1
|
Singh P, Mohanty B. Neurotensin receptor agonist PD149163 modulates LPS-induced enterocyte apoptosis by downregulating TNFR pathway and executioner caspase 3 in endotoxemic mice: insights from in vivo and in silico study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03794-9. [PMID: 39812770 DOI: 10.1007/s00210-025-03794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.5 g) were divided into six groups: control; LPS, LPS + PD149163L, and LPS + PD149163H groups were treated with LPS (0.2 μmol/L/kgBW; 5 days), followed by exposure of PD149163 to LPS + PD149163L (10.6 μmol/L/kgBW), and LPS + PD149163H (21.2 μmol/L/kgBW) for 28 days. OnlyPD149163L (10.6 μmol/L/kgBW) and onlyPD149163H (21.2 μmol/L/kgBW) groups were maintained for 28 days. Both the LPS and PD149163 were given intraperitoneally. PD149163 treatment for 4 weeks alleviated the LPS-induced enterocyte apoptosis in a dose-dependent manner. LPS-induced excessive levels of caspase-3, tumour necrosis factor-α, and leptin (biomarkers of LPS-induced apoptosis) in plasma were decreased by PD149163H treatment. Moreover, LPS-induced gut oxidative stress was ameliorated by PD149163H supplementation, as evidenced by the decreased content of malondialdehyde, lipid-hydroperoxide and increased level of superoxide-dismutase, catalase. Furthermore, PD149163H mediated elevation of the plasma anti-apoptotic protein (B-cell leukaemia/lymphoma-2) along with the NTS level contributed to the modulation of LPS-induced enterocyte apoptosis, reflected in histopathology. In vivo results were substantiated with in silico molecular docking analysis that predicted the binding of PD149163-TLR4 complex, suggesting that PD149163 can act as a TLR4 modulator and inhibit the activation of TLR4. The role of PD149163 in ameliorating GIT apoptosis by its anti-apoptotic and antioxidative effects is suggested. Further research may provide significant insights into the therapeutic intervention of PD149163 in apoptosis-related diseases of GIT.
Collapse
Affiliation(s)
- Priya Singh
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
2
|
Ito J, Uchida H, Yokote T, Ohtake K, Kobayashi J. Fasting-induced intestinal apoptosis is mediated by inducible nitric oxide synthase and interferon-{gamma} in rat. Am J Physiol Gastrointest Liver Physiol 2010; 298:G916-26. [PMID: 20378828 DOI: 10.1152/ajpgi.00429.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is associated with intestinal apoptosis in health and disease. This study aimed to investigate the role of intestinal NO in the regulation of apoptosis during fasting in rats. Male Wistar rats were divided into two groups and subcutaneously injected with saline (SA) or aminoguanidine (AG), followed by fasting for 24, 48, 60, and 72 h. At each time point, the jejunum was subjected to histological evaluation for enterocyte apoptosis by histomorphometric assessment and TUNEL analysis. We performed immunohistochemistry for inducible NO synthase (iNOS) expression in the jejunum and measured tissue nitrite levels using HPLC and 8-hydroxydeoxyguanosine adduct using ELISA, indicative of endogenous NO production and reactive oxygen species (ROS) production, respectively. Jejunal transcriptional levels of iNOS, neuronal NO synthase (nNOS), and interferon-gamma (IFN-gamma) were also determined by RT-PCR. Fasting caused significant jejunal mucosal atrophy due to attenuated cell proliferation and enhanced apoptosis with increase in iNOS transcription, its protein expression in intestinal epithelial cells (IEC), and jejunal nitrite levels. However, AG treatment histologically reduced apoptosis with inhibition of fasting-induced iNOS transcription, protein expression, and nitrite production. We also observed fasting-induced ROS production and subsequent IFN-gamma transcription, which were all inhibited by AG treatment. Furthermore, we observed reduced transcriptional levels of nNOS, known to suppress iNOS activation physiologically. These results suggest that fasting-induced iNOS activation in IEC may induce apoptosis mediators such as IFN-gamma via a ROS-mediated mechanism and also a possible role of nNOS in the regulation of iNOS activity in fasting-induced apoptosis.
