1
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
2
|
Mutuku CN, Bateta R, Rono MK, Njunge JM, Awuoche EO, Ndung'u K, Mang'era CM, Akoth MO, Adung'a VO, Ondigo BN, Mireji PO. Physiological and proteomic profiles of Trypanosoma brucei rhodesiense parasite isolated from suramin responsive and non-responsive HAT patients in Busoga, Uganda. Int J Parasitol Drugs Drug Resist 2021; 15:57-67. [PMID: 33588295 PMCID: PMC7895675 DOI: 10.1016/j.ijpddr.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Human African Trypanosomiasis (HAT) is a disease of major economic importance in Sub-Saharan Africa. The HAT is caused by Trypanosoma brucei rhodesiense (Tbr) parasite in eastern and southern Africa, with suramin as drug of choice for treatment of early stage of the disease. Suramin treatment failures has been observed among HAT patients in Tbr foci in Uganda. In this study, we assessed Tbr parasite strains isolated from HAT patients responsive (Tbr EATRO-232) and non-responsive (Tbr EATRO-734) to suramin treatment in Busoga, Uganda for 1) putative role of suramin resistance in the treatment failure 2) correlation of suramin resistance with Tbr pathogenicity and 3) proteomic pathways underpinning the potential suramin resistance phenotype in vivo. We first assessed suramin response in each isolate by infecting male Swiss white mice followed by treatment using a series of suramin doses. We then assessed relative pathogenicity of the two Tbr isolates by assessing changes pathogenicity indices (prepatent period, survival and mortality). We finally isolated proteins from mice infected by the isolates, and assessed their proteomic profiles using mass spectrometry. We established putative resistance to 2.5 mg/kg suramin in the parasite Tbr EATRO-734. We established that Tbr EATRO-734 proliferated slower and has significantly enriched pathways associated with detoxification and metabolism of energy and drugs relative to Tbr EATRO-232. The Tbr EATRO-734 also has more abundantly expressed mitochondrion proteins and enzymes than Tbr EATRO-232. The suramin treatment failure may be linked to the relatively higher resistance to suramin in Tbr EATRO-734 than Tbr EATRO-232, among other host and parasite specific factors. However, the Tbr EATRO-734 appears to be less pathogenic than Tbr EATRO-232, as evidenced by its lower rate of parasitaemia. The Tbr EATRO-734 putatively surmount suramin challenges through induction of energy metabolism pathways. These cellular and molecular processes may be involved in suramin resistance in Tbr.
Collapse
Affiliation(s)
- Catherine N Mutuku
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya.
| | - Martin K Rono
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya
| | - James M Njunge
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya
| | - Erick O Awuoche
- Department of Biological Sciences, School of Pure and Applied Science, Meru University of Science and Technology, Meru, Kenya
| | - Kariuki Ndung'u
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
| | - Clarence M Mang'era
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Modesta O Akoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Vincent O Adung'a
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya.
| |
Collapse
|
3
|
Cespuglio R, Amrouni D, Raymond EF, Bouteille B, Buguet A. Cerebral inducible nitric oxide synthase protein expression in microglia, astrocytes and neurons in Trypanosoma brucei brucei-infected rats. PLoS One 2019; 14:e0215070. [PMID: 30995270 PMCID: PMC6469759 DOI: 10.1371/journal.pone.0215070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 11/18/2022] Open
Abstract
To study the anatomo-biochemical substrates of brain inflammatory processes, Wistar male rats were infected with Trypanosoma brucei brucei. With this reproducible animal model of human African trypanosomiasis, brain cells (astrocytes, microglial cells, neurons) expressing the inducible nitric oxide synthase (iNOS) enzyme were revealed. Immunohistochemistry was achieved for each control and infected animal through eight coronal brain sections taken along the caudorostral axis of the brain (brainstem, cerebellum, diencephalon and telencephalon). Specific markers of astrocytes (anti-glial fibrillary acidic protein), microglial cells (anti-integrin alpha M) or neurons (anti-Neuronal Nuclei) were employed. The iNOS staining was present in neurons, astrocytes and microglial cells, but not in oligodendrocytes. Stained astrocytes and microglial cells resided mainly near the third cavity in the rostral part of brainstem (periaqueductal gray), diencephalon (thalamus and hypothalamus) and basal telencephalon. Stained neurons were scarce in basal telencephalon, contrasting with numerous iNOS-positive neuroglial cells. Contrarily, in dorsal telencephalon (neocortex and hippocampus), iNOS-positive neurons were plentiful, contrasting with the marked paucity of labelled neuroglial (astrocytes and microglial) cells. The dual distribution between iNOS-labelled neuroglial cells and iNOS-labelled neurons is a feature that has never been described before. Functionalities attached to such a divergent distribution are discussed.
