1
|
Qian J, Wu J, Zhu J, Qiu J, Wu CF, Hu CR. Effect of hyperthermia combined with opioids on cancer pain control and surgical stress in patients with gastrointestinal cancer. World J Gastrointest Surg 2024; 16:3745-3753. [PMID: 39734448 PMCID: PMC11650248 DOI: 10.4240/wjgs.v16.i12.3745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Surgical palliative surgery is a common method for treating patients with middle and late stage gastrointestinal tumors. However, these patients generally experience high levels of cancer pain, which can in turn stimulate the body's stress and undermine the effect of external surgery. Although opioid drugs have a significantly positive effect on controlling cancer pain, they can induce adverse drug reactions and potential damage to the body 's immune function. Hyperthermia therapy produces a thermal effect that shrinks tumor tissues. However, its effect on relieving the pain of middle and late stage gastrointestinal tumors but also the stress of surgical palliative surgery remains unclear. AIM To investigate the effect of hyperthermia combined with opioids on controlling cancer pain in patients with middle and late stage gastrointestinal cancer and evaluate its impact on surgical palliative surgical stress. METHODS This was a retrospective study using the data of 70 patients with middle and late stage gastrointestinal tumors who underwent cancer pain treatment and surgical palliative surgery in the Ninth People 's Hospital of Suzhou, China from January 2021 to June 2024. Patients were grouped according to different cancer pain control regimens before surgical palliative surgery, with n = 35 cases in each group, as follows: Patients who solely used opioid drugs to control cancer pain were included in Group S, while patients who received hyperthermia treatment combined with opioid drugs were included in Group L. In both groups, we compared the effectiveness of cancer pain control (pain score, burst pain score, 24-hour burst pain frequency, immune function, daily dosage of opioid drugs, and adverse reactions), surgical palliative indicators (surgery time, intraoperative bleeding, stress response), and postoperative recovery time, including first oral feeding time, postoperative hospital stay). RESULTS Analgesic treatment resulted in a significant decrease in the average pain score, burst pain score, and 24-hour burst pain frequency in both Groups L and S; however, these scores were statistically significantly lower in Group L than in Group S group (P < 0.001). Analgesic treatment also resulted in significant differences, namely serum CD4+ (29.18 ± 5.64 vs 26.05 ± 4.76, P = 0.014), CD8+ (26.28 ± 3.75 vs 29.23 ± 3.89, P = 0.002), CD4+/CD8+ (0.97 ± 0.12 vs 0.83 ± 0.17, P < 0.001), between Group L and Group S, respectively. The daily dosage of opioid drugs incidence of adverse reactions such as nausea, vomiting, constipation, and difficulty urinating were statistically significantly lower in Group L than those in group S (P < 0.05). Furthermore, palliative surgery time and intraoperative blood loss in Group L were slightly lower than those in Group S; however, the difference was not statistically significant (P > 0.05). On the first day after surgery, serum cortisol and C-reactive protein levels of patients in group L and group S were 161.43 ± 21.07 vs 179.35 ± 27.86 ug/L (P = 0.003) and 10.51 ± 2.05 vs 13.49 ± 2.17 mg/L (P < 0.001), respectively. Finally, the first oral feeding time and hospitalization time after surgery in group L were statistically significantly shorter than those in group S (P < 0.05). CONCLUSION Our findings showed that hyperthermia combined with opioids is effective in controlling cancer pain in patients with middle and late stage gastrointestinal tumors. Furthermore, this method can reduce the dosage of opioids used and minimize potential adverse drug reactions, reduce the patient's surgical palliative surgical stress response, and shorten the overall postoperative recovery time required.
