1
|
Jegede OO, Fajana HO, Adedokun A, Najafian K, Lingling J, Stavness I, Siciliano SD. Integument colour change: Tracking delayed growth of Oppia nitens as a sub-lethal indicator of soil toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122772. [PMID: 37858700 DOI: 10.1016/j.envpol.2023.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Growth is an important toxicity end-point in ecotoxicology but is rarely used in soil ecotoxicological studies. Here, we assessed the growth change of Oppia nitens when exposed to reference and heavy metal toxicants. To assess mite growth, we developed an image analysis methodology to measure colour spectrum changes of the mite integument at the final developmental stage, as a proxy for growth change. We linked the values of red, green, blue, key-black, and light colour of mites to different growth stages. Based on this concept, we assessed the growth change of mites exposed to cadmium, copper, zinc, lead, boric acid, or phenanthrene at sublethal concentrations in LUFA 2.2 soil for 14 days. Sublethal effects were detected after 7 days of exposure. The growth of O. nitens was more sensitive than survival and reproduction when exposed to copper (EC50growth = 1360 mg/kg compared to EC50reproduction = 2896 mg/kg). Mite growth sensitivity was within the same order of magnitude to mite reproduction when exposed to zinc (EC50growth = 1785; EC50reproduction = 1562 mg/kg). At least 25% of sublethal effects of boric acid and phenanthrene were detected in the mites but growth was not impacted when O. nitens were exposed to lead. Consistent with previous studies, cadmium was the most toxic metal to O. nitens. The mite growth pattern was comparable to mite survival and reproduction from previous studies. Mite growth is a sensitive toxicity endpoint, ecologically relevant, fast, easy to detect, and can be assessed in a non-invasive fashion, thereby complimenting existing O. nitens testing protocols.
Collapse
Affiliation(s)
- Olukayode O Jegede
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada; Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708, PB Wageningen, the Netherlands.
| | - Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Adedamola Adedokun
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Keyhan Najafian
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Jin Lingling
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| |
Collapse
|
2
|
Carley CN, Chen G, Das KK, Delory BM, Dimitrova A, Ding Y, George AP, Greeley LA, Han Q, Hendriks PW, Hernandez-Soriano MC, Li M, Ng JLP, Mau L, Mesa-Marín J, Miller AJ, Rae AE, Schmidt J, Thies A, Topp CN, Wacker TS, Wang P, Wang X, Xie L, Zheng C. Root biology never sleeps: 11 th Symposium of the International Society of Root Research (ISRR11) and the 9 th International Symposium on Root Development (Rooting2021), 24-28 May 2021. THE NEW PHYTOLOGIST 2022; 235:2149-2154. [PMID: 35979688 DOI: 10.1111/nph.18338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Clayton N Carley
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Guanying Chen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Krishna K Das
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, 517507, India
| | - Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
| | - Anastazija Dimitrova
- Department of Biosciences and Territory, University of Molise, Pesche, 86090, Italy
| | - Yiyang Ding
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Abin P George
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, 517507, India
| | - Laura A Greeley
- Department of Biochemistry & Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, MO, 65201, USA
| | - Qingqing Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Pieter-Willem Hendriks
- CSIRO, Agriculture and Food, PO Box 1700, Canberra, 2601, ACT, Australia
- School of Agriculture and Wine Sciences, Charles Sturt University, Boorooma Street, 14, Wagga Wagga, NSW, 2650, Australia
- Graham Centre for Agricultural Innovation, Locked bag 588, Wagga Wagga, NSW, 2678, Australia
| | | | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA, 16801, USA
| | - Jason Liang Pin Ng
- Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Lisa Mau
- Institute of Bio- and Geosciences - Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Faculty of Agriculture, University of Bonn, Bonn, 53115, Germany
- School of BioSciences, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Jennifer Mesa-Marín
- Department of Plant Biology and Ecology, Universidad de Sevilla, Seville, 41012, Spain
| | - Allison J Miller
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Angus E Rae
- Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | | | - August Thies
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65201, USA
| | | | - Tomke S Wacker
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Pinhui Wang
- Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Xinyu Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | - Limeng Xie
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| | - Congcong Zheng
- Institute of Bio- and Geosciences - Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Faculty of Agriculture, University of Bonn, Bonn, 53115, Germany
| |
Collapse
|
3
|
Schmidt MP, Mamet SD, Senger C, Schebel A, Ota M, Tian TW, Aziz U, Stein LY, Regier T, Stanley K, Peak D, Siciliano SD. Positron-emitting radiotracers spatially resolve unexpected biogeochemical relationships linked with methane oxidation in Arctic soils. GLOBAL CHANGE BIOLOGY 2022; 28:4211-4224. [PMID: 35377512 DOI: 10.1111/gcb.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.
