1
|
Giaretta E, Mongillo P, Da Dalt L, Gianesella M, Bortoletti M, Degano L, Vicario D, Gabai G. Temperature and humidity index (THI) affects salivary cortisol (HC) and dehydroepiandrosterone (DHEA) concentrations in growing bulls following stress generated by performance test procedures. Front Vet Sci 2023; 10:1237634. [PMID: 37559888 PMCID: PMC10407106 DOI: 10.3389/fvets.2023.1237634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
The hypothalamus-pituitary-adrenal axis response to a challenge was proposed for genetic selection of robust and resilient animals. As ACTH (adrenocorticotropic hormone) test and hormone measurements in blood may result impractical, it may be useful to measure salivary hormones in response to natural stressors, after an accurate biological validation, to control factors that could contribute to the response. We evaluated whether animal handling during performance test affects salivary HC and DHEA secretion and could be used for selection. We tested the effects of habituation to repeated handling and THI as putative bias. Bull calves (N = 273) undergoing performance test were sampled at 8-9 and 11-13 months (N = 101), 8-9 months (N = 131), or 11-13 months (N = 41). On each test day (D0), calves were isolated, conducted to a squeeze chute and immobilized for 6 min. Saliva samples were collected in the morning after feed administration (T0), and after 6 min immobilization in the squeeze chute (T1) for HC and DHEA measurement. Environmental temperature and relative humidity were recorded every hour from 1:00 h to 24:00 h during the 6 days before the performance test and on D0. Salivary HC and DHEA concentrations were higher in T1 (p < 0.01), although a clear individual positive response to handling could be observed in less than 10% of subjects. The mixed model revealed: (i) HC and HC/DHEA were higher in Young bulls (p < 0.05). (ii) The time of T0 sample collection significantly affected DHEA (p < 0.01) and HC/DHEA (p < 0.05). (iii) THI affected both steroids (p < 0.001) but not HC/DHEA. Spearman correlations suggested that THI weakly affected salivary HC at T0 only (ρ = 0.150, p < 0.01), while moderate statistically significant correlations were found between DHEA and THI at T0 (ρ = 0.316, p < 0.001), and T1 (ρ = 0.353, p < 0.001). Salivary HC and DHEA in response to handling procedures might identify subpopulations of subjects with sensitive HPA axis. Habituation to repeated handling played a role, as the hormone response was lower in older animals. Chronic exposure to high THI had a minor effect on salivary HC visible at T0. A more intense THI effect was observed on salivary DHEA concentrations at both T0 and T1, which should be worth of further investigations.
Collapse
Affiliation(s)
- Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Paolo Mongillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Bovini di Razza Pezzata Rossa Italiana (A.N.A.P.R.I.), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Bovini di Razza Pezzata Rossa Italiana (A.N.A.P.R.I.), Udine, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
2
|
Asker M, Krieger JP, Liles A, Tinsley IC, Borner T, Maric I, Doebley S, Furst CD, Börchers S, Longo F, Bhat YR, De Jonghe BC, Hayes MR, Doyle RP, Skibicka KP. Peripherally restricted oxytocin is sufficient to reduce food intake and motivation, while CNS entry is required for locomotor and taste avoidance effects. Diabetes Obes Metab 2023; 25:856-877. [PMID: 36495318 PMCID: PMC9987651 DOI: 10.1111/dom.14937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Oxytocin (OT) has a well-established role in reproductive behaviours; however, it recently emerged as an important regulator of energy homeostasis. In addition to central nervous system (CNS), OT is found in the plasma and OT receptors (OT-R) are found in peripheral tissues relevant to energy balance regulation. Here, we aim to determine whether peripheral OT-R activation is sufficient to alter energy intake and expenditure. METHODS AND RESULTS We first show that systemic OT potently reduced food intake and food-motivated behaviour for a high-fat reward in male and female rats. As it is plausible that peripherally, intraperitoneally (IP) injected OT crosses the blood-brain barrier (BBB) to produce some of the metabolic effects within the CNS, we screened, with a novel fluorescently labelled-OT (fAF546-OT, Roxy), for the presence of IP-injected Roxy in CNS tissue relevant to feeding control and compared such with BBB-impermeable fluorescent OT-B12 (fCy5-OT-B12; BRoxy). While Roxy did penetrate the CNS, BRoxy did not. To evaluate the behavioural and thermoregulatory impact of exclusive activation of peripheral OT-R, we generated a novel BBB-impermeable OT (OT-B12 ), with equipotent binding at OT-R in vitro. In vivo, IP-injected OT and OT-B12 were equipotent at food intake suppression in rats of both sexes, suggesting that peripheral OT acts on peripheral OT-R to reduce feeding behaviour. Importantly, OT induced a potent conditioned taste avoidance, indistinguishable from that induced by LiCl, when applied peripherally. Remarkably, and in contrast to OT, OT-B12 did not induce any conditioned taste avoidance. Limiting the CNS entry of OT also resulted in a dose-dependent reduction of emesis in male shrews. While both OT and OT-B12 proved to have similar effects on body temperature, only OT resulted in home-cage locomotor depression. CONCLUSIONS Together our data indicate that limiting systemic OT CNS penetrance preserves the anorexic effects of the peptide and reduces the clinically undesired side effects of OT: emesis, taste avoidance and locomotor depression. Thus, therapeutic targeting of peripheral OT-R may be a viable strategy to achieve appetite suppression with better patient outcomes.
