1
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Wang J, Yue Z, Che L, Li H, Hu R, Shi L, Zhang X, Zou H, Peng Q, Jiang Y, Wang Z. Establishment of SV40 Large T-Antigen-Immortalized Yak Rumen Fibroblast Cell Line and the Fibroblast Responses to Lipopolysaccharide. Toxins (Basel) 2023; 15:537. [PMID: 37755963 PMCID: PMC10537058 DOI: 10.3390/toxins15090537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection. Further, we have reported the effects of lipopolysaccharide (LPS) of different concentrations on cell proliferation, extracellular matrix (ECM), and proinflammatory mediators in SV40T-YFB. The results showed that the immortalized yak rumen fibroblast cell lines were identified as fibroblasts that presented oval nuclei, a fusiform shape, and positive vimentin and SV40T staining after stable passage. Chromosome karyotype analysis showed diploid characteristics of yak (n = 60). LPS at different concentrations inhibited cell viability in a dose-dependent manner. SV40T-YFB treated with LPS increased mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9), inflammatory cytokines (TNF-α, IL-1β, IL-6), and urokinase-type plasminogen activator system components (uPA, uPAR). LPS inhibits the expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), plasminogen activator inhibitor-2 (PAI-2), fibronectin (FN), anti-inflammatory factor IL-10, and collagen I (COL I) in SV40T-YFB. Overall, these results suggest that LPS inhibits cell proliferation and induces ECM degradation and inflammatory response in SV40T-YFB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhisheng Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (Z.Y.); (L.C.); (H.L.); (R.H.); (L.S.); (X.Z.); (H.Z.); (Q.P.); (Y.J.)
| |
Collapse
|
3
|
Chu YT, Chen BH, Chen HH, Lee JC, Kuo TJ, Chiu HC, Lu WH. Hypoxia-Induced Kidney Injury in Newborn Rats. TOXICS 2023; 11:260. [PMID: 36977025 PMCID: PMC10053593 DOI: 10.3390/toxics11030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Exposure to hypoxia during the early postnatal period can have adverse effects on vital organs. Neonatal Sprague-Dawley rats housed in a hypoxic chamber were compared to those in a normoxic chamber from postnatal days 0 to 7. Arterial blood was collected to evaluate renal function and hypoxia. Kidney morphology and fibrosis were evaluated using staining methods and immunoblotting. In the kidneys of the hypoxic group, protein expressions of hypoxia-inducible factor-1 were higher than those in the normoxic group. Hypoxic rats had higher levels of hematocrit, serum creatinine, and lactate than normoxic rats. Body weight was reduced, and protein loss of kidney tissue was observed in hypoxic rats compared to normoxic rats. Histologically, hypoxic rats showed glomerular atrophy and tubular injury. Renal fibrosis with collagen fiber deposition was observed in the hypoxic group. The expression of nicotinamide adenine dinucleotide phosphate oxidases was enhanced in the kidneys of hypoxic rats. Proteins involved in apoptosis were upregulated in the kidneys of hypoxic rats. An increase in the expression of pro-inflammatory cytokines was also observed in the kidneys of hypoxic rats. Hypoxic kidney injury in neonatal rats was associated with oxidative stress, inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Yi-Ting Chu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jui-Chen Lee
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Tzu-Jiun Kuo
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Hsiang-Chin Chiu
- Department of Pediatrics, Pingtung Veterans General Hospital, Pingtung 91245, Taiwan
| | - Wen-Hsien Lu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
4
|
The Interaction of Apelin and FGFR1 Ameliorated the Kidney Fibrosis through Suppression of TGF β-Induced Endothelial-to-Mesenchymal Transition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5012474. [PMID: 36785790 PMCID: PMC9922196 DOI: 10.1155/2023/5012474] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023]
Abstract
Both epithelial-to-mesenchymal (EMT) and endothelial-to-mesenchymal (EndMT) transitions have shown to contribute to the development and progression of kidney fibrosis. It has been reported that apelin, a regulatory peptide, alleviates EMT by inhibiting the transforming growth factor β (TGFβ) pathway in renal diseases. Additionally, fibroblast growth factor receptor 1 (FGFR1) has been shown to be a key inhibitor of EndMT through suppression of the TGFβ/Smad pathway. In this study, we found that apelin and FGFR1 were spatially close to each other and that the apelin and FGFR1 complex displayed inhibitory effects on TGFβ/Smad signaling as well as associated EndMT in diabetic kidney fibrosis. In cultured human dermal microvascular endothelial cells (HMVECs), we found that the anti-EndMT and anti-TGFβ/Smad effects of apelin were dampened in FGFR1-deficient cells. Either siRNA- or an inhibitor-mediated deficiency of apelin induced the Smad3 phosphorylation and EndMT. Streptozotocin-induced CD-1 diabetic mice displayed EndMT and associated kidney fibrosis, which were restored by apelin treatment. The medium from apelin-deficient endothelial cells stimulated TGFβ/Smad-dependent EMT in cultured HK2 cells. In addition, depletion of apelin and the FGFR1 complex impaired CEBPA expression, and TGFβ-induced repression of CEBPA expression contributed to the initiation of EndMT in the endothelium. Collectively, these findings revealed that the interaction between apelin and FGFR1 displayed renoprotective potential through suppression of the TGFβ/Smad/CEBPA-mediated EndMT/EMT pathways.
Collapse
|
5
|
Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A. Diabetes and Its Cardiovascular Complications: Potential Role of the Acetyltransferase p300. Cells 2023; 12:431. [PMID: 36766773 PMCID: PMC9914144 DOI: 10.3390/cells12030431] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes has been shown to accelerate vascular senescence, which is associated with chronic inflammation and oxidative stress, both implicated in the development of endothelial dysfunction. This condition represents the initial alteration linking diabetes to related cardiovascular (CV) complications. Recently, it has been hypothesised that the acetyltransferase, p300, may contribute to establishing an early vascular senescent phenotype, playing a relevant role in diabetes-associated inflammation and oxidative stress, which drive endothelial dysfunction. Specifically, p300 can modulate vascular inflammation through epigenetic mechanisms and transcription factors acetylation. Indeed, it regulates the inflammatory pathway by interacting with nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) or by inducing its acetylation, suggesting a crucial role of p300 as a bridge between NF-κB p65 and the transcriptional machinery. Additionally, p300-mediated epigenetic modifications could be upstream of the activation of inflammatory cytokines, and they may induce oxidative stress by affecting the production of reactive oxygen species (ROS). Because several in vitro and in vivo studies shed light on the potential use of acetyltransferase inhibitors, a better understanding of the mechanisms underlying the role of p300 in diabetic vascular dysfunction could help in finding new strategies for the clinical management of CV diseases related to diabetes.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1050540. [PMID: 36777351 PMCID: PMC9911675 DOI: 10.3389/fendo.2023.1050540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes and its complications represent a great burden on the global healthcare system. Diabetic complications are fundamentally diseases of the vasculature, with endothelial cells being the centerpiece of early hyperglycemia-induced changes. Endothelial-to-mesenchymal transition is a tightly regulated process that results in endothelial cells losing endothelial characteristics and developing mesenchymal traits. Although endothelial-to-mesenchymal transition has been found to occur within most of the major complications of diabetes, it has not been a major focus of study or a common target in the treatment or prevention of diabetic complications. In this review we summarize the importance of endothelial-to-mesenchymal transition in each major diabetic complication, examine specific mechanisms at play, and highlight potential mechanisms to prevent endothelial-to-mesenchymal transition in each of the major chronic complications of diabetes.
Collapse
|
7
|
Ibarra-Tapia IY, Juárez-Sandoval A, Pérez IT, Cano-Martínez LJ, Sánchez-García S, Ruiz-Batalla JM, Aroche-Reyes IA, García S, Canto P, Mejía DR, Coral-Vázquez RM. Association of polymorphisms rs2303729, rs10880, and rs1131620 of LTBP4 with sarcopenia in elderly patients with type 2 diabetes mellitus. Ann Hum Biol 2022; 49:311-316. [PMID: 36524797 DOI: 10.1080/03014460.2022.2152489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Latent TGFβ binding protein 4 (LTBP4) modifies skeletal muscle function, and polymorphisms in this gene have been associated with a longer ambulation time in patients with Duchenne muscular dystrophy. However, no studies associate these polymorphisms with an acquired muscle condition. AIM The study aims to determine whether three functional variants within the LTBP4 were associated with sarcopenia in patients with type 2 diabetes mellitus (T2DM). SUBJECTS AND METHODS We performed an analysis with 144 elderly individuals with T2DM, including 101 without sarcopenia and 43 with sarcopenia. Polymorphism frequency was determined by real-time PCR allelic discrimination TaqMan assay. RESULTS Under different genetic models, the univariant analysis did not show a significant association of any polymorphism with sarcopenia. But the multivariate model analysis showed that variant rs1131620 (OR 7.852, 95% CI 1.854-33.257, p = 0.005) was significantly associated with sarcopenia under a dominant model. Under the same analysis, the variants rs2303729 and rs10880 had a more discrete association (OR 3.537 95% CI 1.078-11.607, p = 0.037; OR 5.008, 95% CI 1.120-22.399, p = 0.035, respectively). CONCLUSIONS Our study highlights the importance of studying LTBP4 polymorphisms associated with sarcopenia. These findings suggest that the rs1131620 polymorphism of the LTBP4 may be part of the observed sarcopenia process in patients with T2DM.
