleotide sequence, known as the miRNA response element (MRE), present on the miRNA seed sequence and the target transcript. This binding between miRNAs and targets can regulate the gene expression through inhibition of translation or degradation of target messenger RNA (mRNA). The transcripts that share MREs can be involved in competition for the central miRNA pool, which could have an indirect impact on each other's regulation. This competition network is called competing endogenous RNAs network (ceRNET). Many ncRNAs, including circular RNA, pseudogene, and long non-coding RNA, as well as mRNA, a coding RNA transcript, make up ceRNET. These components play a crucial role in post-transcriptional regulation and are involved in the diagnosis and treatment of many pathological disorders. The mechanism of ceRNET and its essential components, as well as their therapeutic implications in different diseases such as cancer, diabetes mellitus, neurological, cardiovascular, hepatic and respiratory disorders were covered in this review.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Cairo 11837, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Renad T Darwish
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
3
|
Wang X, Ding R, Fu Z, Yang M, Li D, Zhou Y, Qin C, Zhang W, Si L, Zhang J, Chai Y. Overexpression of miR-506-3p reversed doxorubicin resistance in drug-resistant osteosarcoma cells. Front Pharmacol 2024; 15:1303732. [PMID: 38420199 PMCID: PMC10899521 DOI: 10.3389/fphar.2024.1303732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Background and objective: Osteosarcoma is a common primary malignant tumor of bone, and doxorubicin is one of the most widely used therapeutic drugs. While the problem of doxorubicin resistance limits the long-term treatment benefits in osteosarcoma patients. The role of miRNAs and their target genes in osteosarcoma have become increasingly prominent. Currently, there is no report on miR-506-3p reversing doxorubicin resistance by targeting STAT3 in osteosarcoma. The purpose of this study was to investigate the molecular mechanism that overexpression of miR-506-3p reverses doxorubicin resistance in drug-resistant osteosarcoma cells. Methods: Doxorubicin-resistant osteosarcoma cells (U-2OS/Dox) were constructed by intermittent stepwise increasing stoichiometry. The target genes of miR-506-3p were predicted by bioinformatics approach and the targeting relationship between miR-506-3p and STAT3 was detected using dual luciferase reporter assay. U-2OS/Dox cells were treated with miR-506-3p overexpression and STAT3 silencing respectively. Then Western blot and RT-qPCR were used to detect the protein and mRNA expression levels of JAK2/STAT3 signaling pathway, drug-resistant and apoptotic associated molecules. The migration and invasion were assessed by cell scratch assay and transwell assay. The cell proliferative viability and apoptosis were investigated by CCK8 assay and flow cytometry assay. Results: U-2OS/Dox cells were successfully constructed with a 14.4-fold resistance. MiR-506-3p is directly bound to the 3'-UTR of STAT3 mRNA. Compared with U-2OS cells, the mRNA expression of miR-506-3p was reduced in U-2OS/Dox cells. Overexpression of miR-506-3p decreased the mRNA expression levels of JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and decreased the protein expression levels of p-JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and conversely increased Bax expression. It also inhibited the proliferation, migration and invasion of U-2OS/Dox cells and promoted cells apoptosis. The results of STAT3 silencing experiments in the above indicators were consistent with that of miR-506-3p overexpression. Conclusion: Overexpression of miR-506-3p could inhibit the JAK2/STAT3 pathway and the malignant biological behaviors, then further reverse doxorubicin resistance in drug-resistant osteosarcoma cells. The study reported a new molecular mechanism for reversing the resistance of osteosarcoma to doxorubicin chemotherapy and provided theoretical support for solving the clinical problems of doxorubicin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rumeng Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Fu
- Department of General Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenda Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liuzhe Si
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Liao Y, Yi Q, He J, Huang D, Xiong J, Sun W, Sun W. Extracellular vesicles in tumorigenesis, metastasis, chemotherapy resistance and intercellular communication in osteosarcoma. Bioengineered 2023; 14:113-128. [PMID: 37377390 DOI: 10.1080/21655979.2022.2161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/29/2023] Open
Abstract
HIGHLIGHTS Extracellular vehicles play crucial function in osteosarcoma tumorigenesis.Extracellular vehicles mediated the intercellular communication of osteosarcoma cells with other types cells in tumor microenvironment.Extracellular vehicles have potential utility in osteosarcoma diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinglong He
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, China
| | - Jianyi Xiong
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Weichao Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| |
Collapse
|
5
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C, Sun C. ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother 2023; 162:114698. [PMID: 37060661 DOI: 10.1016/j.biopha.2023.114698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.