Collapse
Affiliation(s)
- Jing Qian
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou 215200, Jiangsu Province, China
| | - Jing Wu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou 215200, Jiangsu Province, China
| | - Jing Zhu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou 215200, Jiangsu Province, China
| | - Jie Qiu
- Department of Gastrointestinal Surgery, Suzhou Ninth People's Hospital, Suzhou 215200, Jiangsu Province, China
| | - Chuan-Fu Wu
- Department of Gastrointestinal Surgery, Suzhou Ninth People's Hospital, Suzhou 215200, Jiangsu Province, China
| | - Cheng-Ru Hu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou 215200, Jiangsu Province, China
| |
Collapse
|
2
|
Van Dieren L, Quisenaerts T, Licata M, Beddok A, Lellouch AG, Ysebaert D, Saldien V, Peeters M, Gorbaslieva I. Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects. Cancers (Basel) 2024; 16:3656. [PMID: 39518094 PMCID: PMC11545184 DOI: 10.3390/cancers16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase the chances of radiotherapy (RT) triggering systemic anti-tumor immune responses. METHODS This review is created in accordance with the PRISMA guidelines. RESULTS AND CONCLUSION HT and RT have both complementary and synergistic immunological effects. Both methods trigger danger signal release, promoting cytokine and chemokine secretion, which increases T-cell infiltration and facilitates cell death. Both treatments upregulate extracellular tumor HSP70, which could amplify DAMP recognition by macrophages and DCs, leading to stronger tumor antigen presentation and CTL-mediated immune responses. Additionally, the combined increase in cell adhesion molecules (VCAM-1, ICAM-1, E-selectin, L-selectin) could enhance leukocyte adhesion to tumors, improving lymphocyte trafficking and boosting systemic anti-tumor effects. Lastly, HT causes vasodilation and improves blood flow, which might exacerbate those distant effects. We suggest the combination of local radiotherapy with fever-range whole-body hyperthermia to optimally enhance the chances of triggering the abscopal effect mediated by the immune system.
Collapse
Affiliation(s)
- Loïc Van Dieren
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Quisenaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Arnaud Beddok
- Institut Godinot, Radiation Oncology Department, 85054 Reims, France
- GCMI, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dirk Ysebaert
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Vera Saldien
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marc Peeters
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Ivana Gorbaslieva
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| |
Collapse
|
3
|
Altinbasak I, Alp Y, Sanyal R, Sanyal A. Theranostic nanogels: multifunctional agents for simultaneous therapeutic delivery and diagnostic imaging. NANOSCALE 2024; 16:14033-14056. [PMID: 38990143 DOI: 10.1039/d4nr01423e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In recent years, there has been a growing interest in multifunctional theranostic agents capable of delivering therapeutic payloads while facilitating simultaneous diagnostic imaging of diseased sites. This approach offers a comprehensive strategy particularly valuable in dynamically evolving diseases like cancer, where combining therapy and diagnostics provides crucial insights for treatment planning. Nanoscale platforms, specifically nanogels, have emerged as promising candidates due to their stability, tunability, and multifunctionality as carriers. As a well-studied subgroup of soft polymeric nanoparticles, nanogels exhibit inherent advantages due to their size and chemical compositions, allowing for passive and active targeting of diseased tissues. Moreover, nanogels loaded with therapeutic and diagnostic agents can be designed to respond to specific stimuli at the disease site, enhancing their efficacy and specificity. This capability enables fine-tuning of theranostic platforms, garnering significant clinical interest as they can be tailored for personalized treatments. The ability to monitor tumor progression in response to treatment facilitates the adaptation of therapies according to individual patient responses, highlighting the importance of designing theranostic platforms to guide clinicians in making informed treatment decisions. Consequently, the integration of therapy and diagnostics using theranostic platforms continues to advance, offering intelligent solutions to address the challenges of complex diseases such as cancer. In this context, nanogels capable of delivering therapeutic payloads and simultaneously armed with diagnostic modalities have emerged as an attractive theranostic platform. This review focuses on advances made toward the fabrication and utilization of theranostic nanogels by highlighting examples from recent literature where their performances through a combination of therapeutic agents and imaging methods have been evaluated.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
4
|