Collapse
Affiliation(s)
- Ingrid Yali Ibarra-Tapia
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Ariadna Juárez-Sandoval
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Itzel Torres Pérez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento. Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | - Silvia García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David-Rojano Mejía
- Unidad Médica de Alta Especialidad de Traumatología, Instituto Mexicano del Seguro Social, Ortopedia y Rehabilitación "Dr. Victorio de la Fuente Narváez", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
8
|
Qin H, Zhang L, Li M, Liu Y, Sun S, Nie W, Bai B, Li G, Zhang G. EGR1/NOX4 pathway regulates oxidative stress and further facilitates fibrosis progression in keloids responses to TGF-β1. J Dermatol Sci 2022; 108:138-145. [PMID: 36608994 DOI: 10.1016/j.jdermsci.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND As classic benign fibroproliferative tumors, keloids remain a major therapeutic challenge due to their complex pathological mechanisms. OBJECTIVE To determine the functional role of transforming growth factor β1 (TGF-β1)/early growth response factor-1 (EGR1)/NADPH oxidases 4 (NOX4) axis in the pathogenesis of keloid fibrosis. METHODS Differentially expressed genes in keloid tissues and normal skins were analyzed by RNA sequencing. Then, the human skin fibroblast cell line was treated with TGF-β1 at a dose of 10 ng/mL in order to stimulate the TGF-β1/SMAD pathway and the pathway was blocked using the SB431542. Furthermore, EGR1/NOX4 was over-expressed and inhibited by transfecting overexpression plasmids and small interfering RNAs, respectively. The levels of intracellular reactive oxygen species were measured using the DCFH-DA assay, and the expression levels of fibrosis-related genes were assessed by Western blot analysis. Alternately, dual-luciferase reporter analysis verified the targeting relationship between EGR1 and NOX4. RESULTS The TGF-β1/SMAD signaling pathway was significantly activated in keloid tissues to promote dermal fibrosis. The level of ROS was increased in keloid fibroblasts. Moreover, TGF-β1 could facilitate the expression of EGR1 through regulating the SMAD pathway in keloids and promoting the fibrotic phenotype of keloid fibroblasts. EGR1 could regulate the production of ROS by targeting NOX4. Furthermore, NOX4-derived ROS could promote fibrotic-like phenotype of keloid fibroblasts and play an important role in keloid fibrosis. CONCLUSION Our findings provide new insights into the mechanisms of the TGF-β1/EGR1/NOX4 pathway in keloid fibrosis, and the TGF-β1/EGR1/NOX4 axis may serve as a potential therapeutic target for keloids.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Shilong Sun
- School of Public Health, Jilin University, Changchun, China; NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Wenting Nie
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bing Bai
- School of Public Health, Jilin University, Changchun, China; NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Gaokai Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
10
|
Yuan J, Peng H, Mo B, Yin C, Fang G, Li Y, Wang Y, Chen R, Wang Q. Inhibition of Wdr5 Attenuates Ang-II-Induced Fibroblast-to-Myofibroblast Transition in Cardiac Fibrosis by Regulating Mdm2/P53/P21 Pathway. Biomolecules 2022; 12:1574. [PMID: 36358925 PMCID: PMC9687631 DOI: 10.3390/biom12111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Cardiac fibrosis is an important pathological process in many diseases. Wdr5 catalyzes the trimethylation of lysine K4 on histone H3. The effects of Wdr5 on the cardiac fibrosis phenotype and the activation or transformation of cardiac fibroblasts were investigated by Ang-II-infused mice by osmotic mini-pump and isolated primary neonatal rat cardiac fibroblasts. We found that the Wdr5 expression and histone H3K4me3 modification were significantly increased in Ang-II-infused mice. By stimulating primary neonatal rat cardiac fibroblasts with Ang II, we detected that the expression of Wdr5 and H3K4me3 modification were also significantly increased. Two Wdr5-specific inhibitors, and the lentivirus that transfected Sh-Wdr5, were used to treat primary mouse cardiac fibroblasts, which not only inhibited the histone methylation by Wdr5 but also significantly reduced the activation and migration ability of Ang-II-treated fibroblasts. To explore its mechanism, we found that the inhibition of Wdr5 increased the expression of P53, P21. Cut&Tag-qPCR showed that the inhibition of Wdr5 significantly reduced the enrichment of H3K4me3 in the Mdm2 promoter region. For in vivo experiments, we finally proved that the Wdr5 inhibitor OICR9429 significantly reduced Ang-II-induced cardiac fibrosis and increased the expression of P21 in cardiac fibroblasts. Inhibition of Wdr5 may mediate cardiac fibroblast cycle arrest through the Mdm2/P53/P21 pathway and alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Hong Peng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Renhua Chen
- Department of Cardiology, Quanzhou Hospital of Traditional Chinese Medicine, #388 SunJiang Road, Quanzhou 362000, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| |
Collapse
|
11
|
Hung CT, Tsai YW, Wu YS, Yeh CF, Yang KC. The novel role of ER protein TXNDC5 in the pathogenesis of organ fibrosis: mechanistic insights and therapeutic implications. J Biomed Sci 2022; 29:63. [PMID: 36050716 PMCID: PMC9438287 DOI: 10.1186/s12929-022-00850-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrosis-related disorders account for an enormous burden of disease-associated morbidity and mortality worldwide. Fibrosis is defined by excessive extracellular matrix deposition at fibrotic foci in the organ tissue following injury, resulting in abnormal architecture, impaired function and ultimately, organ failure. To date, there lacks effective pharmacological therapy to target fibrosis per se, highlighting the urgent need to identify novel drug targets against organ fibrosis. Recently, we have discovered the critical role of a fibroblasts-enriched endoplasmic reticulum protein disulfide isomerase (PDI), thioredoxin domain containing 5 (TXNDC5), in cardiac, pulmonary, renal and liver fibrosis, showing TXNDC5 is required for the activation of fibrogenic transforming growth factor-β signaling cascades depending on its catalytic activity as a PDI. Moreover, deletion of TXNDC5 in fibroblasts ameliorates organ fibrosis and preserves organ function by inhibiting myofibroblasts activation, proliferation and extracellular matrix production. In this review, we detailed the molecular and cellular mechanisms by which TXNDC5 promotes fibrogenesis in various tissue types and summarized potential therapeutic strategies targeting TXNDC5 to treat organ fibrosis.
Collapse
Affiliation(s)
- Chen-Ting Hung
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Yi-Wei Tsai
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Yu-Shuo Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan. .,Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. .,Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
13
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
14
|
The Role of Fibrinolytic System in Health and Disease. Int J Mol Sci 2022; 23:ijms23095262. [PMID: 35563651 PMCID: PMC9101224 DOI: 10.3390/ijms23095262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
The fibrinolytic system is composed of the protease plasmin, its precursor plasminogen and their respective activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), counteracted by their inhibitors, plasminogen activator inhibitor type 1 (PAI-1), plasminogen activator inhibitor type 2 (PAI-2), protein C inhibitor (PCI), thrombin activable fibrinolysis inhibitor (TAFI), protease nexin 1 (PN-1) and neuroserpin. The action of plasmin is counteracted by α2-antiplasmin, α2-macroglobulin, TAFI, and other serine protease inhibitors (antithrombin and α2-antitrypsin) and PN-1 (protease nexin 1). These components are essential regulators of many physiologic processes. They are also involved in the pathogenesis of many disorders. Recent advancements in our understanding of these processes enable the opportunity of drug development in treating many of these disorders.
Collapse
|
15
|
Katwa LC, Mendoza C, Clements M. CVD and COVID-19: Emerging Roles of Cardiac Fibroblasts and Myofibroblasts. Cells 2022; 11:cells11081316. [PMID: 35455995 PMCID: PMC9031661 DOI: 10.3390/cells11081316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Current data suggest that patients with cardiovascular diseases experience more serious complications with coronavirus disease-19 (COVID-19) than those without CVD. In addition, severe COVID-19 appears to cause acute cardiac injury, as well as long-term adverse remodeling of heart tissue. Cardiac fibroblasts and myofibroblasts, being crucial in response to injury, may play a pivotal role in both contributing to and healing COVID-19-induced cardiac injury. The role of cardiac myofibroblasts in cardiac fibrosis has been well-established in the literature for decades. However, with the emergence of the novel coronavirus SARS-CoV-2, new cardiac complications are arising. Bursts of inflammatory cytokines and upregulation of TGF-β1 and angiotensin (AngII) are common in severe COVID-19 patients. Cytokines, TGF-β1, and Ang II can induce cardiac fibroblast differentiation, potentially leading to fibrosis. This review details the key information concerning the role of cardiac myofibroblasts in CVD and COVID-19 complications. Additionally, new factors including controlling ACE2 expression and microRNA regulation are explored as promising treatments for both COVID-19 and CVD. Further understanding of this topic may provide insight into the long-term cardiac manifestations of the COVID-19 pandemic and ways to mitigate its negative effects.