Collapse
Affiliation(s)
- Junta Ito
- Josai Univ., 1-1 Keyaki-Dai, Sakado, Saitama, Japan 350-0295.
| | | | | | | | | |
Collapse
|
3
|
Park JM, Kakimoto T, Kuroki T, Shiraishi R, Fujise T, Iwakiri R, Fujimoto K. Suppression of intestinal mucosal apoptosis by ghrelin in fasting rats. Exp Biol Med (Maywood) 2008; 233:48-56. [PMID: 18156305 DOI: 10.3181/0706-rm-169] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ghrelin is mainly produced in the stomach and has several physiologic functions. The aim of this study was to investigate whether ghrelin regulates apoptosis in the small intestinal mucosa of fasting rats. Intestinal mucosal apoptosis was evaluated as the percentage of fragmented DNA, villus height, and terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end-labeling (TUNEL) staining and by Western blot analysis of caspase-3 in 48-hr fasting rats. Crypt cell proliferation was evaluated by counting the number of 5-bromo-2-deoxyuridine (BrdU) positive cells. Ghrelin was administered intraperitoneally at dosages of 2.5, 25, and 250 microg/kg per 48 hrs by continuous infusion via an Alzet micro-osmotic pump or injections at 12-hr intervals. Ghrelin was also infused in rats that underwent truncal vagotomy. The lowest dosage of ghrelin (2.5 microg/kg per 48 hrs) was administered into the third cerebroventricle. Ghrelin treatment attenuated the percentage of fragmented DNA in the small intestinal mucosa in 48-hr fasting rats in a dose-dependent manner. Continuous infusion of ghrelin and injections of ghrelin at 12-hr intervals suppressed intestinal apoptosis almost equally. This effect on apoptosis was not attenuated by truncal vagotomy. Cerebroventricular infusion of ghrelin also attenuated intestinal apoptosis. The antiapoptotic effect of ghrelin was confirmed by decreased TUNEL staining, recovery of the villus height, and decreased expression of caspase-3. BrdU uptake indicated that ghrelin enhanced cell proliferation in the intestinal crypt. Taken together, these data indicate that ghrelin enhanced intestinal growth with the suppression of small intestinal mucosal apoptosis in 48-hr fasting rats, suggesting that ghrelin controls intestinal function through the regulation of intestinal apoptosis.
Collapse
Affiliation(s)
- Jae Myung Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Indigestible Material Attenuated Changes in Apoptosis in the Fasted Rat Jejunal Mucosa. Exp Biol Med (Maywood) 2008; 233:310-6. [DOI: 10.3181/0708-rm-228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that fasting induced apoptosis and decreased cell proliferation in the rat intestinal mucosa. The aim was to investigate the effect of expanded polystyrene as indigestible material on apoptosis and cell proliferation in rat small intestinal mucosa during fasting. Male SD rats were divided into 3 groups. The first group was fed with chow and water ad libitum. The second group fasted for 72 hrs. The third group was fasted for 24 hrs and was fed expanded polystyrene. Intestinal apoptosis was evaluated by percent fragmented DNA assay, terminal deoxynucleotidyl transferase–mediated dUDP-biotin nick end-labeling (TUNEL) staining, and caspase-3 assay. Cell proliferation was analyzed by 5-bromo-2′-deoxyuridine (5-BrdU) uptake. Truncal vagotomy was performed to evaluate a role of the central nervous system. In the 72-hr fasted rat, mucosal height of the rat jejunum was decreased to 73% of that in rats fed ad libitum, and this decrease was partly restored to 90% in rats fed expanded polystyrene. The fragmented DNA was increased in fasted rats (28.0%) when compared with that in rats fed ad libitum (2.6%). The increase in fragmented DNA in fasted rats was recovered by feeding them expanded polystyrene (8.3%). TUNEL staining confirmed this result. The effect of polystyrene on apoptosis was decreased by truncal vagotomy. Expression of cleaved caspase-3 was increased in fasted rats, which was then decreased by feeding of expanded polystyrene. In contrast to apoptosis, feeding of expanded polystyrene had no reconstructive effect on 5-BrdU uptake in the intestinal epithelium, which was decreased by fasting to 60% of that in rats fed ad libitum. In conclusion, feeding of indigestible material partly restored the decrease in intestinal mucosal length in the fasted rats through the apoptotic pathway without any influence on BrdU uptake. Further exploration focused on the mechanism of this effect of indigestible material is required.