Collapse
Affiliation(s)
- Mohammed Asker
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for molecular and translational medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Amber Liles
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sarah Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
| | - C Daniel Furst
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
| | - Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for molecular and translational medicine, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Longo
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yashaswini R Bhat
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for molecular and translational medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Stevens S, Mohan S. Opioid withdrawal behavior in spiny mice: A novel preclinical model of neonatal opioid withdrawal syndrome (NOWS). Heliyon 2021; 7:e06694. [PMID: 33898824 PMCID: PMC8056230 DOI: 10.1016/j.heliyon.2021.e06694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
As the opioid epidemic continues to grow, opioid use among pregnant women is increasing significantly. This has led to a steady rise in the number of infants born with neonatal opioid withdrawal syndrome (NOWS). Although short-term withdrawal symptoms associated with NOWS are well characterized, there are many gaps in our understanding of the short and long-term effects of prenatal opioid exposure. Current animal models of NOWS are limited by shortened gestational periods, large litter sizes, and primary organogenesis occurring after birth. This often leads to postnatal treatment to mimic drug exposure during third-trimester development. Using the unique rodent species Acomys cahirinus, more commonly known as spiny mice, which have an extended 40-day gestation period, small litter sizes, and increased in utero organogenesis we aim to study the short-term effects of prenatal morphine exposure by assessing withdrawal behavior. To model maternal opioid use, dams were treated daily with morphine (10 and 30 mg/kg S.C.) beginning on gestation day 19 until the day of birth; this resulted in a cumulative exposure of 19-21 days. Withdrawal behaviors for each pup were recorded daily between postnatal days 0-7 (PND 0-7). Our study found that prenatal morphine exposure in spiny mice led to an increase in withdrawal behavior throughout the early postnatal period and validated the use of this species as a novel pre-clinical model of NOWS. We are hopeful this rodent model will further our understanding of the short and long-term consequences of prenatal opioid exposure on neurodevelopment and behavior.
Collapse
Affiliation(s)
- Sarah Stevens
- Department of Pharmaceutical Science and Research, Marshall University, School of Pharmacy, Huntington, WV 25701, USA
| | - Shekher Mohan
- Department of Pharmaceutical Sciences, Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA.,Department of Integrative Physiology and Pharmacology, Liberty University, College of Osteopathic Medicine, Lynchburg, VA 24502, USA
| |
Collapse
|
4
|
Frau R, Bortolato M. Repurposing steroidogenesis inhibitors for the therapy of neuropsychiatric disorders: Promises and caveats. Neuropharmacology 2018; 147:55-65. [PMID: 29907425 DOI: 10.1016/j.neuropharm.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
Abstract
Steroids exert a profound influence on behavioral reactivity, by modulating the functions of most neurotransmitters and shaping the impact of stress and sex-related variables on neural processes. This background - as well as the observation that most neuroactive steroids (including sex hormones, glucocorticoids and neurosteroids) are synthetized and metabolized by overlapping enzymatic machineries - points to steroidogenic pathways as a powerful source of targets for neuropsychiatric disorders. Inhibitors of steroidogenic enzymes have been developed and approved for a broad range of genitourinary and endocrine dysfunctions, opening to new opportunities to repurpose these drugs for the treatment of mental problems. In line with this idea, preliminary clinical and preclinical results from our group have shown that inhibitors of key steroidogenic enzymes, such as 5α-reductase and 17,20 desmolase-lyase, may have therapeutic efficacy in specific behavioral disorders associated with dopaminergic hyperfunction. While the lack of specificity of these effects raises potential concerns about endocrine adverse events, these initial findings suggest that steroidogenesis modulators with greater brain specificity may hold significant potential for the development of alternative therapies for psychiatric problems. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato CA, Italy; Tourette Syndrome Center, University of Cagliari, Monserrato CA, Italy; Sleep Medicine Center, University of Cagliari, Monserrato CA, Italy; National Institute of Neuroscience (INN), University of Cagliari, Monserrato CA, Italy.