Collapse
Affiliation(s)
- Raymond Cespuglio
- Neuroscience Research Centre of Lyon (CRNL), Neurochem, Faculty of Medicine, Claude-Bernard Lyon-1 University, Lyon, France
- Sechenov 1st Moscow State Medical University, Laboratory of Psychiatric Neurobiology, Moscow, Russia
| | - Donia Amrouni
- Neuroscience Research Centre of Lyon (CRNL), Neurochem, Faculty of Medicine, Claude-Bernard Lyon-1 University, Lyon, France
| | - Elizabeth F. Raymond
- Faculty of Medicine, team EA 4171, Claude-Bernard Lyon-1 University, Lyon, France
| | - Bernard Bouteille
- Department of Parasitology, Dupuytren University Hospital, Limoges, France
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, Villeurbanne, France
| |
Collapse
|
4
|
Figarella K, Uzcategui NL, Mogk S, Wild K, Fallier-Becker P, Neher JJ, Duszenko M. Morphological changes, nitric oxide production, and phagocytosis are triggered in vitro in microglia by bloodstream forms of Trypanosoma brucei. Sci Rep 2018; 8:15002. [PMID: 30302029 PMCID: PMC6177420 DOI: 10.1038/s41598-018-33395-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023] Open
Abstract
The flagellated parasite Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (HAT). By a mechanism not well understood yet, trypanosomes enter the central nervous system (CNS), invade the brain parenchyma, and cause a fatal encephalopathy if is not treated. Trypanosomes are fast dividing organisms that, without any immune response, would kill the host in a short time. However, infected individuals survive either 6-12 months or more than 3 years for the acute and chronic forms, respectively. Thus, only when the brain defense collapses a lethal encephalopathy will occur. Here, we evaluated interactions between trypanosomes and microglial cells, which are the primary immune effector cells within the CNS. Using co-cultures of primary microglia and parasites, we found clear evidences of trypanosome phagocytosis by microglial cells. Microglia activation was also evident; analysis of its ultrastructure showed changes that have been reported in activated microglia undergoing oxidative stress caused by infections or degenerative diseases. Accordingly, an increase of the nitric oxide production was detected in supernatants of microglia/parasite co-cultures. Altogether, our results demonstrate that microglial cells respond to the presence of the parasite, leading to parasite's engulfment and elimination.
Collapse
Affiliation(s)
- Katherine Figarella
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.
- Institute for Neurophysiology, University of Tübingen, Tübingen, Germany.
| | - Nestor L Uzcategui
- Institute for Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Stefan Mogk
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katleen Wild
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany and Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany and Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Laperchia C, Xu YZ, Mumba Ngoyi D, Cotrufo T, Bentivoglio M. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons. Front Neuroanat 2018. [PMID: 29535612 PMCID: PMC5835115 DOI: 10.3389/fnana.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuron populations of the lateral hypothalamus which synthesize the orexin (OX)/hypocretin or melanin-concentrating hormone (MCH) peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT), also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b.) parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction) and MCH neurons (about 54% reduction) was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively), which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN) region and the thalamic paraventricular nucleus (PVT), densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic neuroinflammatory signaling caused by the infection of human-pathogenic African trypanosomes.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Yuan-Zhong Xu
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Tiziana Cotrufo
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
6
|
Tesoriero C, Xu YZ, Mumba Ngoyi D, Bentivoglio M. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus. Front Neuroanat 2018; 12:6. [PMID: 29491832 PMCID: PMC5817918 DOI: 10.3389/fnana.2018.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei (T. b.) gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT) or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei) were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction) was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes, which have the capacity to cause permanent partial damage of this structure.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Yuan-Zhong Xu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomedicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
7
|
Laperchia C, Tesoriero C, Seke-Etet PF, La Verde V, Colavito V, Grassi-Zucconi G, Rodgers J, Montague P, Kennedy PGE, Bentivoglio M. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis. PLoS Negl Trop Dis 2017; 11:e0005854. [PMID: 28821016 PMCID: PMC5576758 DOI: 10.1371/journal.pntd.0005854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/30/2017] [Accepted: 08/04/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. METHODOLOGY/PRINCIPAL FINDINGS The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. CONCLUSIONS/SIGNIFICANCE The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Tesoriero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paul F. Seke-Etet
