1
|
Scanu A, Maccarone MC, Caldara F, Regazzo G, Luisetto R, Masiero S. Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro. Biomedicines 2024; 12:2917. [PMID: 39767823 PMCID: PMC11672968 DOI: 10.3390/biomedicines12122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Although treatments using thermal water have yielded beneficial effects in respiratory tract infections, the effects of thermal water under experimental conditions similar to those triggered by SARS-CoV-2 have yet to be evaluated. This study aimed to assess whether thermal water could interfere with the interaction between SARS-CoV-2 and host cells and influence inflammatory factors. Methods: Human nasal epithelial primary cells (HNEpCs) were stimulated with SARS-CoV-2 spike protein in the presence or absence of thermal water or tap water. Cell viability, cytokine concentration, ACE2 and TMPRSS2 levels, and ACE2 activity were determined in the cell cultures. Results: Exposure of HNEpCs to spike protein increased IL-6, IL-8, and IL-1β production, with decreased production observed in the presence of thermal water at an optimal dose. Treatment of cells with tap water did not affect cytokine release in unstimulated or spike-stimulated cells. Spike-protein-stimulated HNEpCs showed reduced levels of ACE2, which were partially restored only in the presence of thermal water. Spike protein did not affect the TMPRSS2 levels of the cell lysates. Stimulation with spike protein induced an increase in the concentration of both receptors in the supernatants, while treatment with thermal water reduced TMPRSS2 levels in both the cells and supernatants. Stimulation with spike protein increased ACE2 activity, which was reduced with thermal water. Conclusions: This study shows the regulatory effects of mineral-rich thermal water on spike-protein-induced pro-inflammatory cytokine production and the amount and activity of receptors mainly involved in viral entry, suggesting a potential use of this treatment as a support therapy for SARS-CoV-2 infection of the upper respiratory tract.
Collapse
Affiliation(s)
- Anna Scanu
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (M.C.M.); (S.M.)
| | - Maria Chiara Maccarone
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (M.C.M.); (S.M.)
| | - Fabrizio Caldara
- Pietro d’Abano Thermal Studies Center, Via Jappelli 5, 35031 Abano Terme, Italy;
| | - Gianluca Regazzo
- Physical Medicine and Rehabilitation School, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Roberto Luisetto
- Department of Surgical Oncological and Gastroenterological Sciences-DISCOG, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (M.C.M.); (S.M.)
- Physical Medicine and Rehabilitation School, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| |
Collapse
|
2
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
3
|
Zhang Z, Wang P, Xiong Q, Xu S, Kang D, He Z, Yao C, Jian G. Advancements in the study of IL-6 and its receptors in the pathogenesis of gout. Cytokine 2024; 182:156705. [PMID: 39053079 DOI: 10.1016/j.cyto.2024.156705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Gout is an autoinflammatory disease characterized by the deposition of monosodium urate crystals in or around the joints, primarily manifesting as inflammatory arthritis that recurs and resolves spontaneously. Interleukin-6 (IL-6) is a versatile cytokine with both anti-inflammatory and pro-inflammatory capabilities, linked to a variety of inflammatory diseases such as gouty arthritis, rheumatoid arthritis, inflammatory bowel disease, vasculitis, and several types of cancer. The rapid production of IL-6 during infections and tissue damage aids in host defense. However, excessive synthesis of IL-6 and dysregulation of its receptor signaling (IL-6R) might contribute to the pathology of diseases. Recent advancements in clinical and basic research, along with developments in animal models, have established the significant role of IL-6 and its receptors in the pathogenesis of gout, although the precise mechanisms remain to be fully elucidated. This review discusses the role of IL-6 and its receptors in gout progression and examines contemporary research on modulating IL-6 and its signaling pathways for treatment. It aims to provide insights into the pathogenesis of gout and to advance the development of targeted therapies for gout-related inflammation.
Collapse
Affiliation(s)
- Zeng Zhang
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Peng Wang
- Xichong County People's Hospital, Nanchong 637200, Sichuan, China
| | - Qin Xiong
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Shanshan Xu
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Dong Kang
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Zhengguang He
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China
| | - Chengjiao Yao
- Affiliated Hospital of Sichuan Bei Medical College, Nanchong 637000, Sichuan, China
| | - Guilin Jian
- The Third People's Hospital of Suining City, Suining 629000, Sichuan, China.