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
van Nieuwenhuijzen PS, McGregor IS. Sedative and hypothermic effects of gamma-hydroxybutyrate (GHB) in rats alone and in combination with other drugs: assessment using biotelemetry. Drug Alcohol Depend 2009; 103:137-47. [PMID: 19446408 DOI: 10.1016/j.drugalcdep.2009.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/22/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
The recreational drug gamma-hydroxybutyrate (GHB) has euphoric effects and can induce sedation and body temperature changes. GHB is frequently combined with other recreational drugs although these interactions are not well characterised. The present study used biotelemetry to provide a fine-grained analysis of the effects of GHB on body temperature and locomotor activity in freely moving rats, and investigated interactions between GHB and 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH) and various antagonist drugs. GHB (1000mg/kg) caused profound sedation for more than 2h and a complex triphasic effect on body temperature: an initial hypothermia (5-40min), followed by hyperthermia (40-140min), followed again by hypothermia (140-360min). A lower GHB dose (500mg/kg) also caused sedation but only a hypothermic effect that lasted up to 6h. The dopamine D(1) receptor antagonist SCH 23390 (1mg/kg), the opioid antagonist naltrexone (1mg/kg), the benzodiazepine antagonist flumazenil (10mg/kg), and the 5-HT(2A/2C) receptor antagonist ritanserin (1mg/kg) did not prevent the overall sedative or body temperature effects of GHB (1000mg/kg). However the GABA(B) antagonist SCH 50911 (50mg/kg) prevented the hyperthermia induced by GHB (1000mg/kg). Repeated daily administration of GHB (1000mg/kg) produced tolerance to the sedative and hyperthermic effects of the drug and cross-tolerance to the sedative effects of the GABA(B) receptor agonist baclofen (10mg/kg). A high ambient temperature of 28 degrees C prevented the hypothermia obtained with GHB (500mg/kg) at 20 degrees C, while GHB (500mg/kg) reduced the hyperthermia and hyperactivity produced by co-administered doses of MDMA (5mg/kg) or METH (1mg/kg) at 28 degrees C. These results further confirm a role for GABA(B) receptors in the hypothermic and sedative effects of GHB and show an interaction between GHB and MDMA, and GHB and METH, that may be relevant to the experience of recreational users who mix these drugs.
Collapse
|
6
|
Shiloh R, Weizman A, Stryjer R, Kahan N, Waitman DA. Altered thermoregulation in ambulatory schizophrenia patients: a naturalistic study. World J Biol Psychiatry 2009; 10:163-70. [PMID: 19514098 DOI: 10.1080/15622970701413833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Schizophrenia patients may exhibit alterations in core/body temperature. Hence, we intended to examine the potential existence of thermoregulatory abnormalities in ambulatory schizophrenia patients. METHODS Anonymous electronic patient record data of the Leumit Health Fund (Israel) were screened for all schizophrenia patients who have no other apparent chronic co-morbidity (mental or non-mental) and had their oral temperature assessed during routine follow-ups (Schiz-rFUs) or for various transitory infectious/inflammatory processes (Schiz-Infect) during the years 1999-2005 (n = 535). The comparison group consisted of a comparable sample (n = 560) of healthy subjects (Control-rFUs and Control-Infect). RESULTS The sub-group of Schiz-rFUs (n = 216) exhibited significantly lower mean oral temperature compared to the matched group of Control-rFUs (n = 140) (36.72 +/- 0.54 vs. 36.94 +/- 0.64C, respectively; P<0.05). There was no significant difference in mean oral temperatures between the Schiz-Infect (n = 319) and the Control-Infect (n = 420) (37.32 +/- 0.92 vs. 37.28 +/- 0.98C, respectively; NS). CONCLUSIONS Ambulatory schizophrenia patients without a concomitant infectious/inflammatory process exhibit altered thermoregulation manifested by a substantial (about 0.2 C) and significantly lower oral temperature compared to healthy comparison subjects as well as a potential exaggerated increase in oral temperature during transitory infectious/inflammatory processes. The relevance of these phenomena to the pathophysiology of schizophrenia as well as the potential immune-mediated pathologies in schizophrenia merit further investigation.