Roohani S, Ehret F, Beck M, Veltsista DP, Nadobny J, Zschaeck S, Abdel-Rahman S, Eckert F, Flörcken A, Issels RD, Klöck S, Krempien R, Lindner LH, Notter M, Ott OJ, Pink D, Potkrajcic V, Reichardt P, Riesterer O, Spałek MJ, Stutz E, Wessalowski R, Zilli T, Zips D, Ghadjar P, Kaul D. Regional hyperthermia for soft tissue sarcoma - a survey on current practice, controversies and consensus among 12 European centers. Int J Hyperthermia 2024; 41:2342348. [PMID: 38653548 DOI: 10.1080/02656736.2024.2342348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE To analyze the current practice of regional hyperthermia (RHT) for soft tissue sarcoma (STS) at 12 European centers to provide an overview, find consensuses and identify controversies necessary for future guidelines and clinical trials. METHODS In this cross-sectional survey study, a 27-item questionnaire assessing clinical subjects and procedural details on RHT for STS was distributed to 12 European cancer centers for RHT. RESULTS We have identified seven controversies and five consensus points. Of 12 centers, 6 offer both, RHT with chemotherapy (CTX) or with radiotherapy (RT). Two centers only offer RHT with CTX and four centers only offer RHT with RT. All 12 centers apply RHT for localized, high-risk STS of the extremities, trunk wall and retroperitoneum. However, eight centers also use RHT in metastatic STS, five in palliative STS, eight for superficial STS and six for low-grade STS. Pretherapeutic imaging for RHT treatment planning is used by 10 centers, 9 centers set 40-43 °C as the intratumoral target temperature, and all centers use skin detectors or probes in body orifices for thermometry. DISCUSSION There is disagreement regarding the integration of RHT in contemporary interdisciplinary care of STS patients. Many clinical controversies exist that require a standardized consensus guideline and innovative study ideas. At the same time, our data has shown that existing guidelines and decades of experience with the technique of RHT have mostly standardized procedural aspects. CONCLUSIONS The provided results may serve as a basis for future guidelines and inform future clinical trials for RHT in STS patients.
Collapse
Affiliation(s)
- Siyer Roohani
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danai P Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Berlin, Germany
| | - Sultan Abdel-Rahman
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, AKH, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Anne Flörcken
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf D Issels
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stephan Klöck
- Department of Radiation Oncology, Lindenhofspital Bern, Bern, Switzerland
| | - Robert Krempien
- Clinic for Radiotherapy, HELIOS Klinikum Berlin-Buch, Berlin, Germany
- MSB Medical School Berlin, Fakultät für Medizin, Berlin, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Notter
- Department of Radiation Oncology, Lindenhofspital Bern, Bern, Switzerland
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Daniel Pink
- Department of Medical Oncology, Helios Klinikum Bad Saarow, Bad Saarow, Germany
- Cinic for Internal Medicine C - Haematology and Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Peter Reichardt
- Department of Medical Oncology, Helios Klinikum Berlin-Buch, and Medical School Berlin, Berlin, Germany
| | - Oliver Riesterer
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Mateusz Jacek Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Radiotherapy I, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Emanuel Stutz
- Department of Radiation Oncology, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rüdiger Wessalowski
- Department of Paediatric Haematology and Oncology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland
- Facoltà di Scienze Biomediche, Università Della Svizzera Italiana (USI), Lugano, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Paez-Muñoz JM, Gámez F, Fernández-Afonso Y, Gallardo R, Pernia Leal M, Gutiérrez L, de la Fuente JM, Caro C, García-Martín ML. Optimization of iron oxide nanoparticles for MRI-guided magnetic hyperthermia tumor therapy: reassessing the role of shape in their magnetocaloric effect. J Mater Chem B 2023; 11:11110-11120. [PMID: 37947078 DOI: 10.1039/d3tb01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated. Interestingly, spherical nanoparticles displayed significantly higher magnetic relaxivity than cubic nanoparticles; however, comparable differences were not observed in specific absorption rate (SAR), pointing out the need for additional research to better understand the connection between these two parameters. Additionally, the as-synthetized spherical nanoparticles showed negligible cytotoxicity and, therefore, were tested in vivo in tumor-bearing mice. Following intratumoral administration of these spherical nanoparticles and a single exposure to alternating magnetic fields (AMF) closely mimicking clinical conditions, a significant delay in tumor growth was observed. Although further in vivo experiments are warranted to optimize the magnetic hyperthermia conditions, our findings support the great potential of these nanoparticles as magnetic hyperthermia mediators for tumor therapy.
