1
|
Wallin CM, Bowen SE, Roberge CL, Richardson LM, Brummelte S. Gestational buprenorphine exposure: Effects on pregnancy, development, neonatal opioid withdrawal syndrome, and behavior in a translational rodent model. Drug Alcohol Depend 2019; 205:107625. [PMID: 31706250 DOI: 10.1016/j.drugalcdep.2019.107625] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The opioid crisis has led to an increased number of pregnant opioid-dependent women receiving opioid-maintenance therapy (e.g. buprenorphine, BUP), but little is known about the consequences of gestational BUP exposure on pregnancy outcomes, maternal care, or offspring development. METHODS Our translational rodent model began BUP exposure to adult female rats (N = 30) at least 7 days before conception and continued throughout the postpartum period. Both therapeutic low-dose (BUP-LD, 0.3 mg/kg, s.c.) and overexposure high-dose (BUP-HD, 1.0 mg/kg) doses of BUP were compared to saline control. Female rats were bred in house with drug-naïve adult male rats. The day after parturition, litters were culled to 5 males/5 females and assigned randomly to various behavioral tests and assessed either neonates or adolescents. Litter characteristics, maternal caregiving, Neonatal Opioid Withdrawal Syndrome (NOWS), offspring development and adolescent behaviors were evaluated. RESULTS BUP-LD decreased maternal care, delayed offspring development, decreased offspring body weight, length, temperature, and pain sensitivity (p's < .05). BUP-HD drastically reduced maternal care and offspring survival, altered litter characteristics, and increased NOWS (p's < .05). CONCLUSION These results demonstrate that the therapeutic BUP-LD in rats was relatively safe with subtle effects on maternal care and rodent offspring. However, overexposure BUP-HD in rats produced NOWS and compromised maternal caregiving as well as rodent offspring survival. More research is critical to validate the translational implication of these findings for human opioid-dependent mothers maintained on BUP-maintenance therapy.
Collapse
Affiliation(s)
- Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | - Chelsea L Roberge
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | | | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Activation of Kappa Opioid Receptor Regulates the Hypothermic Response to Calorie Restriction and Limits Body Weight Loss. Curr Biol 2019; 29:4291-4299.e4. [PMID: 31786059 DOI: 10.1016/j.cub.2019.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/16/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Mammals maintain a nearly constant core body temperature (Tb) by balancing heat production and heat dissipation. This comes at a high metabolic cost that is sustainable if adequate calorie intake is maintained. When nutrients are scarce or experimentally reduced such as during calorie restriction (CR), endotherms can reduce energy expenditure by lowering Tb [1-6]. This adaptive response conserves energy, limiting the loss of body weight due to low calorie intake [7-10]. Here we show that this response is regulated by the kappa opioid receptor (KOR). CR is associated with increased hypothalamic levels of the endogenous opioid Leu-enkephalin, which is derived from the KOR agonist precursor dynorphin [11]. Pharmacological inhibition of KOR, but not of the delta or the mu opioid receptor subtypes, fully blocked CR-induced hypothermia and increased weight loss during CR independent of calorie intake. Similar results were seen with DIO mice subjected to CR. In contrast, inhibiting KOR did not change Tb in animals fed ad libitum (AL). Chemogenetic inhibition of KOR neurons in the hypothalamic preoptic area reduced the CR-induced hypothermia, whereas chemogenetic activation of prodynorphin-expressing neurons in the arcuate or the parabrachial nucleus lowered Tb. These data indicate that KOR signaling is a pivotal regulator of energy homeostasis and can affect body weight during dieting by modulating Tb and energy expenditure.
Collapse
|
3
|
Kesavan K, Ezell T, Bierman A, Nunes AR, Northington FJ, Tankersley CG, Gauda EB. Breathing and temperature control disrupted by morphine and stabilized by clonidine in neonatal rats. Respir Physiol Neurobiol 2014; 201:93-100. [PMID: 25008573 DOI: 10.1016/j.resp.2014.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/09/2014] [Accepted: 06/29/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. METHODS Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 min after intraperitoneal (IP) administration of morphine (2, 10 or 20 mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. RESULTS Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). CONCLUSION In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia.