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina La Verde
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valeria Colavito
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gigliola Grassi-Zucconi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Montague
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
8
|
Applicability of plant-based products in the treatment ofTrypanosoma cruziandTrypanosoma bruceiinfections: a systematic review of preclinicalin vivoevidence. Parasitology 2017; 144:1275-1287. [DOI: 10.1017/s0031182017000634] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARYChagas disease and sleeping sickness are neglected tropical diseases closely related to poverty, for which the development of plant-derived treatments has not been a promising prospect. Thus, we systematicaly review the preclinicalin vivoevidence on the applicability of plant-based products in the treatment ofTrypanosoma cruziandTrypanosoma bruceiinfections. Characteristics such as disease models, treatments, toxicological safety and methodological bias were analysed. We recovered 66 full text articles from 16 countries investigating 91 plant species. The disease models and treatments were highly variable. Most studies used native (n= 36, 54·54%) or exotic (n= 30, 45·46%) plants with ethnodirected indication (n= 45, 68·18%) for trypanosomiasis treatment. Complete phytochemical screening and toxicity assays were reported in only 15 (22·73%) and 32 (48·49%) studies, respectively. The currently available preclinical evidence is at high risk of bias. The absence of or incomplete characterization of animal models, treatment protocols, and phytochemical/toxicity analyses impaired the internal validity of the individual studies. Contradictory results of a same plant species compromise the external validity of the evidence, making it difficult determine the effectiveness, safety and biotechnological potential of plant-derived products in the development of new anti-infective agents to treatT. cruziandT. bruceiinfections.
Collapse
|
9
|
Laperchia C, Palomba M, Seke Etet PF, Rodgers J, Bradley B, Montague P, Grassi-Zucconi G, Kennedy PGE, Bentivoglio M. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes. PLoS Negl Trop Dis 2016; 10:e0005242. [PMID: 28002454 PMCID: PMC5217973 DOI: 10.1371/journal.pntd.0005242] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/06/2017] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. METHODOLOGY Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. PRINCIPAL FINDINGS Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. CONCLUSION These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Palomba
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paul F. Seke Etet
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jean Rodgers
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara Bradley
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Paul Montague
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gigliola Grassi-Zucconi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
10
|
Palomba M, Seke-Etet PF, Laperchia C, Tiberio L, Xu YZ, Colavito V, Grassi-Zucconi G, Bentivoglio M. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness. Neuroscience 2015; 290:185-95. [PMID: 25595977 DOI: 10.1016/j.neuroscience.2014.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 01/24/2023]
Abstract
Human African trypanosomiasis or sleeping sickness is a severe, neglected tropical disease caused by the extracellular parasite Trypanosoma brucei. The disease, which leads to chronic neuroinflammation, is characterized by sleep and wake disturbances, documented also in rodent models. In rats and mice infected with Trypanosoma brucei brucei, we here tested the hypothesis that the disease could target neurons of the lateral hypothalamus (LH) containing orexin (OX)-A or melanin-concentrating hormone (MCH), implicated in sleep/wake regulation. In the cerebrospinal fluid of infected rats, the OX-A level was significantly decreased early after parasite neuroinvasion, and returned to the control level at an advanced disease stage. The number of immunohistochemically characterized OX-A and MCH neurons decreased significantly in infected rats during disease progression and in infected mice at an advanced disease stage. A marked reduction of the complexity of dendritic arborizations of OX-A neurons was documented in infected mice. The evaluation of NeuN-immunoreactive neurons did not reveal significant neuronal loss in the LH of infected mice, thus suggesting a potential selective vulnerability of OX-A and MCH neurons. Immunophenotyping and quantitative analysis showed in infected mice marked activation of microglial cells surrounding OX-A neurons. Day/night oscillation of c-Fos baseline expression was used as marker of OX-A neuron activity in mice. In control animals Fos was expressed in a higher proportion of OX-A neurons in the night (activity) phase than in the day (rest) phase. Interestingly, in infected mice the diurnal spontaneous Fos oscillation was reversed, with a proportion of OX-A/Fos neurons significantly higher at daytime than at nighttime. Altogether the findings reveal a progressive decrease of OX-A and MCH neurons and dysregulation of OX-A neuron diurnal activity in rodent models of sleeping sickness. The data point to the involvement of these peptidergic neurons in the pathogenesis of sleep/wake alterations in the disease and to their vulnerability to inflammatory signaling.