Collapse
Affiliation(s)
- Shu Yang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
6
|
Zhou X, Liu Q, Wang X, Yao X, Zhang B, Wu J, Sun C. Exosomal ncRNAs facilitate interactive 'dialogue' between tumor cells and tumor-associated macrophages. Cancer Lett 2023; 552:215975. [PMID: 36306940 DOI: 10.1016/j.canlet.2022.215975] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
As a biological carrier, exosomes participate in the communication between various kinds of cells, and can mediate the interactive 'dialogue' between tumor cells and tumor-associated macrophages (TAMs). TAMs are the most abundant cell population in the tumor stroma and are an important part of the tumor immune microenvironment. Various stimulating factors in the tumor microenvironment influence the polarization of TAMs into multiple phenotypes, such as M1 and M2. It plays a dual role in tumor immunity by both promoting and inhibiting tumor growth. Exosome-encapsulated non-coding RNAs (ncRNAs) participate in the interactive 'dialogue' between exosome-mediated TAMs and tumor cells. Tumor-derived exosomal ncRNAs can promote macrophage polarization, whereas exosomal ncRNAs derived from TAMs can affect tumor proliferation, metastasis, angiogenesis, and chemotherapy resistance. The present review summarizes the dual effects of exosomal ncRNAs on tumor cells and TAMs, and discusses the application of exosomal ncRNAs as a potential diagnostic or prognostic marker and drug delivery system, to provide a new perspective and potential therapeutic drugs on targeting exosomes and macrophages in the treatment of tumors.
Collapse
Affiliation(s)
- Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoyu Yao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
7
|
Injac R. Potential Medical Use of Fullerenols After Two Decades of Oncology Research. Technol Cancer Res Treat 2023; 22:15330338231201515. [PMID: 37724005 PMCID: PMC10510368 DOI: 10.1177/15330338231201515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Fullerenes are carbon molecules that are found in nature in various forms. They are composed of hexagonal and pentagonal rings that create closed structures. Almost 4 decades ago, fullerenes were identified in the form of C60 and C70, and following the award of the Nobel Prize in Chemistry for this discovery in 1996, many laboratories started working on their water-soluble derivatives that could be used in different industries, including pharmaceutical industries. One of the first fullerene forms that was the focus of different research groups was fullerenol, C60(OH)n (n = 2-44). Both in-vitro and in-vivo studies have shown that polyhydroxylate fullerene derivatives can potentially be used as either antioxidative agents or cytostatics (depending on their co-administration, forms, and concentration/dose) in biological systems. The current review aimed to present a critical view of the potential applications and limitations of fullerenols in oncology, as understood from the past 2 decades of research.
Collapse
Affiliation(s)
- Rade Injac
- Faculty of Pharmacy, Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
9
|
Lian H, Zhou Y, Sun Z, Liu K. MicroRNA34a is associated with chemotherapy resistance, metastasis, recurrence, survival, and prognosis in patient with osteosarcoma. Medicine (Baltimore) 2022; 101:e30722. [PMID: 36197268 PMCID: PMC9509030 DOI: 10.1097/md.0000000000030722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the primary malignant bone tumor that most commonly affects children, adolescents, and young adults. MicroRNA-34a (miR-34a) is involved in tumor metastasis and may be a prognostic marker for patients with cancer. The aim of the present study was to explore the role of miR-34a in patients with OS. The underlying associations between miR-34a expressions and metastasis, recurrence as well as and prognosis were comprehensively analyzed in OS patients. METHODS Reverse transcriptase quantitative PCR (RT-qPCR) was used to investigate serum level of miR-34a between clinical OS patients (n = 162) and age-matched healthy controls (n = 162). Expression of miR-34a in OS tissues and adjacent tissues was analyzed using RT-qPCR. RT-qPCR was used to compare the serum level of miR-34a in patients with OS before and after chemotherapy. Multivariate Cox-regression analysis was used to analyze the association between serum level of miR-34a and chemotherapy resistance, overall survival, as well as recurrence and prognosis of OS patients. Five-year recurrence and survival were estimated using Kaplan-Meier curves. RESULTS Serum level of miR-34a was downregulated in OS patients (n = 86) compared to age-matched healthy controls (n = 86). Expression of miR-34a was downregulated in OS tissue compared to adjacent tissues in clinical patients. The expression of serum miR-34a before and after chemotherapy was positively correlated with the expression of miR-34a in the corresponding tissues. Expression of miR-34a was higher in the group where chemotherapy was effective than that patient where chemotherapy was ineffective. Expression of miR-34a was negatively associated with chemotherapy resistance of OS patients. High serum levels of miR-34a were associated with longer overall survival in OS patients and lower metastasis. Multivariate Cox-regression analysis identified miR-34a serum level with potential prognostic significance. CONCLUSION The expression level of serum miR-34a in patients with OS is closely related to the chemotherapy resistance, metastasis, recurrence, and survival of osteosarcoma, which can be used as one of the potential biomarkers and prognosis for the treatment of OS patients. Therefore, miR-34a may be a potential molecular for prediction of the efficacy of chemotherapy and prognosis in OS patients.