Collapse
|
16
|
Chronic Fibrosis and Its Progression to Cancer. Int J Mol Sci 2022; 23:ijms23073924. [PMID: 35409286 PMCID: PMC8999153 DOI: 10.3390/ijms23073924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
|
17
|
Naringenin: A Promising Therapeutic Agent against Organ Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1210675. [PMID: 34804359 PMCID: PMC8601819 DOI: 10.1155/2021/1210675] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the final common pathology of most chronic diseases as seen in the heart, liver, lung, kidney, and skin and contributes to nearly half of death in the developed countries. Fibrosis, or scarring, is mainly characterized by the transdifferentiation of fibroblasts into myofibroblasts and the excessive accumulation of extracellular matrix (ECM) secreted by myofibroblasts. Despite immense efforts made in the field of organ fibrosis over the past decades and considerable understanding of the occurrence and development of fibrosis gained, there is still lack of an effective treatment for fibrotic diseases. Therefore, identifying a new therapeutic strategy against organ fibrosis is an unmet clinical need. Naringenin, a flavonoid that occurs naturally in citrus fruits, has been found to confer a wide range of pharmacological effects including antioxidant, anti-inflammatory, and anticancer benefits and thus potentially exerting preventive and curative effects on numerous diseases. In addition, emerging evidence has revealed that naringenin can prevent the pathogenesis of fibrosis in vivo and in vitro via the regulation of various pathways that involved signaling molecules such as transforming growth factor-β1/small mother against decapentaplegic protein 3 (TGF-β1/Smad3), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), sirtuin1 (SIRT1), nuclear factor-kappa B (NF-κB), or reactive oxygen species (ROS). Targeting these profibrotic pathways by naringenin could potentially become a novel therapeutic approach for the management of fibrotic disorders. In this review, we present a comprehensive summary of the antifibrotic roles of naringenin in vivo and in vitro and their underlying mechanisms of action. As a food derived compound, naringenin may serve as a promising drug candidate for the treatment of fibrotic disorders.
Collapse
|
18
|
The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 2021; 49:6789-6801. [PMID: 34718938 DOI: 10.1007/s11033-021-06725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.
Collapse
|
19
|
de Oliveira Camargo R, Abual'anaz B, Rattan SG, Filomeno KL, Dixon IMC. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis. Wound Repair Regen 2021; 29:667-677. [PMID: 34076932 DOI: 10.1111/wrr.12947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Heart disease with attendant cardiac fibrosis kills more patients in developed countries than any other disease, including cancer. We highlight the recent literature on factors that activate and also deactivate cardiac fibroblasts. Activation of cardiac fibroblasts results in myofibroblasts phenotype which incorporates aSMA to stress fibres, express ED-A fibronectin, elevated PDGFRα and are hypersecretory ECM components. These cells facilitate both acute wound healing (infarct site) and chronic cardiac fibrosis. Quiescent fibroblasts are associated with normal myocardial tissue and provide relatively slow turnover of the ECM. Deactivation of activated myofibroblasts is a much less studied phenomenon. In this context, SKI is a known negative regulator of TGFb1 /Smad signalling, and thus may share functional similarity to PPARγ activation. The discovery of SKI's potent anti-fibrotic role, and its ability to deactivate and/or myofibroblasts is featured and contrasted with PPARγ. While myofibroblasts are typically recruited from pools of potential precursor cells in a variety of organs, the importance of activation of resident cardiac fibroblasts has been recently emphasised. Myofibroblasts deposit ECM components at an elevated rate and contribute to both systolic and diastolic dysfunction with attendant cardiac fibrosis. A major knowledge gap exists as to specific proteins that may signal for fibroblast deactivation. As SKI may be a functionally pluripotent protein, we suggest that it serves as a scaffold to proteins other than R-Smads and associated Smad signal proteins, and thus its anti-fibrotic effects may extend beyond binding R-Smads. While cardiac fibrosis is causal to heart failure, the treatment of cardiac fibrosis is hampered by the lack of availability of effective pharmacological anti-fibrotic agents. The current review will provide an overview of work highlighting novel factors which cause fibroblast activation and deactivation to underscore putative therapeutic avenues for improving disease outcomes in cardiac patients with fibrosed hearts.
Collapse
Affiliation(s)
- Rebeca de Oliveira Camargo
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Besher Abual'anaz
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sunil G Rattan
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Krista L Filomeno
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada
| | - Ian M C Dixon
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Algeciras L, Palanca A, Maestro D, RuizdelRio J, Villar AV. Epigenetic alterations of TGFβ and its main canonical signaling mediators in the context of cardiac fibrosis. J Mol Cell Cardiol 2021; 159:38-47. [PMID: 34119506 DOI: 10.1016/j.yjmcc.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a pathological process that presents a continuous overproduction of extracellular matrix (ECM) components in the myocardium, which negatively influences the progression of many cardiac diseases. Transforming growth factor β (TGFβ) is the main ligand that triggers the production of pro-fibrotic ECM proteins. In the cardiac fibrotic process, TGFβ and its canonical signaling mediators are tightly regulated at different levels as well as epigenetically. Cardiac fibroblasts are one of the most important TGFβ target cells activated after cardiac injury. TGFβ-driven fibroblast activation is subject to epigenetic modulation and contributes to the progression of cardiac fibrosis, mainly through the expression of pro-fibrotic molecules implicated in the disease. In this review, we describe epigenetic regulation related to canonical TGFβ signaling in cardiac fibroblasts.
Collapse
Affiliation(s)
- Luis Algeciras
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana Palanca
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - David Maestro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Jorge RuizdelRio
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana V Villar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|
21
|
Zhang JX, Huang PJ, Wang DP, Yang WY, Lu J, Zhu Y, Meng XX, Wu X, Lin QH, Lv H, Xie H, Wang RL. m 6A modification regulates lung fibroblast-to-myofibroblast transition through modulating KCNH6 mRNA translation. Mol Ther 2021; 29:3436-3448. [PMID: 34111558 DOI: 10.1016/j.ymthe.2021.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal lung disease characterized by progressive and non-reversible abnormal matrix deposition in lung parenchyma. Myofibroblasts origin mainly from resident fibroblasts via fibroblast-to-myofibroblast transition (FMT) are the dominant collagen-producing cells in pulmonary fibrosis. N6-methyladenosine (m6A) modification has been implicated in various biological process. However, the role of m6A modification in pulmonary fibrosis remains elusive. In this study, we reveal that m6A modification is up-regulated in bleomycin induced pulmonary fibrosis mice model, FMT-derived myofibroblasts and idiopathic pulmonary fibrosis patient lung samples. Lowering m6A level through silencing METTL3 inhibits FMT process in vitro and vivo. Mechanistically, KCNH6 is involved in m6A-regulated FMT process. m6A modification regulates the expression of KCNH6 by modulating its translation in a YTHDF1 dependent manner. Together, our study highlights the critical role of m6A modification in pulmonary fibrosis. Manipulation of m6A modification through targeting METTL3 may become a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Pei-Jie Huang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Da-Peng Wang
- Department of Intensive Medicine,Wuxi People's Hospital Affiliated to Nanjing Medical University,Wuxi,Jiangsu, 214021,China
| | - Wen-Yu Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Xiao-Xiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Xin Wu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Qiu-Hai Lin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Hui Lv
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China.
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China.
| |
Collapse
|
22
|
Lin R, Zhang Z, Cao S, Yang W, Zuo Y, Yang X, Zhang J, Xu J, Li J, Wang X. The development of HEC-866 and its analogues for the treatment of idiopathic pulmonary fibrosis. RSC Med Chem 2021; 12:1222-1231. [PMID: 34355186 DOI: 10.1039/d1md00023c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with a typical survival time between three to five years. Two drugs, pirfenidone and nintedanib have been approved for the treatment of IPF, but they have limited efficacy. Thus, the development of new drugs to treat IPF is an urgent medical need. In this paper we report the discovery of a series of orally active pyrimidin-4(3H)-one analogs which exhibit potent activity in in vitro assays. Among them, HEC-866 showed promising efficacy in rat IPF models. Since HEC-866 also had good oral bioavailability, a long half-life and favorable long-term safety profiles, it was selected for further clinical evaluation.