Collapse
Affiliation(s)
- M Palomba
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - P F Seke-Etet
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - C Laperchia
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - L Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Y-Z Xu
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - V Colavito
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - G Grassi-Zucconi
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - M Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
11
|
Van Reet N, Van de Vyver H, Pyana PP, Van der Linden AM, Büscher P. A panel of Trypanosoma brucei strains tagged with blue and red-shifted luciferases for bioluminescent imaging in murine infection models. PLoS Negl Trop Dis 2014; 8:e3054. [PMID: 25144573 PMCID: PMC4140678 DOI: 10.1371/journal.pntd.0003054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Background Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. Methodology/Principal findings We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. Conclusions/Significance We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin. Research on African trypanosomes heavily relies on rodent infection models. One way to reduce the number of laboratory rodents used in each experiment and effectively follow the progression of the infection in the same animals is to use genetically modified trypanosomes that allow monitoring of the infection over time with bioluminescence technology, without having to sacrifice the animals at multiple time points. In this study, we were able to establish a collection of bioluminescent strains of all three subspecies of Trypanosoma brucei (T.b.), including T.b. gambiense and T.b. rhodesiense that cause human African trypanosomiasis (HAT) or sleeping sickness. Making use of bioluminescence assays, we demonstrate the diversity of our collection in terms of in vitro and in vivo growth, drug sensitivity and in vivo parasite distribution, including central nervous system tropism. Growth characteristics and drug sensitivity are not affected by the genetic modification with luciferase reporter genes. Trypanosome strains transfected with red-shifted luciferase reporter genes have several advantages compared to the corresponding blue luciferase modified strains. Red light is less absorbed in the blood than blue light, which should lead to higher sensitivity of detection. Furthermore, the substrates that drive the light reaction are better distributed through the body for the red luciferase than for the blue luciferase, which greatly improves spatial resolution of the infection.
Collapse
Affiliation(s)
- Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Patient Pati Pyana
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Département de Parasitologie, Institut National de Recherche Biomédicale, Kinshasa Gombe, Democratic Republic of the Congo
| | - Anne Marie Van der Linden
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
12
|
MacDonald LE, Alderman SL, Kramer S, Woo PTK, Bernier NJ. Hypoxemia-induced leptin secretion: a mechanism for the control of food intake in diseased fish. J Endocrinol 2014; 221:441-55. [PMID: 24741070 DOI: 10.1530/joe-13-0615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin is a potent anorexigen, but little is known about the physiological conditions under which this cytokine regulates food intake in fish. In this study, we characterized the relationships between food intake, O2-carrying capacity, liver leptin-A1 (lep-a1) gene expression, and plasma leptin-A1 in rainbow trout infected with a pathogenic hemoflagellate, Cryptobia salmositica. As lep gene expression is hypoxia-sensitive and Cryptobia-infected fish are anemic, we hypothesized that Cryptobia-induced anorexia is mediated by leptin. A 14-week time course experiment revealed that Cryptobia-infected fish experience a transient 75% reduction in food intake, a sharp initial drop in hematocrit and hemoglobin levels followed by a partial recovery, a transient 17-fold increase in lep-a1 gene expression, and a sustained increase in plasma leptin-A1 levels. In the hypothalamus, peak anorexia was associated with decreases in mRNA levels of neuropeptide Y (npy) and cocaine- and amphetamine-regulated transcript (cart), and increases in agouti-related protein (agrp) and pro-opiomelanocortin A2 (pomc). In contrast, in non-infected fish pair-fed to infected animals, lep-a1 gene expression and plasma levels did not differ from those of non-infected satiated fish. Pair-fed fish were also characterized by increases in hypothalamic npy and agrp, no changes in pomc-a2, and a reduction in cart mRNA expression. Finally, peak infection was characterized by a significant positive correlation between O2-carrying capacity and food intake. These findings show that hypoxemia, and not feed restriction, stimulates leptin-A1 secretion in Cryptobia-infected rainbow trout and suggest that leptin contributes to anorexia by inhibiting hypothalamic npy and stimulating pomc-a2.