Collapse
Affiliation(s)
- Kalpashri Kesavan
- Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Tarrah Ezell
- Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Alexis Bierman
- Environmental Health Sciences, School of Public Health of Johns Hopkins, Baltimore, MD, United States
| | | | | | - Clarke G Tankersley
- Environmental Health Sciences, School of Public Health of Johns Hopkins, Baltimore, MD, United States
| | - Estelle B Gauda
- Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| |
Collapse
|
4
|
Henderson F, May WJ, Gruber RB, Discala JF, Puskovic V, Young AP, Baby SM, Lewis SJ. Role of central and peripheral opiate receptors in the effects of fentanyl on analgesia, ventilation and arterial blood-gas chemistry in conscious rats. Respir Physiol Neurobiol 2013; 191:95-105. [PMID: 24284037 DOI: 10.1016/j.resp.2013.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
This study determined the effects of the peripherally restricted μ-opiate receptor (μ-OR) antagonist, naloxone methiodide (NLXmi) on fentanyl (25μg/kg, i.v.)-induced changes in (1) analgesia, (2) arterial blood gas chemistry (ABG) and alveolar-arterial gradient (A-a gradient), and (3) ventilatory parameters, in conscious rats. The fentanyl-induced increase in analgesia was minimally affected by a 1.5mg/kg of NLXmi but was attenuated by a 5.0mg/kg dose. Fentanyl decreased arterial blood pH, pO2 and sO2 and increased pCO2 and A-a gradient. These responses were markedly diminished in NLXmi (1.5mg/kg)-pretreated rats. Fentanyl caused ventilatory depression (e.g., decreases in tidal volume and peak inspiratory flow). Pretreatment with NLXmi (1.5mg/kg, i.v.) antagonized the fentanyl decrease in tidal volume but minimally affected the other responses. These findings suggest that (1) the analgesia and ventilatory depression caused by fentanyl involve peripheral μ-ORs and (2) NLXmi prevents the fentanyl effects on ABG by blocking the negative actions of the opioid on tidal volume and A-a gradient.
Collapse
Affiliation(s)
- Fraser Henderson
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan B Gruber
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Joseph F Discala
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Veljko Puskovic
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Santhosh M Baby
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4984, USA.
| |
Collapse
|
5
|
|
6
|
Obese FY, Whitlock BK, Steele BP, Buonomo FC, Sartin JL. Long-term feed intake regulation in sheep is mediated by opioid receptors. J Anim Sci 2007; 85:111-7. [PMID: 17179546 DOI: 10.2527/jas.2006-404] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
These experiments were conducted to determine if 1) syndyphalin-33 (SD33), a mu-opioid receptor ligand, affects feed intake; 2) SD33 effects on feed intake are mediated by actions on opioid receptors; and 3) its activity can counteract the reduction in feed intake associated with administration of bacterial endotoxin. In Exp. 1, 5 mixed-breed, castrate male sheep were housed indoors in individual pens. Animals had ad libitum access to water and concentrate feed. Saline (SAL; 0.9% NaCl) or SD33 (0.05 or 0.1 micromol/kg of BW) was injected i.v., and feed intake was determined at 2, 4, 6, 8, 24, and 48 h after the i.v. injections. Both doses of SD33 increased (at least P < 0.01) feed intake at 48 h relative to saline. In Exp. 2, SAL + SAL, SAL + SD33 (0.1 micromol/kg of BW), naloxone (NAL; 1 mg/kg of BW) + SAL, and NAL + SD33 were injected i.v. Food intake was determined as in Exp. 1. The SAL + SD33 treatment increased (P = 0.022) feed intake at 48 h relative to SAL + SAL. The NAL + SAL treatment reduced (at least P < 0.01) feed intake at 4, 6, 8, 24, and 48 h, whereas the combination of NAL and SD33 did not reduce feed intake at 24 (P = 0.969) or 48 h (P = 0.076) relative to the saline-treated sheep. In Exp. 3, sheep received 1 of 4 treatments: SAL + SAL, SAL + 0.1 micromol of SD33/kg of BW, 0.1 microg of lipopolysaccharide (LPS)/kg of BW + SAL, or LPS + SD33, and feed intake was monitored as in Exp. 1. Lipopolysaccharide suppressed cumulative feed intake for 48 h (P < 0.01) relative to saline control, but SD33 failed to reverse the reduction in feed intake during this period. These data indicate that SD33 increases feed intake in sheep after i.v. injection, and its effects are mediated via opioid receptors. However, the LPS-induced suppression in feed intake cannot be overcome by the opioid receptor ligand, SD33.