Collapse
Affiliation(s)
- Runfeng Lin
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Zheng Zhang
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Shengtian Cao
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Wen Yang
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Yinglin Zuo
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Xinye Yang
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Jiancun Zhang
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Juan Xu
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Jing Li
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| | - Xiaojun Wang
- Department of Cardiovascular Diseases, HEC Pharma. Co. Ltd. Shangsha Fifth Industrial Park Dongguan 523871 Guangdong China
| |
Collapse
|
23
|
Theret M, Low M, Rempel L, Li FF, Tung LW, Contreras O, Chang CK, Wu A, Soliman H, Rossi FMV. In vitro assessment of anti-fibrotic drug activity does not predict in vivo efficacy in murine models of Duchenne muscular dystrophy. Life Sci 2021; 279:119482. [PMID: 33891939 DOI: 10.1016/j.lfs.2021.119482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/09/2023]
Abstract
AIM Fibrosis is the most common complication from chronic diseases, and yet no therapy capable of mitigating its effects is available. Our goal is to unveil specific signaling regulating the fibrogenic process and to identify potential small molecule candidates that block fibrogenic differentiation of fibro/adipogenic progenitors. METHOD We performed a large-scale drug screen using muscle-resident fibro/adipogenic progenitors from a mouse model expressing EGFP under the Collagen1a1 promotor. We first confirmed that the EGFP was expressed in response to TGFβ1 stimulation in vitro. Then we treated cells with TGFβ1 alone or with drugs from two libraries of known compounds. The drugs ability to block the fibrogenic differentiation was quantified by imaging and flow cytometry. From a two-rounds screening, positive hits were tested in vivo in the mice model for the Duchenne Muscular Dystrophy (mdx mice). The histopathology of the muscles was assessed with picrosirius red (fibrosis) and laminin staining (myofiber size). KEY FINDINGS From the in vitro drug screening, we identified 21 drugs and tested 3 in vivo on the mdx mice. None of the three drugs significantly improved muscle histopathology. SIGNIFICANCE The in vitro drug screen identified various efficient compounds, none of them strongly inhibited fibrosis in skeletal muscle of mdx mice. To explain these observations, we hypothesize that in Duchenne Muscular Dystrophy, in which fibrosis is a secondary event due to chronic degeneration and inflammation, the drugs tested could have adverse effect on regeneration or inflammation, balancing off any positive effects and leading to the absence of significant results.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Marcela Low
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fang Fang Li
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lin Wei Tung
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Chih-Kai Chang
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrew Wu
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Hesham Soliman
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
24
|
SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation. Basic Res Cardiol 2021; 116:25. [PMID: 33847835 PMCID: PMC8043893 DOI: 10.1007/s00395-021-00865-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/24/2021] [Indexed: 01/14/2023]
Abstract
We have previously shown that overexpression of SKI, an endogenous TGF-β1 repressor, deactivates the pro-fibrotic myofibroblast phenotype in the heart. We now show that SKI also functions independently of SMAD/TGF-β signaling, by activating the Hippo tumor-suppressor pathway and inhibiting the Transcriptional co-Activator with PDZ-binding motif (TAZ or WWTR1). The mechanism(s) by which SKI targets TAZ to inhibit cardiac fibroblast activation and fibrogenesis remain undefined. A rat model of post-myocardial infarction was used to examine the expression of TAZ during acute fibrogenesis and chronic heart failure. Results were then corroborated with primary rat cardiac fibroblast cell culture performed both on plastic and on inert elastic substrates, along with the use of siRNA and adenoviral expression vectors for active forms of SKI, YAP, and TAZ. Gene expression was examined by qPCR and luciferase assays, while protein expression was examined by immunoblotting and fluorescence microscopy. Cell phenotype was further assessed by functional assays. Finally, to elucidate SKI’s effects on Hippo signaling, the SKI and TAZ interactomes were captured in human cardiac fibroblasts using BioID2 and mass spectrometry. Potential interactors were investigated in vitro to reveal novel mechanisms of action for SKI. In vitro assays on elastic substrates revealed the ability of TAZ to overcome environmental stimuli and induce the activation of hypersynthetic cardiac myofibroblasts. Further cell-based assays demonstrated that SKI causes specific proteasomal degradation of TAZ, but not YAP, and shifts actin cytoskeleton dynamics to inhibit myofibroblast activation. These findings were supported by identifying the bi-phasic expression of TAZ in vivo during post-MI remodeling and fibrosis. BioID2-based interactomics in human cardiac fibroblasts suggest that SKI interacts with actin-modifying proteins and with LIM Domain-containing protein 1 (LIMD1), a negative regulator of Hippo signaling. Furthermore, we found that LATS2 interacts with TAZ, whereas LATS1 does not, and that LATS2 knockdown prevented TAZ downregulation with SKI overexpression. Our findings indicate that SKI’s capacity to regulate cardiac fibroblast activation is mediated, in part, by Hippo signaling. We postulate that the interaction between SKI and TAZ in cardiac fibroblasts is arbitrated by LIMD1, an important intermediary in focal adhesion-associated signaling pathways. This study contributes to the understanding of the unique physiology of cardiac fibroblasts, and of the relationship between SKI expression and cell phenotype.
Collapse
|
25
|
Shi L, Ren J, Li J, Wang D, Wang Y, Qin T, Li X, Zhang G, Li C, Wang Y. Extracellular vesicles derived from umbilical cord mesenchymal stromal cells alleviate pulmonary fibrosis by means of transforming growth factor-β signaling inhibition. Stem Cell Res Ther 2021; 12:230. [PMID: 33845892 PMCID: PMC8041243 DOI: 10.1186/s13287-021-02296-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Pulmonary fibrosis (PF), the end point of interstitial lung diseases, is characterized by myofibroblast over differentiation and excessive extracellular matrix accumulation, leading to progressive organ dysfunction and usually a terminal outcome. Studies have shown that umbilical cord-derived mesenchymal stromal cells (uMSCs) could alleviate PF; however, the underlying mechanism remains to be elucidated. Methods The therapeutic effects of uMSC-derived extracellular vesicles (uMSC-EVs) on PF were evaluated using bleomycin (BLM)-induced mouse models. Then, the role and mechanism of uMSC-EVs in inhibiting myofibroblast differentiation were investigated in vivo and in vitro. Results Treatment with uMSC-EVs alleviated the PF and enhanced the proliferation of alveolar epithelial cells in BLM-induced mice, thus improved the life quality, including the survival rate, body weight, fibrosis degree, and myofibroblast over differentiation of lung tissue. Moreover, these effects of uMSC-EVs on PF are likely achieved by inhibiting the transforming growth factor-β (TGF-β) signaling pathway, evidenced by decreased expression levels of TGF-β2 and TGF-βR2. Using mimics of uMSC-EV-specific miRNAs, we found that miR-21 and miR-23, which are highly enriched in uMSC-EVs, played a critical role in inhibiting TGF-β2 and TGF-βR2, respectively. Conclusion The effects of uMSCs on PF alleviation are likely achieved via EVs, which reveals a new role of uMSC-EV-derived miRNAs, opening a novel strategy for PF treatment in the clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02296-8.
Collapse
Affiliation(s)
- Liyan Shi
- China-Japan Union Hospital of Jilin University, 126 Xiantai St., Changchun, 130033, Jilin, China.,Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China
| | - Dongxu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China
| | - Yusu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China
| | - Tao Qin
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Rd, Xi'an, 710129, Shaanxi, China
| | - Xiuying Li
- China-Japan Union Hospital of Jilin University, 126 Xiantai St., Changchun, 130033, Jilin, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China. .,Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), 4899 Juye St., Changchun, 130112, Jilin, China.
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, Jilin, China.
| | - Yimin Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai St., Changchun, 130033, Jilin, China.
| |
Collapse
|
26
|
Chiusa M, Hu W, Zienkiewicz J, Chen X, Zhang MZ, Harris RC, Vanacore RM, Bentz JA, Remuzzi G, Benigni A, Fogo AB, Luo W, Mili S, Wilson MH, Zent R, Hawiger J, Pozzi A. EGF receptor-mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. J Cell Biol 2021; 219:151955. [PMID: 32678881 PMCID: PMC7480104 DOI: 10.1083/jcb.202001120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive accumulation of collagen leads to fibrosis. Integrin α1β1 (Itgα1β1) prevents kidney fibrosis by reducing collagen production through inhibition of the EGF receptor (EGFR) that phosphorylates cytoplasmic and nuclear proteins. To elucidate how the Itgα1β1/EGFR axis controls collagen synthesis, we analyzed the levels of nuclear tyrosine phosphorylated proteins in WT and Itgα1-null kidney cells. We show that the phosphorylation of the RNA-DNA binding protein fused in sarcoma (FUS) is higher in Itgα1-null cells. FUS contains EGFR-targeted phosphorylation sites and, in Itgα1-null cells, activated EGFR promotes FUS phosphorylation and nuclear translocation. Nuclear FUS binds to the collagen IV promoter, commencing gene transcription that is reduced by inhibiting EGFR, down-regulating FUS, or expressing FUS mutated in the EGFR-targeted phosphorylation sites. Finally, a cell-penetrating peptide that inhibits FUS nuclear translocation reduces FUS nuclear content and collagen IV transcription. Thus, EGFR-mediated FUS phosphorylation regulates FUS nuclear translocation and transcription of a major profibrotic collagen gene. Targeting FUS nuclear translocation offers a new antifibrotic therapy.