Collapse
Affiliation(s)
- Lauren E MacDonald
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah L Alderman
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah Kramer
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Patrick T K Woo
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
13
|
Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol 2013; 216:99-112. [PMID: 23225872 PMCID: PMC3515034 DOI: 10.1242/jeb.074716] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
We examine the role of the protozoan Toxoplasma gondii as a manipulatory parasite and question what role study of infections in its natural intermediate rodent hosts and other secondary hosts, including humans, may elucidate in terms of the epidemiology, evolution and clinical applications of infection. In particular, we focus on the potential association between T. gondii and schizophrenia. We introduce the novel term 'T. gondii-rat manipulation-schizophrenia model' and propose how future behavioural research on this model should be performed from a biological, clinical and ethically appropriate perspective.
Collapse
Affiliation(s)
- Joanne P. Webster
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Maya Kaushik
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Greg C. Bristow
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Glenn A. McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
14
|
Kaushik M, Lamberton PHL, Webster JP. The role of parasites and pathogens in influencing generalised anxiety and predation-related fear in the mammalian central nervous system. Horm Behav 2012; 62:191-201. [PMID: 22521209 DOI: 10.1016/j.yhbeh.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 01/15/2023]
Abstract
Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved.
Collapse
Affiliation(s)
- Maya Kaushik
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | | | | |
Collapse
|
15
|
Etet PFS, Palomba M, Colavito V, Grassi-Zucconi G, Bentivoglio M, Bertini G. Sleep and Rhythm Changes at the Time ofTrypanosoma bruceiInvasion of the Brain Parenchyma in the Rat. Chronobiol Int 2012; 29:469-81. [DOI: 10.3109/07420528.2012.660713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Caljon G, Caveliers V, Lahoutte T, Stijlemans B, Ghassabeh GH, Van Den Abbeele J, Smolders I, De Baetselier P, Michotte Y, Muyldermans S, Magez S, Clinckers R. Using microdialysis to analyse the passage of monovalent nanobodies through the blood-brain barrier. Br J Pharmacol 2012; 165:2341-53. [PMID: 22013955 PMCID: PMC3413867 DOI: 10.1111/j.1476-5381.2011.01723.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/28/2011] [Accepted: 09/18/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Nanobodies are promising antigen-binding moieties for molecular imaging and therapeutic purposes because of their favourable pharmacological and pharmacokinetic properties. However, the capability of monovalent nanobodies to reach targets in the CNS remains to be demonstrated. EXPERIMENTAL APPROACH We have assessed the blood-brain barrier permeability of Nb_An33, a nanobody against the Trypanosoma brucei brucei variant-specific surface glycoprotein (VSG). This analysis was performed in healthy rats and in rats that were in the encephalitic stage of African trypanosomiasis using intracerebral microdialysis, single photon emission computed tomography (SPECT) or a combination of both methodologies. This enabled the quantification of unlabelled and (99m) Tc-labelled nanobodies using, respectively, a sensitive VSG-based nanobody-detection elisa, radioactivity measurement in collected microdialysates and SPECT image analysis. KEY RESULTS The combined read-out methodologies showed that Nb_An33 was detected in the brain of healthy rats following i.v. injection, inflammation-induced damage to the blood-brain barrier, as in the late encephalitic stage of trypanosomiasis, significantly increased the efficiency of passage of the nanobody through this barrier. Complementing SPECT analyses with intracerebral microdialysis improved analysis of brain disposition. There is clear value in assessing penetration of the blood-brain barrier by monovalent nanobodies in models of CNS inflammation. Our data also suggest that rapid clearance from blood might hamper efficient targeting of specific nanobodies to the CNS. CONCLUSIONS AND IMPLICATIONS Nanobodies can enter the brain parenchyma from the systemic circulation, especially in pathological conditions where the blood-brain barrier integrity is compromised.