Collapse
Affiliation(s)
- Roni Shiloh
- Geha Mental Health Center, Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, Petach-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
7
|
Hindbrain cocaine- and amphetamine-regulated transcript induces hypothermia mediated by GLP-1 receptors. J Neurosci 2009; 29:6973-81. [PMID: 19474324 DOI: 10.1523/jneurosci.6144-08.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are widely distributed throughout the neuraxis, including regions associated with energy balance. CART's classification as a catabolic neuropeptide is based on its inhibitory effects on feeding, coexpression with arcuate nucleus proopiomelanocortin neurons, and on limited analysis of its energy expenditure effects. Here, we investigate whether (1) caudal brainstem delivery of CART produces energetic, cardiovascular, and glycemic effects, (2) forebrain-caudal brainstem neural communication is required for those effects, and (3) glucagon-like peptide-1 receptors (GLP-1Rs) contribute to the mediation of CART-induced effects. Core temperature (Tc), heart rate (HR), activity, and blood glucose were measured in rats injected fourth intracerebroventricularly with CART (0.1, 1.0, and 2.0 microg). Food was withheld during physiologic recording and returned for overnight measurement of intake and body weight. CART induced a long-lasting (>6 h) hypothermia: a 1.5 degrees C and 1.6 degrees C drop in Tc for the 1.0 and 2.0 microg doses. Hindbrain CART application reduced food intake and body weight and increased blood glucose levels; no change in HR or activity was observed. Supracollicular decerebration eliminated the hypothermic response observed in intact rats to hindbrain ventricular CART, suggesting that forebrain processing is required for hypothermia. Pretreatment with the GLP-1R antagonist (exendin-9-39) in control rats attenuated CART hypothermia and hypophagia, indicating that GLP-1R activation contributes to hypothermic and hypophagic effects of hindbrain CART, whereas CART-induced hyperglycemia was not altered by GLP-1R blockade. Data reveal a novel function of CART in temperature regulation and open possibilities for future studies on the clinical potential of the hypothermic effect.
Collapse
|
8
|
Wood RI. Anabolic-androgenic steroid dependence? Insights from animals and humans. Front Neuroendocrinol 2008; 29:490-506. [PMID: 18275992 PMCID: PMC2585375 DOI: 10.1016/j.yfrne.2007.12.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 12/21/2007] [Accepted: 12/25/2007] [Indexed: 11/21/2022]
Abstract
Anabolic-androgenic steroids (AAS) are drugs of abuse. They are taken in large quantities by athletes and others to increase performance, with negative health consequences. As a result, in 1991 testosterone and related AAS were declared controlled substances. However, the relative abuse and dependence liability of AAS have not been fully characterized. In humans, it is difficult to separate the direct psychoactive effects of AAS from reinforcement due to their systemic anabolic effects. However, using conditioned place preference and self-administration, studies in animals have demonstrated that AAS are reinforcing in a context where athletic performance is irrelevant. Furthermore, AAS share brain sites of action and neurotransmitter systems in common with other drugs of abuse. In particular, recent evidence links AAS with opioids. In humans, AAS abuse is associated with prescription opioid use. In animals, AAS overdose produces symptoms resembling opioid overdose, and AAS modify the activity of the endogenous opioid system.
Collapse
Affiliation(s)
- Ruth I Wood
- Department of Cell & Neurobiology, Keck School of Medicine of the University of Southern California, 1333 San Pablo Street, BMT 401, Los Angeles, CA 90033, USA.