Collapse
Affiliation(s)
- Manuel Chiusa
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Wen Hu
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Jozef Zienkiewicz
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Raymond C Harris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | | | - Giuseppe Remuzzi
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Agnes B Fogo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Jacek Hawiger
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| |
Collapse
|
27
|
Manetti AC, Maiese A, Paolo MD, De Matteis A, La Russa R, Turillazzi E, Frati P, Fineschi V. MicroRNAs and Sepsis-Induced Cardiac Dysfunction: A Systematic Review. Int J Mol Sci 2020; 22:ijms22010321. [PMID: 33396834 PMCID: PMC7794809 DOI: 10.3390/ijms22010321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a severe condition characterized by systemic inflammation. One of the most involved organs in sepsis is the heart. On the other hand, heart failure and dysfunction are some of the most leading causes of death in septic patients. miRNAs are short single-strand non-coding ribonucleic acids involved in the regulation of gene expression on a post-transcriptional phase, which means they are a part of the epigenetic process. Recently, researchers have found that miRNA expression in tissues and blood differs depending on different conditions. Because of this property, their use as serum sepsis biomarkers has also been explored. A narrative review is carried out to gather and summarize what is known about miRNAs' influence on cardiac dysfunction during sepsis. When reviewing the literature, we found at least 77 miRNAs involved in cardiac inflammation and dysfunction during sepsis. In the future, miRNAs may be used as early sepsis-induced cardiac dysfunction biomarkers or as new drug targets. This could help clinicians to early detect, prevent, and treat cardiac damage. The potential role of miRNAs as new diagnostic tools and therapeutic strategies worth deepening the complex network between non-coding RNA and biological pathways. Additional studies are needed to further investigate their role in sepsis-induced myocardium injury.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Raffaele La Russa
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
- Correspondence: ; Tel.: +39-0649912722
| |
Collapse
|
28
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
29
|
Masada K, Miyagawa S, Sakai Y, Harada A, Kanaya T, Sawa Y. Synthetic Prostacyclin Agonist Attenuates Pressure-Overloaded Cardiac Fibrosis by Inhibiting FMT. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:210-219. [PMID: 33102614 PMCID: PMC7558785 DOI: 10.1016/j.omtm.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
Fibroblast-to-myofibroblast transition (FMT) is the primary inducer of cardiac fibrosis. ONO-1301, a synthetic prostacyclin agonist, reportedly promotes tissue fibrosis repair by enhancing anti-fibrotic cytokine production. We hypothesized that ONO-1301 attenuates pressure-overloaded cardiac fibrosis by modulating FMT and generated a pressure-overloaded murine model via transverse aortic constriction (TAC) to evaluate the in vivo effects of ONO-1301. Cardiac fibrosis, left ventricular dilatation, and systolic dysfunction were established 4 weeks after TAC; however, ONO-1301 treatment initiated 2 weeks after TAC significantly attenuated those effects. Furthermore, ONO-1301 treatment significantly upregulated expression levels of cardioprotective cytokines such as vascular endothelial growth factor and hepatocyte growth factor in TAC hearts, whereas FMT-related factors, including transforming growth factor (TGF)-β1 and connective tissue growth factor, were significantly downregulated. The number of α-smooth muscle actin (α-SMA)- and vimentin-positive cells, representing fibroblast-originated cells transitioned into myofibroblasts, was significantly reduced in ONO-1301-treated TAC hearts. We isolated cardiac fibroblasts (CFs) from the left ventricles of adult male mice and assessed the effects of ONO-1301 on CFs stimulated by TGF-β. Results showed that ONO-1301 co-incubation significantly suppressed TGF-β-induced α-SMA expression and collagen synthesis, and significantly inhibited TGF-β-induced CF proliferation and migration. Our findings suggest that ONO-1301 ameliorates pressure overloaded cardiac fibrosis by inhibiting TGF-β-induced FMT.
Collapse
Affiliation(s)
- Kenta Masada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiki Sakai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tomomitsu Kanaya
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Li ZM, Xu SY, Feng YZ, Cheng YR, Xiong JB, Zhou Y, Guan CX. The role of NOX4 in pulmonary diseases. J Cell Physiol 2020; 236:1628-1637. [PMID: 32780450 DOI: 10.1002/jcp.30005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sheng-Ya Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi-Zhuo Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Ghosh AK. p300 in Cardiac Development and Accelerated Cardiac Aging. Aging Dis 2020; 11:916-926. [PMID: 32765954 PMCID: PMC7390535 DOI: 10.14336/ad.2020.0401] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The heart is the first functional organ that develops during embryonic development. While a heartbeat indicates life, cessation of a heartbeat signals the end of life. Heart disease, due either to congenital defects or to acquired dysfunctions in adulthood, remains the leading cause of death worldwide. Epigenetics plays a key role in both embryonic heart development and heart disease in adults. Stress-induced vascular injury activates pathways involved in pathogenesis of accelerated cardiac aging that includes cellular dysfunction, pathological cardiac hypertrophy, diabetic cardiomyopathy, cardiac matrix remodeling, cardiac dysfunction and heart failure. Acetyltransferase p300 (p300), a major epigenetic regulator, plays a pivotal role in heart development during embryogenesis, as deficiency or abnormal expression of p300 leads to embryonic death at early gestation periods due to deformation of the heart and neural tube. Acetyltransferase p300 controls heart development through histone acetylation-mediated chromatin remodeling and transcriptional regulation of genes required for cardiac development. In adult hearts, p300 is differentially expressed in different chambers and epigenetically controls cardiac gene expression. Deregulation of p300, in response to prohypertrophic and profibrogenic stress signals, is associated with increased recruitment of p300 to several genes including transcription factors, increased acetylation of specific lysines in histones and transcription factors, altered chromatin organization, and increased hypertrophic and fibrogenic gene expression. Cardiac hypertrophy and myocardial fibrogenesis are common pathological manifestations of several stress-induced accelerated cardiac aging-related pathologies, including high blood pressure-induced or environmentally induced cardiac hypertrophy, myocardial infarction, diabetes-induced cardiomyopathy, and heart failure. Numerous studies using cellular and animal models clearly indicate that pharmacologic or genetic normalization of p300 activity has the potential to prevent or halt the progression of cardiac aging pathologies. Based on these preclinical studies, development of safe, non-toxic, small molecule inhibitors/epidrugs targeting p300 is an ideal approach to control accelerated cardiac aging-related deaths worldwide.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
32
|
Bano A, Chaker L, Muka T, Mattace-Raso FUS, Bally L, Franco OH, Peeters RP, Razvi S. Thyroid Function and the Risk of Fibrosis of the Liver, Heart, and Lung in Humans: A Systematic Review and Meta-Analysis. Thyroid 2020; 30:806-820. [PMID: 31910097 DOI: 10.1089/thy.2019.0572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Fibrotic diseases have an unclear etiology and poor prognosis. Fluctuations in thyroid function may play a role in the development of fibrosis, but evidence is fragmented and inconclusive. This systematic review and meta-analysis aimed to investigate the association of thyroid function with fibrotic diseases of the liver, heart, and lung in humans. Methods: We searched PubMed, Medline Ovid, Embase Ovid, and Web-of-Science for studies published from inception to 14 June 2019, to identify observational studies that investigated the association of thyroid function with fibrosis of the liver, heart, and lung in humans. Study quality was evaluated by the Newcastle-Ottawa Scale. The Mantel-Haenszel method was used to pool the odds ratios (ORs) of studies investigating the association of hypothyroidism with liver fibrosis. Results: Of the 2196 identified articles, 18 studies were included in the systematic review, of which 11 studies reported on liver fibrosis, 4 on myocardial fibrosis, and 3 on pulmonary fibrosis. The population sample size ranged from 36 to 7259 subjects, with median mean age 51 years (range, 36-69) and median percentage of women 53 (range, 17-100). The risk of bias of studies was low to moderate to high. Higher serum thyrotropin and lower thyroid hormone levels were generally associated with higher likelihood of fibrosis. Compared with euthyroidism, overt and subclinical hypothyroidism was associated with a higher likelihood of fibrosis in the liver (six of seven studies), heart (three of three studies), and lung (three of three studies). Based on the results of the seven studies included in the meta-analysis, overt and subclinical hypothyroidism was associated with an increased risk of liver fibrosis (pooled OR, 2.81; 95% confidence interval [CI], 1.74-4.53; heterogeneity, I2 31.4%; pooled OR, 2.12; CI, 1.45-3.12; heterogeneity, I2 0%; respectively), without evidence of publication bias. Conclusions: This study suggests that low thyroid function is associated with increased likelihood of chronic fibrotic diseases of the liver, heart, and lung. However, the evidence is mainly based on cross-sectional data. Prospective studies and randomized clinical trials are needed to investigate the potential efficacy of thyroid hormone and its analogs on the occurrence and progression of fibrosis.