Collapse
Affiliation(s)
- G Caljon
- Department of Animal Health, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol 2010; 39:186-212. [PMID: 21189316 DOI: 10.1177/0192623310394214] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bordering the ventricular cerebrospinal fluid (CSF) are epithelial cells of choroid plexus (CP), ependyma and circumventricular organs (CVOs) that contain homeostatic transporters for mediating secretion/reabsorption. The distributional pathway ("nexus") of CP-CSF-ependyma-brain furnishes peptides, hormones, and micronutrients to periventricular regions. In disease/toxicity, this nexus becomes a conduit for infectious and xenobiotic agents. The sleeping sickness trypanosome (a protozoan) disrupts CP and downstream CSF-brain. Piperamide is anti-trypanosomic but distorts CP epithelial ultrastructure by engendering hydropic vacuoles; this reflects phospholipidosis and altered lysosomal metabolism. CP swelling by vacuolation may occlude CSF flow. Toxic drug tools delineate injuries to choroidal compartments: cyclophosphamide (vasculature), methylcellulose (interstitium), and piperazine (epithelium). Structurally perturbed CP allows solutes to penetrate the ventricles. There, CSF-borne pathogens and xenobiotics may permeate the ependyma to harm neurogenic stem cell niches. Amoscanate, an anti-helmintic, potently injures rodent ependyma. Ependymal/brain regions near CP are vulnerable to CSF-borne toxicants; this proximity factor links regional barrier breakdown to nearby periventricular pathology. Diverse diseases (e.g., African sleeping sickness, multiple sclerosis) take early root in choroidal, circumventricular, or perivascular loci. Toxicokinetics informs on pathogen, anti-parasitic agent, and auto-antibody distribution along the CSF nexus. CVOs are susceptible to plasma-borne toxicants/pathogens. Countering the physico-chemical and pathogenic insults to the homeostasis-mediating ventricle-bordering cells sustains brain health and fluid balance.
Collapse
|
18
|
Amrouni D, Gautier-Sauvigné S, Meiller A, Vincendeau P, Bouteille B, Buguet A, Cespuglio R. Cerebral and peripheral changes occurring in nitric oxide (NO) synthesis in a rat model of sleeping sickness: identification of brain iNOS expressing cells. PLoS One 2010; 5:e9211. [PMID: 20169057 PMCID: PMC2821905 DOI: 10.1371/journal.pone.0009211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/26/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The implication of nitric oxide (NO) in the development of human African trypanosomiasis (HAT) using an animal model, was examined. The manner by which the trypanocidal activity of NO is impaired in the periphery and in the brain of rats infected with Trypanosoma brucei brucei (T. b. brucei) was analyzed through: (i) the changes occurring in NO concentration in both peripheral (blood) and cerebral compartments; (ii) the activity of nNOS and iNOS enzymes; (iii) identification of the brain cell types in which the NO-pathways are particularly active during the time-course of the infection. METHODOLOGY/PRINCIPAL FINDINGS NO concentration (direct measures by voltammetry) was determined in central (brain) and peripheral (blood) compartments in healthy and infected animals at various days post-infection: D5, D10, D16 and D22. Opposite changes were observed in the two compartments. NO production increased in the brain (hypothalamus) from D10 (+32%) to D16 (+71%), but decreased in the blood from D10 (-22%) to D16 (-46%) and D22 (-60%). In parallel with NO measures, cerebral iNOS activity increased and peaked significantly at D16 (up to +700%). However, nNOS activity did not vary. Immunohistochemical staining confirmed iNOS activation in several brain regions, particularly in the hypothalamus. In peritoneal macrophages, iNOS activity decreased from D10 (-83%) to D16 (-65%) and D22 (-74%) similarly to circulating NO. CONCLUSION/SIGNIFICANCE The NO changes observed in our rat model were dependent on iNOS activity in both peripheral and central compartments. In the periphery, the NO production decrease may reflect an arginase-mediated synthesis of polyamines necessary to trypanosome growth. In the brain, the increased NO concentration may result from an enhanced activity of iNOS present in neurons and glial cells. It may be regarded as a marker of deleterious inflammatory reactions.
Collapse
Affiliation(s)
- Donia Amrouni
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Sabine Gautier-Sauvigné
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Anne Meiller
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Philippe Vincendeau
- University of Bordeaux 2, EA 3677 Laboratory of Parasitology, Bordeaux, France
| | - Bernard Bouteille
- University of Limoges, EA 3174 Laboratory of Tropical and Compared Neuroepidemiology & IFR 145 GEIST, Faculty of Medicine, Limoges, France
| | - Alain Buguet
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Raymond Cespuglio
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| |
Collapse
|
19
|
Berge B, Chevrier C, Blanc A, Rehailia M, Buguet A, Bourdon L. Disruptions of Ultradian and Circadian Organization of Core Temperature in a Rat Model of African Trypanosomiasis Using Periodogram Techniques on Detrended Data. Chronobiol Int 2009; 22:237-51. [PMID: 16021841 DOI: 10.1081/cbi-200053502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Periodogram techniques on detrended data were used to determine the incidence of Trypanosoma brucei brucei infection on the distribution of the core temperature of rats and the expression of temperature rhythms. In such an animal model, sudden episodic hypothermic bouts were described. These episodes of hypothermia are used here as temporal marks for the purpose of performing punctual comparisons on temperature organization. The experiment was conducted on 10 infected and 3 control Sprague-Dawley rats reared under a 24 h light-dark cycle. Core temperature was recorded continuously throughout the experiment, until the animals' death. Temperature distributions, analyzed longitudinally across the full duration of the experiment, exhibited a progressive shift from a bimodal to unimodal pattern, suggesting a weakening of the day/night core temperature differences. After hypothermic events, the robustness of the circadian rhythm substantially weakened, also affecting the ultradian components. The ultradian periods were reduced, suggesting fragmentation of temperature generation. Moreover, differences between daytime and nighttime ultradian patterns decreased during illness, confirming the weakening of the circadian component. The results of the experiments show that both core temperature distribution and temperature rhythm were disrupted during the infection. These disruptions worsened after each episode of hypothermia, suggesting an alteration of the temperature regulatory system.