Collapse
|
5
|
Pacheco D, de Luis DA, Romero A, González Sagrado M, Conde R, Izaola O, Aller R, Delgado A. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats. Am J Surg 2007; 194:221-4. [PMID: 17618808 DOI: 10.1016/j.amjsurg.2006.11.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/03/2007] [Accepted: 11/03/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND The antidiabetic effect of bariatric surgery has been interpreted as a conceivable result of surgically induced weight loss and decreased caloric intake. However, glycemic control often occurs within days, before significant weight loss has been reached. The aim of our work was to investigate the hormones that control glycemic status in diabetes mellitus after a duodenal-jejunal exclusion in an animal model of nonobese type 2 diabetes. METHODS Twelve (12- to 14-week-old) rats (Goto-Kakizaki) randomly underwent one of the following procedures: gastrojejunal bypass (group 1, n = 6) or no intervention (controls) (group 2, n = 6). Both groups were fed with the same type and amount of diet. At basal time (preoperative) and after intervention (1 week and 1 month), weight and fasting glycemia were measured. An oral glucose tolerance test (OGTT) was realized at same times. Hormone levels (insulin, glucagons-like peptide 1 [GLP-1], glucose-dependent insulinotropic peptide [GIP], glucagon, and leptin) were measured after 20 minutes of oral glucose overload. Age-matched Goto-Kakizaki rats were used as controls for all variables. RESULTS Rats in group 1 and group 2 remained with the same weight during the protocol. The OGTT showed an improvement in glycemic levels in group 1; glucose levels were better at 1 week and 1 month after the surgery in all times of OGTT (basal, 10 minutes, and 120 minutes). Basal glucose levels at time 0 in basal time, at 1 week, and at 1 month were lower in group 1 than group 2. Postoral glucose overload levels of glucagon, insulin, GLP-1, and GIP remained unchanged during the treatment in both groups. In group 1, leptin levels had a significant decrease at 1 week and 1 month after surgery (basal time (6.1 +/- 1.6 ng/mL) versus 1 week (0.9 +/- 0.9 ng/mL) versus 1 month (0.7 +/- 0.6 ng/mL) (P < .05). CONCLUSION Gastrojejunal bypass in a nonobese diabetic model improves glycemic control with a significant decrease in leptin levels, without changes in enteroinsular axis (GLP-1, GIP, glucagons, and insulin levels).
Collapse
Affiliation(s)
- David Pacheco
- Unit of Investigation, Hospital Rio Hortega, University of Valladolid, C/Los perales 16, Simancas 47310, Valladolid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, Shiraishi R, Sakata Y, Tsunada S, Iwakiri R, Fujimoto K. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol 2007; 292:G923-9. [PMID: 17170030 DOI: 10.1152/ajpgi.00145.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity, a risk factor for colon cancer, is associated with elevated serum levels of leptin, a protein produced by adipocytes. The aim of the present study was to clarify the effects of adipose tissue on colon cancer proliferation by using cultured cell lines. To achieve this, colon cancer cells (CACO-2, T84, and HT29) were cocultured with adipose tissue, isolated mature adipocytes, and isolated preadipocytes in a three-dimensional collagen gel culture system. The adipocytes and preadipocytes used were isolated from C57BL/6J and leptin-deficient ob/ob mice. Proliferation of the cancer cells was evaluated by nuclear bromodeoxyuridine uptake. The adipose tissue, mature adipocytes, and preadipocytes isolated from C57BL/6J mice significantly increased the proliferation of the colon cancer cells. This trophic effect of mature adipocytes on the cancer cell lines was observed only for cells from lean littermates and not for those from ob/ob mice. In contrast, the trophic effect of preadipocytes was not abolished in ob/ob mice, and this finding was supported by the result that leptin had a trophic effect on cancer cells. In conclusion, adipocytes were able to enhance the proliferation of colon cancer cells in vitro, partly via leptin, suggesting that adipose tissues, including mature adipocytes and preadipocytes, may promote the growth of colorectal cancer.