Collapse
Affiliation(s)
- F Y Obese
- Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | | | | | | | | |
Collapse
|
7
|
Boggs DF, Miller JH. Absence of an hypoxic depression of metabolism in preproenkephalin knockout mice. Respir Physiol Neurobiol 2005; 152:92-9. [PMID: 16095981 DOI: 10.1016/j.resp.2005.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 11/16/2022]
Abstract
Opioids inhibit breathing in mammals, especially in newborns, and are also implicated in the control of hypoxic anapyrexia. We measured breathing patterns and metabolic responses to 12% oxygen in six adult male wildtype C57B/6J mice and six preproenkephalin knockout (PPNK-/-) mice in a flow-through respirometer and barometric plethysmograph with ambient temperature maintained in the thermoneutral zone. Breathing air, there was no significant difference between the two groups of mice in ventilation ((.)V), oxygen consumption ((.)V(O(2)), convection requirement ((.)V/(.)V(O(2)), tidal volume (V(t)), frequency (f), or inspiratory time (T(i)); however, PPNK-/- mice had a significantly shorter expiratory time (T(e)). The breathing pattern response to 5% CO(2) was the same between wildtype and PPNK-/- in terms of absolute values, but the % change in V(t) was greater in the wildtype. Breathing 12% O(2), there was no significant difference in V , V(t), f, T(i), T(e) or body temperature between groups, but there was a significant difference in (.)V(O(2) (PPNK-/- 1.24+/-0.05 ml O(2)min(-1) versus 0.91+/-0.05 for wildtype, P<0.001) and % change in (.)V(O(2), (2.3+/-6.6% for PPNK-/- versus -28+/-3.8% for wildtype); in ((.)V/(.)V(O(2)), (54+/-4 versus 78+/-10, P<0.05) and the % change in (.)V/(.)V(O(2), (37+/-9 versus 131+/-28, P<0.01). These data implicate enkephalin as a signaling molecule in the control of hypoxic depression of metabolism in mice.
Collapse
Affiliation(s)
- Dona F Boggs
- Department of Biology, Eastern Washington University, Cheney, WA 99004-2431, USA.
| | | |
Collapse
|
8
|
Laferrière A, Colin-Durand J, Moss IR. Ontogeny of respiratory sensitivity and tolerance to the mu-opioid agonist fentanyl in rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:210-7. [PMID: 16099308 DOI: 10.1016/j.devbrainres.2005.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/01/2005] [Accepted: 03/03/2005] [Indexed: 11/18/2022]
Abstract
Whereas developmental changes in analgesic sensitivity and tolerance to the mu-opioid agonist fentanyl have been reported, knowledge of respiratory responses to that drug is lacking. Using 7- and 14-day-old (P7, P14) and adult conscious rats, we first established, using whole body plethysmography, the fentanyl dose that decreased minute ventilation by 50% (ED50) at each age. ED50 increased with postnatal age (40, 60 and 120 microg/kg sc, respectively), indicating a high sensitivity to fentanyl in the youngest rats that decreased with maturation. In separate rat groups of the 3 ages, we injected each ED50 dose, once a day, for several consecutive days, until tolerance was established. Tolerance was defined as a reduction in respiratory depression from 50% to 75% of baseline. All age groups reached tolerance in minute ventilation, respiratory frequency, tidal volume and instantaneous flow (equivalent to respiratory drive). The P14 rat pups attained tolerance more rapidly (at 2.6 days) than did either the younger (5.1 days) or the adult rats (4.4 days). These results indicate that respiratory sensitivity and tolerance to fentanyl in rat vary in a distinct manner during maturation.