Collapse
Affiliation(s)
- José María Paez-Muñoz
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Francisco Gámez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Química Analítica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Roberto Gallardo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Química Analítica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, C/ Severo Ochoa, 35, 29590 Málaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
6
|
Hohneck AL, Sadikaj L, Heinemann L, Schroeder M, Riess H, Gerhards A, Burkholder I, Heckel-Reusser S, Gottfried J, Hofheinz RD. Patients with Advanced Pancreatic Cancer Treated with Mistletoe and Hyperthermia in Addition to Palliative Chemotherapy: A Retrospective Single-Center Analysis. Cancers (Basel) 2023; 15:4929. [PMID: 37894296 PMCID: PMC10605673 DOI: 10.3390/cancers15204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
This retrospective analysis investigated the influence of integrative therapies in addition to palliative chemotherapy in patients with advanced pancreatic cancer, treated at a single institution specialized in integrative oncology between January 2015 and December 2019. In total, 206 consecutive patients were included in the study, whereof 142 patients (68.9%) received palliative chemotherapy (gemcitabine/nab-paclitaxel 33.8%; FOLFIRINOX 35.9%; gemcitabine 30.3%) while the remainder were treated with best supportive and integrative care. Integrative therapies were used in 117 of 142 patients (82.4%) in addition to conventional chemotherapy, whereby mistletoe was used in 117 patients (82.4%) and hyperthermia in 74 patients (52.1%). A total of 107/142 patients (86.3%) died during the observation period, whereby survival times differed significantly depending on the additional use of integrative mistletoe or hyperthermia: chemotherapy alone 8.6 months (95% CI 4.7-15.4), chemotherapy and only mistletoe therapy 11.2 months (95% CI 7.1-14.2), or a combination of chemotherapy with mistletoe and hyperthermia 18.9 months (95% CI 15.2-24.5). While the survival times observed for patients with advanced pancreatic cancer receiving chemotherapy alone are consistent with pivotal phase-III studies and German registry data, we found significantly improved survival using additional mistletoe and/or hyperthermia.
Collapse
Affiliation(s)
- Anna Lena Hohneck
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Largsi Sadikaj
- Onkologische Praxis Kaiserslautern, 67655 Kaiserslautern, Germany
| | - Lara Heinemann
- Department of Haematology and Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany (R.-D.H.)
| | | | - Hartmut Riess
- AnthroMed Öschelbronn, Centrum für Integrative Medizin, 75223 Oeschelbronn, Germany; (H.R.)
| | - Annette Gerhards
- AnthroMed Öschelbronn, Centrum für Integrative Medizin, 75223 Oeschelbronn, Germany; (H.R.)
| | - Iris Burkholder
- Department of Nursing and Health, University of Applied Sciences of the Saarland, 66117 Saarbruecken, Germany
| | | | | | - Ralf-Dieter Hofheinz
- Department of Haematology and Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany (R.-D.H.)
| |
Collapse
|
7
|
Fiorentini G, Sarti D, Mambrini A, Hammarberg Ferri I, Bonucci M, Sciacca PG, Ballerini M, Bonanno S, Milandri C, Nani R, Guadagni S, Dentico P, Fiorentini C. Hyperthermia combined with chemotherapy vs chemotherapy in patients with advanced pancreatic cancer: A multicenter retrospective observational comparative study. World J Clin Oncol 2023; 14:215-226. [PMID: 37398545 PMCID: PMC10311475 DOI: 10.5306/wjco.v14.i6.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Several studies report the useful therapeutic results of regional hyperthermia in association with chemotherapy (CHT) and radiotherapy for the treatment of pancreatic cancer. Modulated electro-hyperthermia (mEHT) is a new hyperthermia technique that induces immunogenic death or apoptosis of pancreatic cancer cells in laboratory experiments and increases tumor response rate and survival in pancreatic cancer patients, offering beneficial therapeutic effects against this severe type of cancer. AIM To assess survival, tumor response and toxicity of mEHT alone or combined with CHT compared with CHT for the treatment of locally advanced or metastatic pancreatic cancer. METHODS This was a retrospective data collection on patients affected by locally advanced or metastatic pancreatic cancer (stage III and IV) performed in 9 Italian centers, members of International Clinical Hyperthermia Society-Italian Network. This study included 217 patients, 128 (59%) of them were treated with CHT (no-mEHT) and 89 (41%) patients received mEHT alone or in association with CHT. mEHT treatments were performed applying a power of 60-150 watts for 40-90 min, simultaneously or within 72 h of administration of CHT. RESULTS Median patients' age was 67 years (range 31-92 years). mEHT group had a median overall survival greater than non-mEHT group (20 mo, range 1.6-24, vs 9 mo, range 0.4-56.25, P < 0.001). mEHT group showed a higher number of partial responses (45% vs 24%, P = 0.0018) and a lower number of progressions (4% vs 31%, P < 0.001) than the no-mEHT group, at the three months follow-up. Adverse events were observed as mild skin burns in 2.6% of mEHT sessions. CONCLUSION mEHT seems safe and has beneficial effects on survival and tumor response of stage III-IV pancreatic tumor treatment. Further randomized studies are warranted to confirm or not these results.