Collapse
Affiliation(s)
- Benoit Berge
- Laboratoire de Biologie Animale et Appliquée, Saint-Etienne 2, France
| | | | | | | | | | | |
Collapse
|
20
|
Global metabolic responses of mice to Trypanosoma brucei brucei infection. Proc Natl Acad Sci U S A 2008; 105:6127-32. [PMID: 18413599 DOI: 10.1073/pnas.0801777105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human African trypanosomiasis (HAT) is transmitted by tsetse flies and, if untreated, is fatal. Treatment depends on infection stage, and early diagnosis is crucial for effective disease management. The systemic host biochemical changes induced by HAT that enable biomarker discovery or relate to therapeutic outcome are largely unknown. We have characterized the multivariate temporal responses of mice to Trypanosoma brucei brucei infection, using (1)H nuclear magnetic resonance (NMR) spectroscopic metabolic phenotyping of urine and plasma. Marked alterations in plasma metabolic profiles were detected already 1 day postinfection. Elevated plasma concentrations of lactate, branched chain amino acids, and acetylglycoprotein fragments were noted. T. brucei brucei-infected mice also had an imbalance of plasma alanine and valine, consistent with differential gluconeogenesis (parasite)-ketogenesis (host) pathway counterflux, involving stimulated host glycolysis, ketogenesis, and enhanced lipid oxidation in the host. Histopathologic evidence of T. brucei brucei-induced extramedullary hepatic hemopoiesis, renal interstitial nephritis, and a provoked inflammatory response was also noted. Metabolic disturbance of gut microbiotal activity was associated with infection, as indicated by changes in the urinary concentrations of the microbial co-metabolites, including hippurate. Concluding, parasite infection results in multiple systemic biochemical effects in the host and disturbance of the symbiotic gut microbial metabolic interactions. Investigation of these transgenomic metabolic alterations may underpin the development of new diagnostic criteria and metrics of therapeutic efficacy.
Collapse
|
21
|
Morty RE, Bulau P, Pellé R, Wilk S, Abe K. Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts. Biochem J 2006; 394:635-45. [PMID: 16248854 PMCID: PMC1383713 DOI: 10.1042/bj20051593] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidases of parasitic protozoans are emerging as novel virulence factors and therapeutic targets in parasitic infections. A trypanosome-derived aminopeptidase that exclusively hydrolysed substrates with Glp (pyroglutamic acid) in P1 was purified 9248-fold from the plasma of rats infected with Trypanosoma brucei brucei. The enzyme responsible was cloned from a T. brucei brucei genomic DNA library and identified as type I PGP (pyroglutamyl peptidase), belonging to the C15 family of cysteine peptidases. We showed that PGP is expressed in all life cycle stages of T. brucei brucei and is expressed in four other blood-stream-form African trypanosomes. Trypanosome PGP was optimally active and stable at bloodstream pH, and was insensitive to host plasma cysteine peptidase inhibitors. Native purified and recombinant hyper-expressed trypanosome PGP removed the N-terminal Glp blocking groups from TRH (thyrotrophin-releasing hormone) and GnRH (gonadotropin-releasing hormone) with a k(cat)/K(m) value of 0.5 and 0.1 s(-1) x microM(-1) respectively. The half-life of TRH and GnRH was dramatically reduced in the plasma of trypanosome-infected rats, both in vitro and in vivo. Employing an activity-neutralizing anti-trypanosome PGP antibody, and pyroglutamyl diazomethyl ketone, a specific inhibitor of type I PGP, we demonstrated that trypanosome PGP is entirely responsible for the reduced plasma half-life of TRH, and partially responsible for the reduced plasma half-life of GnRH in a rodent model of African trypanosomiasis. The abnormal degradation of TRH and GnRH, and perhaps other neuropeptides N-terminally blocked with a pyroglutamyl moiety, by trypanosome PGP, may contribute to some of the endocrine lesions observed in African trypanosomiasis.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University Hospital Giessen and Marburg, Aulweg 123, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
22
|