Collapse
Affiliation(s)
- Hongyu Lian
- Department of Orthopedics Surgery, Mudanjiang Medical University, Affiliated Hongqi Hospital, Mudanjiang, P.R. China
| | - Yang Zhou
- Department of Stomatology, Mudanjiang Medical University, Affiliated Hongqi Hospital, Mudanjiang, P.R. China
| | - Zhang Sun
- Department of Stomatology, Mudanjiang Medical University, Affiliated Hongqi Hospital, Mudanjiang, P.R. China
| | - Kexin Liu
- Department of Orthopedics Surgery, Mudanjiang Medical University, Affiliated Hongqi Hospital, Mudanjiang, P.R. China
- *Correspondence: Kexin Liu, Department of Stomatology, Mudanjiang Medical University, Affiliated Hongqi Hospital, No. 708 Guanghua Street, Mudanjiang, Heilongjiang 157000, P.R. China (e-mail: )
| |
Collapse
|
10
|
Yao P, Lu Y, Cai Z, Yu T, Kang Y, Zhang Y, Wang X. Research Progress of Exosome-Loaded miRNA in Osteosarcoma. Cancer Control 2022; 29:10732748221076683. [PMID: 35179996 PMCID: PMC8859673 DOI: 10.1177/10732748221076683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Currently, although the improvement of surgical techniques and the development of chemotherapy drugs have brought a certain degree of development to the treatment of osteosarcoma, the treatment of osteosarcoma has many shortcomings, and its treatment is limited. MiRNAs and exosomes can be used as diagnostic tools, and they play an important role in the occurrence and chemotherapy resistance of osteosarcoma. Therefore, providing a new method for the treatment of osteosarcoma is the key to solving this problem. To systematically summarize the research status of exoskeleton drug-loaded miRNA in osteosarcoma, we identified and evaluated 208 studies and found that exosome-carrying miRNA can be used as an index for the diagnosis and prognosis of osteosarcoma and share a certain relationship with chemosensitivity. In addition, exosomes can also be used as a carrier of genetic drugs able to regulate the progression of osteosarcoma. Based on the above findings, we propose suggestions for the future development of this field, aiming to bring new ideas for the early diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yao
- Joint Surgery Department, The Second People's Hospital of Zhangye City, Zhangye, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, 144991Sun Yat-sen University, Guangzhou, China
| | - Zongyan Cai
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Tianci Yu
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yuchen Kang
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu Zhang
- Joint Surgery Department, The Second People's Hospital of Zhangye City, Zhangye, China
| | - Xulong Wang
- Joint Surgery Department, The Second People's Hospital of Zhangye City, Zhangye, China
| |
Collapse
|
11
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Hosseini F, Alemi F, Malakoti F, Mahmoodpoor A, Younesi S, Yousefi B, Asemi Z. Targeting Wnt/β-catenin signaling by microRNAs as a therapeutic approach in chemoresistant osteosarcoma. Biochem Pharmacol 2021; 193:114758. [PMID: 34481813 DOI: 10.1016/j.bcp.2021.114758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is an adolescent and young adult malignancy that mostly occurs in long bones. The treatment of OS is still a big challenge for clinicians due to increasing chemoresistance, and many efforts are being made today to find more beneficial treatments. In this regard, the use of microRNAs has shown a high capacity to develop promising therapies. By targeting cancer-involved signaling pathways, microRNAs reduce the cellular level of these protein pathways; thereby reducing the growth and invasion of tumors, and even leading cancer cells to apoptosis. One of these oncogenic pathways that play an important role in OS development and can be targeted by microRNAs is the Wnt/β-catenin signaling pathway. Hence, the first goal of this review article is to explain the cross-talk of microRNAs and the Wnt/β-catenin signaling in OS and then discussing recent findings of the use of microRNAs as a therapeutic approach in OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|