| |
Collapse
|
4
|
Zhu Q, Zhou H. The role of cGAS-STING signaling in rheumatoid arthritis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1466023. [PMID: 39386207 PMCID: PMC11461283 DOI: 10.3389/fimmu.2024.1466023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily characterized by erosive and symmetric polyarthritis. As a pivotal axis in the regulation of type I interferon (IFN-I) and innate immunity, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has been implicated in the pathogenesis of RA. This pathway mainly functions by regulating cell survival, pyroptosis, migration, and invasion. Therefore, understanding the sources of cell-free DNA and the mechanisms underlying the activation and regulation of cGAS-STING signaling in RA offers a promising avenue for targeted therapies. Early detection and interventions targeting the cGAS-STING signaling are important for reducing the medical burden on individuals and healthcare systems. Herein, we review the existing literature pertaining to the role of cGAS-STING signaling in RA, and discuss current applications and future directions for targeting the cGAS-STING signaling in RA treatments.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
5
|
Ea HK, Kischkel B, Chirayath TW, Klück V, Aparicio C, Loeung HU, Manivet P, Jansen T, Zarka M, Lioté F, Latourte A, Bardin T, Gauffenic A, Vicaut E, Crișan TO, Netea MG, Richette P, Joosten LA. Systemic inflammatory cytokine profiles in patients with gout during flare, intercritical and treat-to-target phases: TNFSF14 as new biomarker. Ann Rheum Dis 2024; 83:945-956. [PMID: 38373842 DOI: 10.1136/ard-2023-225305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Untreated gout is characterised by monosodium urate (MSU) crystal accumulation responsible for recurrent flares that are commonly separated by asymptomatic phases. Both phases are inflammatory conditions of variable intensity. Gout flares are self-limited inflammatory reactions involving multiple mediators. This study aimed to characterise the inflammatory profiles of gout at different phases. METHODS Using the Olink targeted proteomics, levels of 92 inflammation-related proteins were measured in plasma samples of a prospective gout population (GOUTROS), collected at gout flare (T1), the intercritical phase (T2) and after reaching the target serum urate level under urate-lowering therapy (T3). Results were validated in an independent cohort (OLT1177-05) with plasmas collected at T1 and T2. Ex vivo and in vitro experiments were performed to assess the inflammatory properties of new biomarkers. RESULTS In total, 21 inflammatory new biomarkers were differentially expressed during the three time-points of gout disease. The levels of four of these proteins (interleukin 6 (IL-6), colony-stimulating factor 1, vascular endothelial growth factor A and tumour necrosis factor superfamily 14 (TNFSF14)) were increased during gout flare in an independent cohort. IL-6 and TNFSF14 had the highest fold change in expression during T1 versus T2 or T3. TNFSF14 was produced at the inflamed joint and enhanced the inflammatory response induced by lipopolysaccharide and MSU crystal stimulation. Conversely, TNFSF14 blockade reduced the inflammatory response. Additionally, single nucleotide polymorphisms of TNFSF14 affected the ability of myeloid cells to produce inflammatory cytokines. CONCLUSION Gout flare involves multiple inflammatory mediators that may be used as potential therapeutic targets.
Collapse
Affiliation(s)
- Hang-Korng Ea
- Bioscar, INSERM UMR-1132, hôpital Lariboisière, centre Viggo Petersen, DMU Locomoteur, AP-HP, Universite Paris Cite, Paris, France
| | - Brenda Kischkel
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Viola Klück
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Philippe Manivet
- Assistance Publique-Hôpitaux de Paris, Centre de Ressources Biologiques, Paris, France
| | - Tim Jansen
- Rheumatology, VieCuri, Venlo, The Netherlands
| | - Mylène Zarka
- Bioscar, INSERM UMR-1132, Universite Paris Cite, Paris, France
| | - Frédéric Lioté
- Bioscar, INSERM UMR-1132, hôpital Lariboisière, centre Viggo Petersen, DMU Locomoteur, AP-HP, Universite Paris Cite, Paris, France
| | - Augustin Latourte
- Bioscar, INSERM UMR-1132, hôpital Lariboisière, centre Viggo Petersen, DMU Locomoteur, AP-HP, Universite Paris Cite, Paris, France
| | - Thomas Bardin
- Bioscar, INSERM UMR-1132, hôpital Lariboisière, centre Viggo Petersen, DMU Locomoteur, AP-HP, Universite Paris Cite, Paris, France
| | - Alan Gauffenic
- Bioscar, INSERM UMR-1132, hôpital Lariboisière, centre Viggo Petersen, DMU Locomoteur, AP-HP, Universite Paris Cite, Paris, France
| | - Eric Vicaut
- Unité de recherche clinique, Groupe hospitalier Lariboisiere Fernand-Widal, Paris, France
| | - Tania Octavia Crișan
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Richette
- Bioscar, INSERM UMR-1132, hôpital Lariboisière, centre Viggo Petersen, DMU Locomoteur, AP-HP, Universite Paris Cite, Paris, France
| | - Leo Ab Joosten
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Yang X, Zhao L, Pang Y. cGAS-STING pathway in pathogenesis and treatment of osteoarthritis and rheumatoid arthritis. Front Immunol 2024; 15:1384372. [PMID: 38765007 PMCID: PMC11099256 DOI: 10.3389/fimmu.2024.1384372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Osteoarthritis (OA) and Rheumatoid Arthritis (RA) are significant health concerns with notable prevalence and economic impact. RA, affecting 0.5% to 1.0% of the global population, leads to chronic joint damage and comorbidities. OA, primarily afflicting the elderly, results in joint degradation and severe pain. Both conditions incur substantial healthcare expenses and productivity losses. The cGAS-STING pathway, consisting of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), is a crucial component of mammalian immunity. This pathway is responsible for detecting foreign DNA, particularly double-stranded DNA (dsDNA), triggering innate immune defense responses. When cGAS recognizes dsDNA, it catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which then binds to and activates STING. Activated STING, in turn, initiates downstream signaling events leading to the production of interferons and other immune mediators. The cGAS-STING pathway is essential for defending against viral infections and maintaining cellular balance. Dysregulation of this pathway has been implicated in various inflammatory diseases, including arthritis, making it a target for potential therapeutic interventions. Understanding the intricate molecular signaling network of cGAS-STING in these arthritis forms offers potential avenues for targeted therapies. Addressing these challenges through improved early detection, comprehensive management, and interventions targeting the cGAS-STING pathway is crucial for alleviating the impact of OA and RA on individuals and healthcare systems. This review offers an up-to-date comprehension of the cGAS-STING pathway's role in the development and therapeutic approaches for these arthritis types.