Collapse
Affiliation(s)
- Sadahiro Amemori
- Department of Internal Medicine, Saga Medical School, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fujise T, Iwakiri R, Wu B, Amemori S, Kakimoto T, Yokoyama F, Sakata Y, Tsunada S, Fujimoto K. Apoptotic pathway in the rat small intestinal mucosa is different between fasting and ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2006; 291:G110-6. [PMID: 16574989 DOI: 10.1152/ajpgi.00393.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously demonstrated that fasting and ischemia-reperfusion (I/R) induced apoptosis in rat intestinal mucosa. It is widely accepted that apoptosis is induced through two main pathways. This study aimed to compare apoptotic pathways following fasting and I/R. Rats were divided into two groups: the I/R group involved occlusion of the superior mesenteric artery for 60 min, followed by 60-min reperfusion, whereas the fasting group involved fasting for 24 or 48 h. Intestinal apoptosis was assessed as percentage of fragmented DNA, by electrophoresis and by a terminal deoxynucleotidyl transferase mediated dUDP-biotin nick- end labeling (TUNEL) assay. Apoptotic proteins including death ligands/receptors and caspases were evaluated by Western blot analysis. Small intestinal mucosal height and mitochondrial dehydrogenase function were assessed. Fasting and I/R significantly induced intestinal apoptosis. Mucosal height was significantly decreased in fasting rats, and mitochondrial dysfunction was induced only by I/R. Expressions of Fas, Fas ligand, and TNF-alpha type 1 receptor were enhanced in fasting and I/R rats. After I/R, expressions of cytochrome c and cleaved caspase-9 were significantly increased. In contrast, expressions of cleaved caspase-8 and cleaved caspase-3 increased in fasting rats. Fasting promoted mucosal apoptosis via a receptor-mediated type I apoptotic pathway in the rat small intestine, and I/R induced apoptosis via a mitochondria-mediated type II pathway.
Collapse
Affiliation(s)
- Takehiro Fujise
- Department of Intestinal Medicine, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The association of circulating leptin level with peripheral DNA damage in hemodialysis subjects. Clin Biochem 2006; 39:918-22. [PMID: 16824505 DOI: 10.1016/j.clinbiochem.2006.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/20/2006] [Accepted: 05/30/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Hemodialysis subjects have been shown to have both elevated serum leptin and peripheral DNA damage level, and leptin has been suggested to induce apoptotic features. Thus, in the present study, we aimed at finding out if there is any relationship between serum leptin level and peripheral DNA damage in hemodialysis subjects. DESIGN AND METHODS Forty hemodialysis subjects and 21 controls were included in the present study. Serum leptin level and peripheral DNA damage were assayed in all subjects enrolled in the study. Comet assay was used in determining DNA damage in peripheral lymphocyte. RESULTS Both serum leptin level and peripheral DNA damage were significantly higher in hemodialysis subjects than control (P<0.05 and P<0.001, respectively). Female subjects had significantly higher serum leptin level than male subjects in both hemodialysis and control group (both P<0.05). Significant correlation was observed between serum leptin level, and gender and body fat mass in both hemodialysis (P<0.05, beta=-0.637 and P<0.05, beta=0.386, respectively) and control group (P<0.05, beta=-0.569 and P<0.05, beta=-0.460, respectively). In hemodialysis subjects, peripheral DNA damage was significantly correlated with serum leptin level (P<0.05, beta=0.508). CONCLUSION In end-stage renal disease subjects, elevated serum leptin level seems to be associated with peripheral DNA damage and thus, may, in part, have a role in the development of DNA damage associated disorders.
Collapse
|
9
|
Frühbeck G. Intracellular signalling pathways activated by leptin. Biochem J 2006; 393:7-20. [PMID: 16336196 PMCID: PMC1383660 DOI: 10.1042/bj20051578] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 12/15/2022]
Abstract
Leptin is a versatile 16 kDa peptide hormone, with a tertiary structure resembling that of members of the long-chain helical cytokine family. It is mainly produced by adipocytes in proportion to fat size stores, and was originally thought to act only as a satiety factor. However, the ubiquitous distribution of OB-R leptin receptors in almost all tissues underlies the pleiotropism of leptin. OB-Rs belong to the class I cytokine receptor family, which is known to act through JAKs (Janus kinases) and STATs (signal transducers and activators of transcription). The OB-R gene is alternatively spliced to produce at least five isoforms. The full-length isoform, OB-Rb, contains intracellular motifs required for activation of the JAK/STAT signal transduction pathway, and is considered to be the functional receptor. Considerable evidence for systemic effects of leptin on body mass control, reproduction, angiogenesis, immunity, wound healing, bone remodelling and cardiovascular function, as well as on specific metabolic pathways, indicates that leptin operates both directly and indirectly to orchestrate complex pathophysiological processes. Consistent with leptin's pleiotropic role, its participation in and crosstalk with some of the main signalling pathways, including those involving insulin receptor substrates, phosphoinositide 3-kinase, protein kinase B, protein kinase C, extracellular-signal-regulated kinase, mitogen-activated protein kinases, phosphodiesterase, phospholipase C and nitric oxide, has been observed. The impact of leptin on several equally relevant signalling pathways extends also to Rho family GTPases in relation to the actin cytoskeleton, production of reactive oxygen species, stimulation of prostaglandins, binding to diacylglycerol kinase and catecholamine secretion, among others.