Collapse
Affiliation(s)
- Arjola Bano
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Internal Medicine, Department of Epidemiology, and Academic Center for Thyroid Diseases; Rotterdam, the Netherlands
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Department of Cardiology, Inselspital, University of Bern; Endocrinology, Clinical Nutrition and Metabolism; Bern University Hospital, Bern, Switzerland
| | - Layal Chaker
- Department of Internal Medicine, Department of Epidemiology, and Academic Center for Thyroid Diseases; Rotterdam, the Netherlands
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | | | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism; Bern University Hospital, Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Robin P Peeters
- Department of Internal Medicine, Department of Epidemiology, and Academic Center for Thyroid Diseases; Rotterdam, the Netherlands
| | - Salman Razvi
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Gateshead Health NHS Foundation Trust, Queen Elizabeth Hospital, Gateshead, United Kingdom
| |
Collapse
|
33
|
Shoemaker LD, McCormick AK, Allen BM, Chang SD. Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations. Clin Transl Med 2020; 10:e99. [PMID: 32564509 PMCID: PMC7403663 DOI: 10.1002/ctm2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain arteriovenous malformations (AVMs) are rare, potentially devastating cerebrovascular lesions that can occur in both children and adults. AVMs are largely sporadic and the basic disease biology remains unclear, limiting advances in both detection and treatment. This study aimed to investigate human brain AVMs for endothelial-to-mesenchymal transition (EndMT), a process recently implicated in cerebral cavernous malformations (CCMs). METHODS We used 29 paraffin-embedded and 13 fresh/frozen human brain AVM samples to profile expression of panels of EndMT-associated proteins and RNAs. CCMs, a cerebrovascular disease also characterized by abnormal vasculature, were used as a primary comparison, given that EndMT specifically contributes to CCM disease biology. AVM-derived cell lines were isolated from three fresh, surgical AVM samples and characterized by protein expression. RESULTS We observed high collagen deposition, high PAI-1 expression, and expression of EndMT-associated transcription factors such as KLF4, SNAI1, and SNAI2 and mesenchymal-associated markers such as VIM, ACTA2, and S100A4. SMAD-dependent TGF-β signaling was not strongly activated in AVMs and this pathway may be only partially involved in mediating EndMT. Using serum-free culture conditions, we isolated myofibroblast-like cell populations from AVMs that expressed a unique range of proteins associated with mature cell types and with EndMT. Conditioned medium from these cells led to increased proliferation of HUVECs and SMCs. CONCLUSIONS Collectively, our results suggest a role for EndMT in AVM disease. This may lead to new avenues for disease models to further our understanding of disease mechanisms, and to the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Lorelei D. Shoemaker
- Stanford Neuromolecular Innovation ProgramDepartment of NeurosurgeryStanford UniversityStanfordCalifornia
| | - Aaron K. McCormick
- Stanford Neuromolecular Innovation ProgramDepartment of NeurosurgeryStanford UniversityStanfordCalifornia
| | - Breanna M. Allen
- Department of Microbiology & ImmunologyUniversity of CaliforniaSan FranciscoCalifornia
| | - Steven D. Chang
- Stanford Neuromolecular Innovation ProgramDepartment of NeurosurgeryStanford UniversityStanfordCalifornia
| |
Collapse
|
34
|
Kanasaki K. N-acetyl-seryl-aspartyl-lysyl-proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: An update and translational aspects. J Diabetes Investig 2020; 11:516-526. [PMID: 31997585 PMCID: PMC7232267 DOI: 10.1111/jdi.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous peptide that has been confirmed to show excellent organ-protective effects. Even though originally discovered as a modulator of hemotopoietic stem cells, during the recent two decades, AcSDKP has been recognized as valuable antifibrotic peptide. The antifibrotic mechanism of AcSDKP is not yet clear; we have established that AcSDKP could target endothelial-mesenchymal transition program through the induction of the endothelial fibroblast growth factor receptor signaling pathway. Also, recent reports suggested the clinical significance of AcSDKP. The aim of this review was to update recent advances of the mechanistic action of AcSDKP and discuss translational research aspects.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Internal Medicine 1Faculty of MedicineShimane UniversityIzumoJapan
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaJapan
- Division of Anticipatory Molecular Food Science and TechnologyKanazawa Medical UniversityUchinadaJapan
| |
Collapse
|
35
|
Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol 2020; 90:79-108. [PMID: 32173580 DOI: 10.1016/j.matbio.2020.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mallika Kanwar
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin E Jackson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
36
|
Silencing of p53 reduces cell migration in human Tenon's fibroblasts induced by TGF-β. Int Ophthalmol 2020; 40:1509-1516. [PMID: 32124130 DOI: 10.1007/s10792-020-01320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Growth factors are considered as key molecules that participating in fibrosis formation. This research aimed to clarify potential effects of p53 on regulation of transforming growth factor β (TGF-β) and fibrosis formation and investigate the associated mechanisms. METHODS Vimentin was examined to identify human Tenon's fibroblasts (HTFs). p53-targeting small interfere RNA (siRNA) was synthesis and transfected into HTFs. Real-time PCR assay was utilized to evaluate p53 and microRNA-29b (miR-29b) expression. Immunocytochemical assay was used to observe TGF-β expression. The wound healing assay was conducted to evaluate migration of HTFs. Dual-luciferase assay was employed to identify interaction between p53 and miR-29b in HTFs. RESULTS Vimentin was extensively distributed in HTFs cells. HTFs at density of 5 × 104 cells/ml and 6 days exhibited the best growth. The p53 level in TGF-β treatment group was significantly higher compared to that in blank group (p < 0.01). miR-29b level in siRNA targeting p53 group was significantly increased compared to that in blank group (p < 0.01). siRNA targeting p53 could significantly inhibit HTFs migration compared to that in single TGF-β treating HTFs group (p < 0.01). Relative luciferase activity was significantly increased in p53 overexpressed HTFs compared to that in cells transfected with empty pcDNA3.0 plasmid (p < 0.01). CONCLUSIONS p53 inhibited expression of TGF-β, suppressed HTFs migration and inhibited HTFs growth, by reducing miR-29b expression and interacting with miR29b gene in HTFs.
Collapse
|
37
|
Zingariello M, Martelli F, Verachi P, Bardelli C, Gobbo F, Mazzarini M, Migliaccio AR. Novel targets to cure primary myelofibrosis from studies on Gata1 low mice. IUBMB Life 2019; 72:131-141. [PMID: 31749302 DOI: 10.1002/iub.2198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 01/06/2023]
Abstract
In 2002, we discovered that mice carrying the hypomorphic Gata1low mutation that reduces expression of the transcription factor GATA1 in megakaryocytes (Gata1low mice) develop myelofibrosis, a phenotype that recapitulates the features of primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms (MPNs). At that time, this discovery had a great impact on the field because mutations driving the development of PMF had yet to be discovered. Later studies identified that PMF, as the others MPNs, is associated with mutations activating the thrombopoietin/JAK2 axis raising great hope that JAK inhibitors may be effective to treat the disease. Unfortunately, ruxolitinib, the JAK1/2 inhibitor approved by FDA and EMEA for PMF, ameliorates symptoms but does not improve the natural course of the disease, and the cure of PMF is still an unmet clinical need. Although GATA1 is not mutated in PMF, reduced GATA1 content in megakaryocytes as a consequence of ribosomal deficiency is a hallmark of myelofibrosis (both in humans and mouse models) and, in fact, a driving event in the disease. Conversely, mice carrying the hypomorphic Gata1low mutation express an activated TPO/JAK2 pathway and partially respond to JAK inhibitors in a fashion similar to PMF patients (reduction of spleen size but limited improvement of the natural history of the disease). These observations cross-validated Gata1low mice as a bona fide animal model for PMF and prompted the use of this model to identify abnormalities that might be targeted to cure the disease. We will summarize here data generated in Gata1low mice indicating that the TGF-β/P-selectin axis is abnormal in PMF and represents a novel target for its treatment.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Paola Verachi
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Claudio Bardelli
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Maria Mazzarini
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy.,Myeloproliferative Neoplasms Research Consortium, New York, New York
| |
Collapse
|
38
|
Khajehahmadi Z, Mohagheghi S, Nikeghbalian S, Geramizadeh B, Khodadadi I, Karimi J, Tavilani H. Liver stiffness correlates with serum osteopontin and TAZ expression in human liver cirrhosis. Ann N Y Acad Sci 2019; 1465:117-131. [PMID: 31696937 DOI: 10.1111/nyas.14259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
The pivotal role of the extracellular matrix (ECM) as both a cause and consequence of liver fibrosis is striking. However, mechanotransducer molecules and profibrogenic factors induced by liver stiffness are still unclear. The current study aimed to investigate liver stiffness and its correlation with the expression of the transcriptional coactivator with PDZ-binding motif (TAZ) and serum osteopontin (OPN) in human cirrhosis. In this case-control study, liver tissue stiffness was determined using atomic force microscopy in cirrhotic livers (n = 38) of different etiologies and in controls (n = 10). Immunohistochemical and qRT-PCR analyses were performed to analyze TAZ expression. Besides, western blotting and ELISA were performed to assess liver Indian hedgehog and serum OPN levels, respectively. Liver stiffness, TAZ expression, and hepatic gene expression and serum protein levels of OPN were significantly increased in patients with cirrhosis compared with the control groups (all P < 0.001), specifically in autoimmune- and alcohol-related cirrhosis. In cirrhotic patients, liver stiffness was significantly associated with the expression of nuclear TAZ and OPN. The correlation between matrix stiffness as a mechanical property, TAZ as a potential mechanotransducer, and OPN as a matricellular factor suggests possible effects of mechanical features of the ECM on the expression of the aforementioned profibrogenic markers, which is predominant in autoimmune- and alcohol-related cirrhosis.
Collapse
Affiliation(s)
- Zohreh Khajehahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Mohagheghi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Pathology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
39
|
Li Q, Yao Y, Shi S, Zhou M, Zhou Y, Wang M, Chiu JJ, Huang Z, Zhang W, Liu M, Wang Q, Tu X. Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM. J Cell Mol Med 2019; 24:910-920. [PMID: 31680453 PMCID: PMC6933373 DOI: 10.1111/jcmm.14800] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
In type 1 and type 2 diabetes mellitus, increased cardiac fibrosis, stiffness and associated diastolic dysfunction may be the earliest pathological phenomena in diabetic cardiomyopathy. Endothelial-mesenchymal transition (EndMT) in endothelia cells (ECs) is a critical cellular phenomenon that increases cardiac fibroblasts (CFs) and cardiac fibrosis in diabetic hearts. The purpose of this paper is to explore the molecular mechanism of miR-21 regulating EndMT and cardiac perivascular fibrosis in diabetic cardiomyopathy. In vivo, hyperglycaemia up-regulated the mRNA level of miR-21, aggravated cardiac dysfunction and collagen deposition. The condition was recovered by inhibition of miR-21 following with improving cardiac function and decreasing collagen deposition. miR-21 inhibition decreased cardiac perivascular fibrosis by suppressing EndMT and up-regulating SMAD7 whereas activating p-SMAD2 and p-SMAD3. In vitro, high glucose (HG) up-regulated miR-21 and induced EndMT in ECs, which was decreased by inhibition of miR-21. A highly conserved binding site of NF-κB located in miR-21 5'-UTR was identified. In ECs, SMAD7 is directly regulated by miR-21. In conclusion, the pathway of NF-κB/miR-21/SMAD7 regulated the process of EndMT in T1DM, in diabetic cardiomyopathy, which may be regarded as a potential clinical therapeutic target for cardiac perivascular fibrosis.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shumei Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Min Liu
- Hypertension Department of Henan Provincial People's Hospital, Henan, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Ishikawa G, Fujiwara N, Hirschfield H, Varricchio L, Hoshida Y, Barosi G, Rosti V, Padilla M, Mazzarini M, Friedman SL, Hoffman R, Migliaccio AR. Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Exp Hematol 2019; 79:16-25.e3. [PMID: 31678370 PMCID: PMC6910948 DOI: 10.1016/j.exphem.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Megakaryocytes have been implicated in the micro-environmental abnormalities associated with fibrosis and hematopoietic failure in the bone marrow (BM) of primary myelofibrosis (PMF) patients, the Philadelphia-negative myeloproliferative neoplasm (MPN) associated with the poorest prognosis. To identify possible therapeutic targets for restoring BM functions in PMF, we compared the expression profiling of PMF BM with that of BM from essential thrombocytopenia (ET), a fibrosis-free MPN also associated with BM megakaryocyte hyperplasia. The signature of PMF BM was also compared with published signatures associated with liver and lung fibrosis. Gene set enrichment analysis (GSEA) identified distinctive differences between the expression profiles of PMF and ET. Notch, K-Ras, IL-8, and apoptosis pathways were altered the most in PMF as compared with controls. By contrast, cholesterol homeostasis, unfolded protein response, and hypoxia were the pathways found altered to the greatest degree in ET compared with control specimens. BM from PMF expressed a noncanonical transforming growth factor β (TGF-β) signature, which included activation of ID1, JUN, GADD45b, and genes with binding motifs for the JUN transcriptional complex AP1. By contrast, the expression of ID1 and GADD45b was not altered and there was a modest signal for JUN activation in ET. The similarities among PMF, liver fibrosis, and lung fibrosis were modest and included activation of integrin-α9 and tropomyosin-α1 between PMF and liver fibrosis, and of ectoderm-neural cortex protein 1 and FRAS1-related extracellular matrix protein 1 between PMF and lung fibrosis, but not TGF-β. These data identify TGF-β as a potential target for micro-environmental therapy in PMF.