Collapse
Affiliation(s)
- Giammaria Fiorentini
- Integrative Oncology, Integrative Oncology Outpatient Clinic, Bologna 40121, Italy
| | - Donatella Sarti
- Department of Oncology, Santa Maria della Misericordia Hospital, Urbino 60129, Italy
| | - Andrea Mambrini
- Department of Oncology, Azienda Sanitaria Locale Toscana Nord Ovest, Massa Carrara Hospital, Massa 54100, Italy
| | | | - Massimo Bonucci
- Integrative Oncology, Association Research Center for Integrative Oncology Treatments, Roma 00166, Italy
| | | | - Marco Ballerini
- Hyperthermia Unit, Bellessere Medical Center, Terni 05100, Italy
| | | | - Carlo Milandri
- Medical Oncology, San Donato Hospital, Arezzo 52100, Italy
| | - Roberto Nani
- Interventional Radiology Unit, Humanitas Gavazzeni, Bergamo 24121, Italy
| | - Stefano Guadagni
- Applied Clinical Sciences and Biotechnology, Section of General Surgery, University of L'Aquila, L'Aquila 67100, Italy
| | - Patrizia Dentico
- Hyperthermia Service, Medical Oncology Unit, San Giuseppe Hospital, Empoli 50053, Italy
| | - Caterina Fiorentini
- Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich 80331, Germany
| |
Collapse
|
8
|
Brero F, Calzolari P, Albino M, Antoccia A, Arosio P, Berardinelli F, Bettega D, Ciocca M, Facoetti A, Gallo S, Groppi F, Innocenti C, Laurenzana A, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Scavone F, Veronese I, Lascialfari A. Proton Therapy, Magnetic Nanoparticles and Hyperthermia as Combined Treatment for Pancreatic BxPC3 Tumor Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:791. [PMID: 36903670 PMCID: PMC10005040 DOI: 10.3390/nano13050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We present an investigation of the effects on BxPC3 pancreatic cancer cells of proton therapy combined with hyperthermia, assisted by magnetic fluid hyperthermia performed with the use of magnetic nanoparticles. The cells' response to the combined treatment has been evaluated by means of the clonogenic survival assay and the estimation of DNA Double Strand Breaks (DSBs). The Reactive Oxygen Species (ROS) production, the tumor cell invasion and the cell cycle variations have also been studied. The experimental results have shown that the combination of proton therapy, MNPs administration and hyperthermia gives a clonogenic survival that is much smaller than the single irradiation treatment at all doses, thus suggesting a new effective combined therapy for the pancreatic tumor. Importantly, the effect of the therapies used here is synergistic. Moreover, after proton irradiation, the hyperthermia treatment was able to increase the number of DSBs, even though just at 6 h after the treatment. Noticeably, the magnetic nanoparticles' presence induces radiosensitization effects, and hyperthermia increases the production of ROS, which contributes to cytotoxic cellular effects and to a wide variety of lesions including DNA damage. The present study indicates a new way for clinical translation of combined therapies, also in the vision of an increasing number of hospitals that will use the proton therapy technique in the near future for different kinds of radio-resistant cancers.