Collapse
Affiliation(s)
- Andrè Laferrière
- Developmental Respiratory Laboratory, Montreal Children's Hospital Research Institute, Montreal, QC, Canada H3H 1P3
| | | | | |
Collapse
|
9
|
Tanaka S, Matsunaga H, Kimura M, Tatsumi KI, Hidaka Y, Takano T, Uema T, Takeda M, Amino N. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol 2003; 141:155-64. [PMID: 12965267 DOI: 10.1016/s0165-5728(03)00252-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a hypothesis that autoimmune abnormalities in neurotransmitter receptors might cause some psychiatric disorders. Using a sensitive radioligand assay, we detected serum autoantibodies to recombinant human muscarinic cholinergic receptor 1 (CHRM1, 34.4%), mu-opioid receptor (OPRM1, 13.1%), 5-hydroxytryptamine receptor 1A (HTR1A, 7.4%), and dopamine receptor D2 (DRD2, 4.9%) in 122 psychiatric patients. Positive antibodies to CHRM1 were found in 34.1%, 34.9%, 33.3%, and 9.1% of patients with schizophrenic disorders (n=44), mood disorders (n=63), other psychiatric disorders (n=15) and autoimmune diseases (n=33), respectively. All three patients with neuroleptic maliganant syndrome had high activities of autoantibodies to CHRM1, OPRM1, and/or HTR1A. Our data suggest that autoimmunity to neurotransmitter receptors might be associated with the induction of psychiatric symptoms and have some relation to neuroleptic malignant syndrome.
Collapse
Affiliation(s)
- Susumu Tanaka
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine (D2), Yamada-oka 2-2, Osaka 565-0871, Suita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
11
|
Colman AS, Miller JH. Lack of involvement of mu(1) opioid receptors in dermorphin-induced inhibition of hypoxic and hypercapnic ventilation in rat pups. Respir Physiol Neurobiol 2002; 131:199-212. [PMID: 12126921 DOI: 10.1016/s1569-9048(02)00030-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of dermorphin, a mu-selective opioid agonist, on respiratory responses to altered O(2) and CO(2) during postnatal development were investigated in conscious, unrestrained Wistar rats aged 2-21 days. Respiration was recorded by barometric plethysmography. Dermorphin (4 mg kg(-1)) was administered subcutaneously, and the ventilatory responses to hypoxia (11% O(2), 89% N(2)) in 2-21-day-old pups and hyperoxia (100% O(2)), and hypercapnia (8% CO(2), 92% O(2)) in 2-13-day-old pups were assessed in the presence and absence of the mu(1) receptor antagonist naloxonazine (10 mg kg(-1) s.c.) administered 1 day before testing. Six minutes of hypoxia increased ventilation in all age groups, largely via an increase in frequency. Dermorphin inhibited the ventilatory response to hypoxia, and this inhibition was insensitive to naloxonazine. After 5 min of hyperoxia, ventilation was the same as with air breathing except in the presence of dermorphin, when hyperoxic ventilation was depressed by a naloxonazine-insensitive decrease in frequency. Following this 5 min 100% O(2) exposure, pups were exposed to hypercapnia, and respiratory parameters were measured 5 min later. The ventilatory response to CO(2) was inhibited by dermorphin in a naloxonazine-insensitive manner. There was no evidence for endogenous mu(1) receptor modulation of the ventilatory responses to altered gases in rat pups of any age. Thus, mu opioid-induced inhibition of the hypoxic and hypercapnic responses in young rats does not occur via activation of mu(1) opioid receptors.
Collapse
Affiliation(s)
- Atalie S Colman
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | | |
Collapse
|