Collapse
Affiliation(s)
- Genta Ishikawa
- Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Tumor Translational Research Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hadassa Hirschfield
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yujin Hoshida
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Tumor Translational Research Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Padilla
- Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Rita Migliaccio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
41
|
Pang Q, Wang Y, Xu M, Xu J, Xu S, Shen Y, Xu J, Lei R. MicroRNA-152-5p inhibits proliferation and migration and promotes apoptosis by regulating expression of Smad3 in human keloid fibroblasts. BMB Rep 2019. [PMID: 30638178 PMCID: PMC6476487 DOI: 10.5483/bmbrep.2019.52.3.278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Keloids are the most common pathological form of trauma healing, with features that seriously affect appearance and body function, are difficult to treat and have a high recurrence rate. Emerging evidence suggests that miRNAs are involved in a variety of pathological processes and play an important role in the process of fibrosis. In this study, we investigated the function and regulatory network of miR-152-5p in keloids. The miRNA miR-152-5p is frequently downregulated in keloid tissue and primary cells compared to normal skin tissue and fibroblasts. In addition, the downregulation of miR-152-5p is significantly associated with the proliferation, migration and apoptosis of keloid cells. Overexpression of miR-152-5p significantly inhibits the progression of fibrosis in keloids. Smad3 is a direct target of miR-152-5p, and knockdown of Smad3 also inhibits fibrosis progression, consistent with the overexpression of miR-152-5p. The interaction between miR-152-5p and Smad3 occurs through the Erk1/2 and Akt pathways and regulates collagen3 production. In summary, our study demonstrates that miR-152-5p/Smad3 regulatory pathways involved in fibrotic progression may be a potential therapeutic target of keloids.
Collapse
Affiliation(s)
- Qianqian Pang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuming Wang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mingyuan Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiachao Xu
- Department of Internal Medicine, Haiyan Hospital of Traditional Chinese Medicine, Jiaxin 314300, China
| | - Shengquan Xu
- Department of Hand Surgery and Microsurgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yichen Shen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
42
|
Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L, Wang L. Upregulation of Circular RNA CircNFIB Attenuates Cardiac Fibrosis by Sponging miR-433. Front Genet 2019; 10:564. [PMID: 31316543 PMCID: PMC6611413 DOI: 10.3389/fgene.2019.00564] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the pathological consequence of fibroblast proliferation and fibroblast-to-myofibroblast transition. As a new class of endogenous non-coding RNAs, circular RNAs (circRNAs) have been identified in many cardiovascular diseases including fibrosis, generally acting as microRNA (miRNA) sponges. Here, we report that the expression of circRNA-circNFIB was decreased in mice post-myocardial infarction heart samples, as well as in primary adult cardiac fibroblasts treated with TGF-β. Forced expression of circNFIB decreased cell proliferation in both NIH/3T3 cells and primary adult fibroblasts as evidenced by EdU incorporation. Conversely, inhibition of circNFIB promoted adult fibroblast proliferation. Furthermore, circNFIB was identified as a miR-433 endogenous sponge. Overexpression of circNFIB could attenuate pro-proliferative effects induced by the miR-433 mimic while inhibition of circNFIB exhibited opposite results. Finally, upregulation of circNFIB also reversed the expression levels of target genes and downstream signaling pathways of miR-433. In conclusion, circNFIB is critical for protection against cardiac fibrosis. The circNFIB-miR-433 axis may represent a novel therapeutic approach for treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheyi Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
43
|
Gao R, Kanasaki K, Li J, Kitada M, Okazaki T, Koya D. βklotho is essential for the anti-endothelial mesenchymal transition effects of N-acetyl-seryl-aspartyl-lysyl-proline. FEBS Open Bio 2019; 9:1029-1038. [PMID: 30972974 PMCID: PMC6487725 DOI: 10.1002/2211-5463.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial–mesenchymal transition (EndMT) has emerged as an essential bioprocess responsible for the development of organ fibrosis. We have previously reported that fibroblast growth factor receptor 1 (FGFR1) is involved in the anti‐EndMT effect of N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (AcSDKP). FGFR1 is expressed on the cell membrane and performs its biological function through interaction with co‐receptors, including βklotho (KLB). However, it remains unknown whether KLB is involved in the anti‐EndMT effects of AcSDKP. Here, we demonstrated that AcSDKP increased KLB expression in an FGFR1‐dependent manner and that KLB deficiency induced AcSDKP‐resistant EndMT via the induction of the mitogen‐activated protein kinase (MAPK) pathway. In cultured endothelial cells, AcSDKP increased KLB protein level in an FGFR1‐dependent manner through induction of the FGFR1–KLB complex. KLB suppression by small interfering RNA transfection did not affect FGFR1 levels and resulted in the induction of EndMT. In contrast to the EndMT observed under FGFR1 deficiency, the EndMT induced by KLB suppression was not accompanied by the induction of Smad3 phosphorylation; instead, KLB‐deficient cells exhibited induced activation of the MAPK/extracellular signal‐regulated kinase (ERK) kinase (MEK) and ERK pathways. Treatment with the specific MEK inhibitor U0126 diminished KLB deficiency‐induced EndMT. Consistent with this finding, AcSDKP did not suppress either EndMT or MEK/ERK activation induced by KLB deficiency. Application of either FGF19 or FGF21 synergistically augmented the anti‐EndMT effects of AcSDKP. Taken together, these results indicate that endogenous peptide AcSDKP exerts its activity through induction of the FGFR1–KLB complex in vascular endothelial cells.
Collapse
Affiliation(s)
- Rongfen Gao
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Hematology & Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jinpeng Li
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Munehiro Kitada
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Toshiro Okazaki
- Department of Hematology & Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
44
|
Zhang JX, Lu J, Xie H, Wang DP, Ni HE, Zhu Y, Ren LH, Meng XX, Wang RL. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis 2019; 10:182. [PMID: 30796204 PMCID: PMC6385182 DOI: 10.1038/s41419-019-1430-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Myofibroblasts predominantly emerging through fibroblast-to-myofibroblast transition (FMT) are considered to be the key collagen-producing cells in pulmonary fibrosis. Circular RNAs (circRNAs) are important players involved in many biological processes. circHIPK3 has been identified as the one of the most abundant circRNAs in human lung. In this study, we characterized the role of circHIPK3 in pulmonary fibrosis. We revealed that circHIPK3 is upregulated in bleomycin-induced pulmonary fibrosis mice model, FMT-derived myofibroblasts. circHIPK3 silencing can ameliorate FMT and suppress fibroblast proliferation in vivo and vitro. Fundamentally, circHIPK3 regulates FMT by functioning as an endogenous miR-338-3p sponge and inhibit miR-338-3p activity, thereby leading to increased SOX4 and COL1A1 expression. Moreover, dysregulated circHIPK3 expression was detected in the clinical samples of patients with idiopathic pulmonary fibrosis. Intervention of circHIPK3 may represent a promising therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Da-Peng Wang
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Huan-Er Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Xiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
45
|
Rai R, Sun T, Ramirez V, Lux E, Eren M, Vaughan DE, Ghosh AK. Acetyltransferase p300 inhibitor reverses hypertension-induced cardiac fibrosis. J Cell Mol Med 2019; 23:3026-3031. [PMID: 30710427 PMCID: PMC6433695 DOI: 10.1111/jcmm.14162] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 01/22/2023] Open
Abstract
Epigenetic dysregulation plays a crucial role in cardiovascular diseases. Previously, we reported that acetyltransferase p300 (ATp300) inhibitor L002 prevents hypertension‐induced cardiac hypertrophy and fibrosis in a murine model. In this short communication, we show that treatment of hypertensive mice with ATp300‐specific small molecule inhibitor L002 or C646 reverses hypertension‐induced left ventricular hypertrophy, cardiac fibrosis and diastolic dysfunction, without reducing elevated blood pressures. Biochemically, treatment with L002 and C646 also reverse hypertension‐induced histone acetylation and myofibroblast differentiation in murine ventricles. Our results confirm and extend the role of ATp300, a major epigenetic regulator, in the pathobiology of cardiac hypertrophy and fibrosis. Most importantly, we identify the efficacies of ATp300 inhibitors C646 and L002 in reversing hypertension‐induced cardiac hypertrophy and fibrosis, and discover new anti‐hypertrophic and anti‐fibrotic candidates.