Chevrier C, Canini F, Darsaud A, Cespuglio R, Buguet A, Bourdon L. Clinical assessment of the entry into neurological state in rat experimental African trypanosomiasis. Acta Trop 2005; 95:33-9. [PMID: 15882835 DOI: 10.1016/j.actatropica.2005.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/24/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
Human African trypanosomiasis, caused by Trypanosoma brucei (T.b.) gambiense or rhodesiense, evolves in two stages: haemolymphatic stage and meningo-encephalitic stages, the latter featuring numerous neurological disorders. In experimental models infected with diverse T.b. sub-species, body weight (BW) loss, drop in food intake (FI), and hypo-activity after an asymptomatic period suggest the occurrence of a similar two-stage organization. In addition to daily measurement of BW and FI, body core temperature (T(co)) and spontaneous activity (SA) were recorded by telemetry in T.b. brucei-infected rats. After a 10--12-day symptom-free period, a complex clinical syndrome occurred suddenly. If the animal survived the access, the syndrome re-occurred at approximately 5-day intervals until death. The syndrome was made of a drop in FI and BW, a sharp decrease in T(co) and a loss of SA, suggesting a brisk alteration of the central nervous system functioning. Such events confirm the existence of a two-stage disease development in experimental trypanosomiasis. The entry into the second stage is marked by the occurrence of the first access, BW follow-up being essential and often sufficient its determination.
Collapse
Affiliation(s)
- Céline Chevrier
- Centre de recherches du service de santé des armées, Département des Facteurs Humains, 24, avenue des Maquis du Grésivaudan, B.P. 87 38702 La Tronche, France.
| | | | | | | | | | | |
Collapse
|
23
|
Darsaud A, Chevrier C, Bourdon L, Dumas M, Buguet A, Bouteille B. Megazol combined with suramin improves a new diagnosis index of the early meningo-encephalitic phase of experimental African trypanosomiasis. Trop Med Int Health 2004; 9:83-91. [PMID: 14728611 DOI: 10.1046/j.1365-3156.2003.01154.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In human African trypanosomiasis (HAT), the parasites invade the central nervous system (CNS), leading to the development of meningo-encephalitis and an irreversible demyelinating process, which kills the patient unless specific treatment is undertaken. Among the experimental trypanocides, the nitroimidazole derivative megazol alone at optimal doses does not cure late-stage disease tested in mouse models, however the combination of suramin and megazol is able to cure infected mice without CNS involvement. We recently developed an experimental model of HAT with a sharp decrease in both the food intake and the body weight which may constitute an effective index of the early meningo-encephalitic phase. Using this model, we tested this hypothesis by the exclusive effectiveness of a megazol and suramin combination treatment to eliminate CNS trypanosomes. Sprague-Dawley rats were infected with Trypanosoma brucei brucei AnTat 1.1E. Food intake and body weight were measured daily from the day of infection to death. Haematocrit was measured twice a week. Treatment consisted of 20 mg suramin per kg body weight administered intraperitoneally (i.p.) alone, or three daily doses (80 mg/kg) of megazol given per os, or suramin (20 mg/kg, i.p.) followed 24 h later by three daily doses (80 mg/kg) of megazol given per os. Treatment was followed by an increase in daily body weight and food intake similar to those of the control animals, 2 weeks after treatment. The anaemia developed after infection is also cleared as shown by the haematocrit measurements. The rats treated with megazol alone died about 29 days after treatment and those treated with suramin, after about 26 days. Seven months later, no signs of relapse were seen in 10 of 12 rats treated with the therapeutic combination, indicating that this chemotherapy regimen was curative. The results support our previous finding, i.e. the decrease in body weight may constitute a diagnosis index of the early meningo-encephalitic phase.
Collapse
Affiliation(s)
- Annabelle Darsaud
- Centre de recherches du Service de santé des armées, La Tronche, France.
| | | | | | | | | | | |
Collapse
|