Collapse
Key Words
- adipocyte
- cytokine
- janus kinase/signal transducer and activator of transcription pathway (jak/stat pathway)
- leptin receptor
- obesity
- signalling cascade
- acc, acetyl-coa carboxylase
- ampk, 5′-amp-activated protein kinase
- cntf, ciliary neurotrophic factor
- ct-1, cardiotrophin-1
- erk, extracellular-signal-regulated kinase
- hif-1α, hypoxia-inducible factor 1α
- il, interleukin
- irs, insulin receptor substrate
- jak, janus kinase
- jnk, c-jun n-terminal kinase
- lif, leukaemia inhibitory factor
- mapk, mitogen-activated protein kinase
- nf-κb, nuclear factor κb
- npy, neuropeptide y
- osm, oncostatin-m
- pde, phosphodiesterase
- pi3k, phosphoinositide 3-kinase
- pka, protein kinase a
- pkc, protein kinase c
- ptp1b, protein tyrosine phosphatase 1b
- sh2, src-like homology 2
- shp-2, sh2 domain-containing protein tyrosine phosphatase
- socs, suppressor of cytokine signalling
- stat, signal transducer and activator of transcription
- tnfα, tumour necrosis factor α
- tyk2, tyrosine kinase 2
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Gema Frühbeck
- Department of Endocrinology, Clínica Universitaria de Navarra and Metabolic Research Laboratory, University of Navarra, 36 Avda. Pío XII, 31008 Pamplona, Spain.
| |
Collapse
|
10
|
Lin T, Sakata H, Ootani A, Fujise T, Tsunada S, Amemori S, Danjo A, Yokoyama F, Sakata Y, Iwakiri R, Toda S, Fujimoto K. Apoptosis in rat jejunal mucosa is regulated partly through the central nervous system, which controls feeding behavior. J Gastroenterol Hepatol 2005; 20:1285-91. [PMID: 16048579 DOI: 10.1111/j.1440-1746.2005.03921.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
AIM The aim of this study was to investigate whether central nervous system-related feeding behavior regulates mucosal apoptosis in rat small intestines. METHODS The test solutions used in this study were an H(1) receptor antagonist (chlorpheniramine maleate), 2-deoxy-D-glucose, leptin, and 1-deoxy-D-glucosamine (2-amino-1,5-anhydro-2-deoxy-D-glucitol). Test solutions were injected into the third cerebroventricles of rats. Feeding behavior and jejunal apoptosis were evaluated both with and without truncal vagotomy. Intestinal apoptosis was evaluated by percentage fragmented DNA, electrophoresis, and TUNEL staining. RESULTS Chlorpheniramine and 2-deoxy-D-glucose elicited feeding, whereas leptin and 1-deoxy-D-glucosamine suppressed feeding. The test solutions, which elicited feeding (0.24 and 24 micromol/rat of chlorpheniramine and 2-deoxy-D-glucose, respectively), suppressed mucosal apoptosis in the rat jejunum 1 h after cerebroventricular infusion. In contrast, the test solutions, which suppressed feeding (8 and 24 micromol/rat of leptin and 1-deoxy-D-glucosamine, respectively), induced jejunal mucosal apoptosis 3 h after infusion. The effects of the test solutions on feeding behavior and changes in apoptosis were not affected by truncal vagotomy. CONCLUSION The central nervous system, which regulates feeding behavior, might control intestinal function through the regulation of intestinal apoptosis.
Collapse
Affiliation(s)
- Taisan Lin
- Department of Internal Medicine, Saga Medical School, Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kiely JM, Noh JH, Pitt HA, Swartz-Basile DA. Impaired Intestinal Cell Proliferation and Cell Death in Leptin-Deficient Obese Mice. JPEN J Parenter Enteral Nutr 2005. [DOI: 10.1002/j.1941-2444.2005.tb04842.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- James M. Kiely
- Department of Surgery; Medical College of Wisconsin; Milwaukee Wisconsin
| | - Jae-H. Noh
- Department of Surgery; Medical College of Wisconsin; Milwaukee Wisconsin
| | - Henry A. Pitt
- Department of Surgery; Medical College of Wisconsin; Milwaukee Wisconsin
| | | |
Collapse
|