Collapse
Affiliation(s)
- Rahul Rai
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| | - Tianjiao Sun
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| | - Veronica Ramirez
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| | - Elizabeth Lux
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| | - Mesut Eren
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| | - Douglas E Vaughan
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| | - Asish K Ghosh
- Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL
| |
Collapse
|
46
|
Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis. J Ginseng Res 2019; 44:300-307. [PMID: 32148412 PMCID: PMC7031736 DOI: 10.1016/j.jgr.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP–induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP–induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3–miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.
Collapse
|
47
|
Song DG, Kim D, Jung JW, Nam SH, Kim JE, Kim HJ, Kim JH, Lee SJ, Pan CH, Kim S, Lee JW. Glutamyl‐prolyl‐tRNA synthetase induces fibrotic extracellular matrix
via
both transcriptional and translational mechanisms. FASEB J 2018; 33:4341-4354. [DOI: 10.1096/fj.201801344rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dae-Geun Song
- Department of PharmacyResearch Institute of Pharmaceutical SciencesCollege of PharmacySeoul National University Seoul Republic of Korea
- Systems Biotechnology Research CenterKorea Institute of Science and Technology (KIST) Gangneung-si Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research CenterSeoul National University Seoul Republic of Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic EngineeringSeoul National University Seoul Republic of Korea
| | - Seo Hee Nam
- Department of PharmacyResearch Institute of Pharmaceutical SciencesCollege of PharmacySeoul National University Seoul Republic of Korea
| | - Ji Eon Kim
- Department of PharmacyResearch Institute of Pharmaceutical SciencesCollege of PharmacySeoul National University Seoul Republic of Korea
| | - Hye-Jin Kim
- Department of PharmacyResearch Institute of Pharmaceutical SciencesCollege of PharmacySeoul National University Seoul Republic of Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research CenterSeoul National University Seoul Republic of Korea
| | - Seo-Jin Lee
- Department of Life Science and BiotechnologyShingyeong University Gyeonggi-do Republic of Korea
| | - Cheol-Ho Pan
- Systems Biotechnology Research CenterKorea Institute of Science and Technology (KIST) Gangneung-si Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research CenterSeoul National University Seoul Republic of Korea
| | - Jung Weon Lee
- Department of PharmacyResearch Institute of Pharmaceutical SciencesCollege of PharmacySeoul National University Seoul Republic of Korea
- Medicinal Bioconvergence Research CenterSeoul National University Seoul Republic of Korea
- Interdisciplinary Program in Genetic EngineeringSeoul National University Seoul Republic of Korea
| |
Collapse
|
48
|
Püttmann S, Koch J, Steinacker JP, Schmidt SA, Seufferlein T, Kratzer W, Schmidberger J, Manfras B. Ultrasound point shear wave elastography of the pancreas: comparison of patients with type 1 diabetes and healthy volunteers - results from a pilot study. BMC Med Imaging 2018; 18:52. [PMID: 30545313 PMCID: PMC6293554 DOI: 10.1186/s12880-018-0295-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background The aims of this study were to establish shear wave elastography of the pancreas by comparing measurements in patients with type 1 diabetes (T1D) and healthy volunteers and to consider whether this method could contribute to the screening or prevention of T1D. Methods This pilot study included 15 patients with T1D (10 men, 5 women) and 15 healthy volunteers (10 men, 5 women) as controls. Measurements were performed with a Siemens Acuson S3000 (Siemens Healthcare, Erlangen, Germany) using a 6C1 convex transducer and the Virtual Touch™ tissue quantification (VTQ) method. Results The mean shear wave velocity of the head of the pancreas was 1.0 ± 0.2 m/s (median: 1.1 m/s) for the study group and likewise 1.0 ± 0.2 m/s (median: 0.9 m/s) for the control group. Velocities of 1.2 ± 0.2 m/s (median: 1.2 m/s) were measured in the body of the pancreas in both groups. There was a significant difference between the values obtained in the tail of the pancreas: patients 1.1 ± 0.1 m/s (median: 1.0 m/s) versus controls 0.9 ± 0.1 m/s (median: 0.8 m/s) (p = 0.0474). The mean value in the whole pancreas of the study group was not significantly above that of the control group: 1.1 ± 0.1 m/s (median: 1.0 m/s) versus 1.0 ± 0.1 m/s (median: 1.0 m/s) (p = 0.2453). Conclusions Sonoelastography of the pancreas revealed no overall difference between patients with T1D and healthy volunteers. Patients with T1D showed higher values only in the tail segment. Future studies need to determine whether specific regional differences can be found in a larger study population.
Collapse
Affiliation(s)
- Sophie Püttmann
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Janina Koch
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Jochen Paul Steinacker
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Stefan Andreas Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Wolfgang Kratzer
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Julian Schmidberger
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | | |
Collapse
|
49
|
Riedel L, Fischer B, Ly TD, Hendig D, Kuhn J, Knabbe C, Faust I. microRNA-29b mediates fibrotic induction of human xylosyltransferase-I in human dermal fibroblasts via the Sp1 pathway. Sci Rep 2018; 8:17779. [PMID: 30542210 PMCID: PMC6290791 DOI: 10.1038/s41598-018-36217-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diminished microRNA-29b levels have recently been revealed to provoke increased expression and accumulation of extracellular matrix molecules, such as collagens in fibrotic remodeling. Subsequently, the aim of this study was to find out whether microRNA-29b might also regulate human xylosyltransferase (XT)-I expression. XT-I has been characterized previously as a fibrosis biomarker catalyzing the key step of proteoglycan biosynthesis. While we demonstrate that XYLT1 is neither a target of microRNA-29b identified in silico nor a direct 3' untranslated region binding partner of microRNA-29b, transfection of normal human dermal fibroblasts with microRNA-29b inhibitor strongly increased XYLT1 mRNA expression and XT activity. Combined results of the target prediction analysis and additional transfection experiments pointed out that microRNA-29b exerts indirect influence on XT-I by targeting the transcription factor specificity protein 1 (Sp1). We could confirm our hypothesis due to the decrease in XYLT1 promoter activity after Sp1 binding site mutation and the approval of occupancy of these binding sites by Sp1 in vitro. Taken together, a hitherto unidentified pathway of XT-I regulation via microRNA-29b/Sp1 was determined in this study. Our observations will facilitate the understanding of complex molecular fibrotic pathways and provide new opportunities to investigate microRNA-based antifibrotic tools.
Collapse
Affiliation(s)
- Lara Riedel
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
50
|
Song DG, Kim D, Jung JW, Nam SH, Kim JE, Kim HJ, Kim JH, Pan CH, Kim S, Lee JW. Glutamyl-Prolyl-tRNA Synthetase Regulates Epithelial Expression of Mesenchymal Markers and Extracellular Matrix Proteins: Implications for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2018; 9:1337. [PMID: 30524284 PMCID: PMC6256097 DOI: 10.3389/fphar.2018.01337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a chronic disease of unknown cause, is characterized by abnormal accumulation of extracellular matrix (ECM) in fibrotic foci in the lung. Previous studies have shown that the transforming growth factor β1 (TGFβ1) and signal transducers and activators of transcription (STAT) pathways play roles in IPF pathogenesis. Glutamyl-prolyl-tRNA-synthetase (EPRS) has been identified as a target for anti-fibrosis therapy, but the link between EPRS and TGFβ1-mediated IPF pathogenesis remains unknown. Here, we studied the role of EPRS in the development of fibrotic phenotypes in A549 alveolar epithelial cells and bleomycin-treated animal models. We found that EPRS knockdown inhibited the TGFβ1-mediated upregulation of fibronectin and collagen I and the mesenchymal proteins α-smooth muscle actin (α-SMA) and snail 1. TGFβ1-mediated transcription of collagen I-α1 and laminin γ2 in A549 cells was also down-regulated by EPRS suppression, indicating that EPRS is required for ECM protein transcriptions. Activation of STAT signaling in TGFβ1-induced ECM expression was dependent on EPRS. TGFβ1 treatment resulted in EPRS-dependent in vitro formation of a multi-protein complex consisting of the TGFβ1 receptor, EPRS, Janus tyrosine kinases (JAKs), and STATs. In vivo lung tissue from bleomycin-treated mice showed EPRS-dependent STAT6 phosphorylation and ECM production. Our results suggest that epithelial EPRS regulates the expression of mesenchymal markers and ECM proteins via the TGFβ1/STAT signaling pathway. Therefore, epithelial EPRS can be used as a potential target to develop anti-IPF treatments.
Collapse
Affiliation(s)
- Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, South Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, South Korea
| | - Seo Hee Nam
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| | - Cheol-Ho Pan
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Medicinal Bioconvergence Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|