Collapse
Affiliation(s)
- Francesca Brero
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
| | - Paola Calzolari
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Martin Albino
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
| | - Antonio Antoccia
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy
| | - Paolo Arosio
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | | | - Daniela Bettega
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | - Salvatore Gallo
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Flavia Groppi
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
- Laboratorio Acceleratori e Superconduttività Applicata (L.A.S.A.), 20090 Segrate, Italy
| | - Claudia Innocenti
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
| | - Anna Laurenzana
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”, 50134 Firenze, Italy
| | - Cristina Lenardi
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Simone Manenti
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
- Laboratorio Acceleratori e Superconduttività Applicata (L.A.S.A.), 20090 Segrate, Italy
| | - Renato Marchesini
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Manuel Mariani
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Francesco Orsini
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Emanuele Pignoli
- Fondazione IRCSS Istituto Nazionale dei Tumori, 20133 Milano, Italy
| | - Claudio Sangregorio
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- INFN, Sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Francesca Scavone
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”, 50134 Firenze, Italy
| | - Ivan Veronese
- Dipartimento di Fisica “Aldo Pontremoli” and INFN (Sezione di Milano), Università degli Studi di Milano, 20133 Milano, Italy
| | - Alessandro Lascialfari
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Sharma A, Jangam A, Shen JLY, Ahmad A, Arepally N, Rodriguez B, Borrello J, Bouras A, Kleinberg L, Ding K, Hadjipanayis C, Kraitchman DL, Ivkov R, Attaluri A. Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device. Cancers (Basel) 2023; 15:327. [PMID: 36672278 PMCID: PMC9856953 DOI: 10.3390/cancers15020327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic field. For temperature monitoring, we integrated a commercial fiber optic temperature probe containing four gallium arsenide (GaAs) temperature sensors. The controller device used temperature from the sensors as input to manage power to the magnetic field applicator. We developed a robust, multi-objective, proportional-integral-derivative (PID) algorithm to control the target thermal dose by modulating power delivered to the magnetic field applicator. The magnetic field applicator was a 20 cm diameter Maxwell-type induction coil powered by a 120 kW induction heating power supply operating at 160 kHz. Finite element (FE) simulations were performed to determine values of the PID gain factors prior to verification and validation trials. Ex vivo verification and validation were conducted in gel phantoms and sectioned bovine liver, respectively. In vivo validation of the controller was achieved in a canine research subject following infusion of magnetic nanoparticles (MNPs) into the brain. In all cases, performance matched controller design criteria, while also achieving a thermal dose measured as cumulative equivalent minutes at 43 °C (CEM43) 60 ± 5 min within 30 min.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Avesh Jangam
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Julian Low Yung Shen
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Aiman Ahmad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Nageshwar Arepally
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Benjamin Rodriguez
- Sinai BioDesign, Mount Sinai Hospital, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Borrello
- Sinai BioDesign, Mount Sinai Hospital, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dara L. Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| |
Collapse
|
10
|
Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells 2022; 11:cells11111838. [PMID: 35681533 PMCID: PMC9180583 DOI: 10.3390/cells11111838] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
The role of Heat Shock Proteins (HSPs) is a “double-edged sword” with regards to tumors. The location and interactions of HSPs determine their pro- or antitumor activity. The present review includes an overview of the relevant functions of HSPs, which could improve their antitumor activity. Promoting the antitumor processes could assist in the local and systemic management of cancer. We explore the possibility of achieving this by manipulating the electromagnetic interactions within the tumor microenvironment. An appropriate electric field may select and affect the cancer cells using the electric heterogeneity of the tumor tissue. This review describes the method proposed to effect such changes: amplitude-modulated radiofrequency (amRF) applied with a 13.56 MHz carrier frequency. We summarize the preclinical investigations of the amRF on the HSPs in malignant cells. The preclinical studies show the promotion of the expression of HSP70 on the plasma membrane, participating in the immunogenic cell death (ICD) pathway. The sequence of guided molecular changes triggers innate and adaptive immune reactions. The amRF promotes the secretion of HSP70 also in the extracellular matrix. The extracellular HSP70 accompanied by free HMGB1 and membrane-expressed calreticulin (CRT) form damage-associated molecular patterns encouraging the dendritic cells’ maturing for antigen presentation. The process promotes killer T-cells. Clinical results demonstrate the potential of this immune process to trigger a systemic effect. We conclude that the properly applied amRF promotes antitumor HSP activity, and in situ, it could support the tumor-specific immune effects produced locally but acting systemically for disseminated cells and metastatic lesions.