| |
Collapse
|
9
|
Pérez-Neri I, Méndez-Sánchez I, Montes S, Ríos C. Acute dehydroepiandrosterone treatment exerts different effects on dopamine and serotonin turnover ratios in the rat corpus striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1584-9. [PMID: 18585426 DOI: 10.1016/j.pnpbp.2008.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 01/12/2023]
Abstract
It has been shown that the steroid dehydroepiandrosterone (DHEA) interacts with dopamine (DA) and serotonin (5-HT) neurotransmitter systems, which are involved in the pathophysiology of neurological and psychiatric diseases such as Parkinson's disease as well as mood and psychotic disorders. To explore if DHEA modulates DA and 5-HT metabolism we analyzed the content of both neurotransmitters and their metabolites in the rat corpus striatum (CS) and nucleus accumbens (NAc) 2 h after steroid administration (30, 60 and 120 mg/kg i.p.). DHEA treatment significantly reduced DA turnover (up to 33%) in the CS, but increased 5-HT turnover (up to 76%) in both regions. Those effects could be relevant to mood and neurodegenerative disorders.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City 14269, Mexico
| | | | | | | |
Collapse
|
10
|
Pérez-Neri I, Montes S, Ojeda-López C, Ramírez-Bermúdez J, Ríos C. Modulation of neurotransmitter systems by dehydroepiandrosterone and dehydroepiandrosterone sulfate: mechanism of action and relevance to psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1118-30. [PMID: 18280022 DOI: 10.1016/j.pnpbp.2007.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 11/27/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
Abstract
Dehydroepiandrosterone (DHEA) is synthesized in the brain and several studies have shown that this steroid is a modulator of synaptic transmission. The effect of DHEA, and its sulfate ester DHEAS, on glutamate and GABA neurotransmission has been extensively studied but some effects on other neurotransmitter systems, such as dopamine, serotonin and nitric oxide, have also been reported. This review summarizes studies showing the effect of DHEA and DHEAS on neurotransmitter systems at different levels (metabolism, release, reuptake, receptor activation), as well as the activation of voltage-gated ion channels and calcium homeostasis, showing the variety of effects that these steroids exert on those systems, allowing the discussion of its mechanisms of action and its relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry from the National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City 14269, Mexico
| | | | | | | | | |
Collapse
|
11
|
Abstract
Dehydroepiandrosterone (DHEA), produced from cholesterol in the adrenals, is the most abundant steroid in our circulation. It is present almost entirely as the sulfate ester, but the free steroid is the form that serves as a precursor of estrogens and androgens, as well as 7- and 16-oxygenated derivatives. Mammalian tissues reduce the 17-keto Group of DHEA to produce androstenediol-a weak estrogen and full-fledged androgen. Its androgen activity is not inhibited by the anti-androgens commonly used to treat prostate cancer. It is probably responsible for the growth of therapy-resistant prostate cancer. DHEA is hydroxylated at the 7 alpha position, and this derivative is oxidized by 11 beta-hydroxysteroid dehydrogenase to form 7-keto DHEA. The latter is reduced by the same dehydrogenase to form 7 beta-hydroxy DHEA. When fed to rats, each of the latter three steroids induce the formation of two thermogenic enzymes in the liver. The late-term human fetus produces relatively large amounts of 16 alphahydroxy DHEA, which serves the mother as a precursor of estriol.
Collapse
Affiliation(s)
- Henry Lardy
- Institute for Enzyme Research, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
12
|
Catalina F, Milewich L, Kumar V, Bennett M. Dietary dehydroepiandrosterone inhibits bone marrow and leukemia cell transplants: role of food restriction. Exp Biol Med (Maywood) 2004; 228:1303-20. [PMID: 14681546 DOI: 10.1177/153537020322801109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dietary dehydroepiandrosterone (DHEA) inhibits the proliferation of syngeneic bone marrow cells (BMC) infused into lethally irradiated mice. Potential mechanisms for suppression of hematopoiesis were evaluated and the findings were as follows: (i) depletion of NK, T, B or macrophage cells failed to reverse suppression by DHEA; (ii) stem cell stimulation by erythropoietin, growth hormone, interleukin-2, Friend leukemia virus, or cyclophosphamide failed to reverse suppression; (iii) supplementation of fatty acids, mevalonate, or deoxyribonucleotides, which are dependent upon glucose-6-phosphate dehydrogenase function, did not enhance BMC growth in mice fed DHEA; (iv) DHEA downstream metabolites 4-androstenedione and 17beta-estradiol, as well as the synthetic steroid, 16alpha-chloroepiandrosterone (but not testosterone or 5-androstene-3beta,17beta-diol), also inhibited BMC growth. Tamoxifen antagonized the effects of 17beta-estradiol but not DHEA; (v) dietary DHEA causes hypothermia, but housing of DHEA-fed mice at 34 degrees C to maintain normal body temperature did not reverse suppression; (vi) DHEA leads to a decrease in food intake in rodents. Pair-feeding control diet to mice fed DHEA mimicked the effects of dietary DHEA; (vii) adrenalectomy and orchiectomy decrease the levels of stress and sex hormones, respectively. Neither procedure affected the ability of food restriction or DHEA feeding to inhibit hematopoiesis; (viii) growth of GR-3 NM pre-B leukemia cells in unirradiated mice was also suppressed by DHEA or food restriction. We conclude that DHEA, by reducing food intake in mice, inhibits bone marrow and leukemia cell growth. The precise mechanism(s) by which reduced food intake per se inhibits hematopoiesis is not known, but may involve an increased rate of cellular apoptosis.
Collapse
Affiliation(s)
- Fernando Catalina
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | |
Collapse
|