Collapse
Affiliation(s)
- XiCheng Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - LiLi Zhao
- Orthopedics and Arthrology, People Hospital of Xingtai, Xingtai, Hebei, China
| | - YinQuan Pang
- Graduate School, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
7
|
Baggio C, Luisetto R, Boscaro C, Scanu A, Ramonda R, Albiero M, Sfriso P, Oliviero F. Leucocyte Abnormalities in Synovial Fluid of Degenerative and Inflammatory Arthropathies. Int J Mol Sci 2023; 24:ijms24065450. [PMID: 36982526 PMCID: PMC10056596 DOI: 10.3390/ijms24065450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Genome damage has been related to the induction of autoimmune processes, chronic inflammation, and apoptosis. Recent studies suggest that some rheumatological diseases are associated with overall genomic instability in the T cell compartment. However, no data regarding leucocyte abnormalities in synovial fluid (SF) and their relationship with inflammation are available. The aim of this study was to investigate cellular phenotypes in SF collected from patients with different inflammatory arthropathies, including rhematoid arthritis (RA), psoriatic arthritis (PsA), crystal-induced arthritis (CIA), and non-inflammatory arthropathies, such as osteoarthritis (OA). We found high percentage of micronuclei in SF from CIA compared to the other groups and a high frequency of pyknotic cell in RA and CIA patients. A correlation between pyknosis and immature polymorphonuclear cells with local inflammatory indices was observed. The study of the apoptosis process revealed an increased BAX expression in CIA and RA compared to OA and PsA, while Bcl-2 was higher in CIA. Caspase-3 activity was increased in SF from RA patients and correlates with inflammatory and anti-inflammatory cytokines. In conclusion, our results showed that inflammatory SF is associated with genomic instability and abnormal cell subsets.
Collapse
Affiliation(s)
- Chiara Baggio
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, 35128 Padova, Italy
| | - Carlotta Boscaro
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Anna Scanu
- Department of Woman’s and Child’s Health, University of Padova, 35128 Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8218682
| |
Collapse
|
8
|
Scanu A, Luisetto R, Oliviero F, Galuppini F, Lazzarin V, Pennelli G, Masiero S, Punzi L. Bactericidal/Permeability-Increasing Protein Downregulates the Inflammatory Response in In Vivo Models of Arthritis. Int J Mol Sci 2022; 23:ijms232113066. [PMID: 36361854 PMCID: PMC9656099 DOI: 10.3390/ijms232113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the effects of bactericidal/permeability-increasing protein (BPI) alone or in combination with hyaluronic acid (HA) in two animal models: collagen-induced arthritis (CIA) and crystal-induced inflammation. In CIA, mice were intraperitoneally injected with PBS, HA, or BPI plus or minus HA, twice a week for 2 months, and then euthanized to collect paw and blood. Arthritis was assessed in ankle joints by clinical and histological evaluation. Pathogenic crystals were intraperitoneally injected in mice plus or minus BPI, or with a composition of BPI and HA. After sacrifice, total and differential leukocyte counts were determined. Cytokine levels were measured in serum and peritoneal fluids. In CIA mice, BPI improved clinical and histological outcomes (histological scores ≥2-fold), and downregulated inflammatory mediators (47–93%). In crystal-induced inflammation, BPI reduced leukocyte infiltration (total count: ≥60%; polymorphonuclear cells: ≥36%) and inhibited cytokine production (35–74%). In both models, when mice were co-treated with BPI and HA, the improvement of all parameters was greater than that observed after administration of the two substances alone. Results show that BPI attenuates CIA and inflammation in mice, and this effect is enhanced by HA co-administration. Combined use of BPI and HA represents an interesting perspective for new potential treatments in arthritis.
Collapse
Affiliation(s)
- Anna Scanu
- Rehabilitation Unit, Department of Neuroscience—DNS, University of Padova, 35128 Padova, Italy
- Correspondence:
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology—DISCOG, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Vanni Lazzarin
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience—DNS, University of Padova, 35128 Padova, Italy
| | - Leonardo Punzi
- Centre for Gout and Metabolic Bone and Joint Diseases, Rheumatology, SS Giovanni and Paolo Hospital, 30122 Venice, Italy
| |
Collapse
|