Collapse
|
11
|
Healy S, Bakuzis AF, Goodwill PW, Attaluri A, Bulte JWM, Ivkov R. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1779. [PMID: 35238181 PMCID: PMC9107505 DOI: 10.1002/wnan.1779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat‐based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle‐imaging technology that provides real‐time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof‐of‐principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Collapse
Affiliation(s)
- Sean Healy
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andris F Bakuzis
- Instituto de Física and CNanoMed, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Anilchandra Attaluri
- Department of Mechanical Engineering, Pennsylvania State University, Harrisburg, Harrisburg, Pennsylvania, USA
| | - Jeff W M Bulte
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
13
|
Kim K, Zubair M, Adams M, Diederich CJ, Ozhinsky E. Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system. Int J Hyperthermia 2021; 38:1590-1600. [PMID: 34749579 DOI: 10.1080/02656736.2021.1998658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The ExAblate body MRgFUS system requires advanced beamforming strategies for volumetric hyperthermia. This study aims to develop and evaluate electronic beam steering, multi-focal patterns, and sector vortex beamforming approaches in conjunction with partial array activation using an acoustic and biothermal simulation framework along with phantom experiments. METHODS The simulation framework was developed to calculate the 3D acoustic intensity and temperature distribution resulting from various beamforming and scanning strategies. A treatment cell electronically sweeping a single focus was implemented and evaluated in phantom experiments. The acoustic and thermal focal size of vortex beam propagation was quantified according to the vortex modes, number of active array elements, and focal depth. RESULTS Turning off a percentage of the outer array to increase the f-number increased the focal size with a decrease in focal gain. 60% active elements allowed generating a sonication cell with an off-axis of 10 mm. The vortex mode number 4 with 60% active elements resulted in a larger heating volume than using the full array. Volumetric hyperthermia in the phantom was evaluated with the vortex mode 4 and respectively performed with 100% and 80% active elements. MR thermometry demonstrated that the volumes were found to be 18.8 and 29.7 cm3, respectively, with 80% array activation producing 1.58 times larger volume than the full array. CONCLUSIONS This study demonstrated that both electronic beam steering and sector vortex beamforming approaches in conjunction with partial array activation could generate large volume heating for HT delivery using the ExAblate body array.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Matthew Adams
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Chris J Diederich
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Petenyi FG, Garay T, Muhl D, Izso B, Karaszi A, Borbenyi E, Herold M, Herold Z, Szasz AM, Dank M. Modulated Electro-Hyperthermic (mEHT) Treatment in the Therapy of Inoperable Pancreatic Cancer Patients-A Single-Center Case-Control Study. Diseases 2021; 9:81. [PMID: 34842668 PMCID: PMC8628793 DOI: 10.3390/diseases9040081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Our present oncological treatment arsenal has limited treatment options for pancreatic ductal adenocarcinoma (PDAC). Extended reviews have shown the benefits of hyperthermia for PDAC, supporting the perspectives with the improvements of the treatment possibilities. METHODS A retrospective single-center case-control study was conducted with the inclusion of 78 inoperable PDAC patients. Age-, sex-, chemotherapy-, stage-, and ascites formation-matched patients were assigned to two equal groups based on the application of modulated electro-hyperthermia (mEHT). The EHY2030 mEHT device was used. RESULTS A trend in favor of mEHT was found in overall survival (p = 0.1420). To further evaluate the potential beneficial effects of mEHT, the presence of distant metastasis or ascites in the patients' oncological history was investigated. Of note, mEHT treatment had a favorable effect on patients' overall survival in metastatic disease (p = 0.0154), while less abdominal fluid responded to the mEHT treatment in a more efficient way (p ≤ 0.0138). CONCLUSION mEHT treatment was associated with improved overall survival in PDAC in our single-center retrospective case-control study. The outcome measures encourage us to design a randomized prospective clinical study to further confirm the efficiency of mEHT in this patient cohort.
Collapse
Affiliation(s)
- Flora Greta Petenyi
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary; (F.G.P.); (T.G.); (B.I.)
| | - Tamas Garay
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary; (F.G.P.); (T.G.); (B.I.)
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Dorottya Muhl
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Blanka Izso
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary; (F.G.P.); (T.G.); (B.I.)
| | - Adam Karaszi
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Erika Borbenyi
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| |
Collapse
|
15
|
Notter M, Thomsen AR, Grosu AL, Vaupel P. Recommendation of Regional Hyperthermia in the Treatment of Breast Cancer. Integr Cancer Ther 2021; 20:1534735420988606. [PMID: 33467939 PMCID: PMC7960893 DOI: 10.1177/1534735420988606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Andreas R. Thomsen
- Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Andreas R. Thomsen, Department of Radiation Oncology, University Medical Center Freiburg, Robert-Koch-Str. 3, Freiburg 79106, Germany.
| | - Anca-L. Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|