Collapse
Affiliation(s)
- Michael P Schmidt
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- USDA-ARS United States Salinity Laboratory, Riverside, California, USA
| | - Steven D Mamet
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Curtis Senger
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alixandra Schebel
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mitsuaki Ota
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony W Tian
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Umair Aziz
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom Regier
- Canadian Light Source, Inc., Saskatoon, Saskatchewan, Canada
| | - Kevin Stanley
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Derek Peak
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Kikuchi T, Ogawa M, Okamura T, Gee AD, Zhang MR. Rapid 'on-column' preparation of hydrogen [ 11C]cyanide from [ 11C]methyl iodide via [ 11C]formaldehyde. Chem Sci 2022; 13:3556-3562. [PMID: 35432866 PMCID: PMC8943838 DOI: 10.1039/d1sc07033a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogen [11C]cyanide ([11C]HCN) is a versatile 11C-labelling agent for the production of 11C-labelled compounds used for positron emission tomography (PET). However, the traditional method for [11C]HCN production requires a dedicated infrastructure, limiting accessibility to [11C]HCN. Herein, we report a simple and efficient [11C]HCN production method that can be easily implemented in 11C production facilities. The immediate production of [11C]HCN was achieved by passing gaseous [11C]methyl iodide ([11C]CH3I) through a small two-layered reaction column. The first layer contained an N-oxide and a sulfoxide for conversion of [11C]CH3I to [11C]formaldehyde ([11C]CH2O). The [11C]CH2O produced was subsequently converted to [11C]HCN in a second layer containing hydroxylamine-O-sulfonic acid. The yield of [11C]HCN produced by the current method was comparable to that of [11C]HCN produced by the traditional method. The use of oxymatrine and diphenyl sulfoxide for [11C]CH2O production prevented deterioration of the molar activity of [11C]HCN. Using this method, compounds labelled with [11C]HCN are now made easily accessible for PET synthesis applications using readily available labware, without the need for the 'traditional' dedicated cyanide synthesis infrastructure.
Collapse
Affiliation(s)
- Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
- SHI Accelerator Service, Ltd. 1-17-6 Osaki, Shinagawa-ku Tokyo 141-0032 Japan
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Antony D Gee
- School of Biomedical Engineering and Imaging Sciences, King's College London 4th Floor Lambeth Wing, St Thomas' Hospital, Lambeth Palace Road London SE1 7EH UK
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| |
Collapse
|
5
|
Antonecchia E, Bäcker M, Cafolla D, Ciardiello M, Kühl C, Pagnani G, Wang J, Wang S, Zhou F, D'Ascenzo N, Gialanella L, Pisante M, Rose G, Xie Q. Design Study of a Novel Positron Emission Tomography System for Plant Imaging. FRONTIERS IN PLANT SCIENCE 2022; 12:736221. [PMID: 35116047 PMCID: PMC8805640 DOI: 10.3389/fpls.2021.736221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Positron Emission Tomography is a non-disruptive and high-sensitive digital imaging technique which allows to measure in-vivo and non invasively the changes of metabolic and transport mechanisms in plants. When it comes to the early assessment of stress-induced alterations of plant functions, plant PET has the potential of a major breakthrough. The development of dedicated plant PET systems faces a series of technological and experimental difficulties, which make conventional clinical and preclinical PET systems not fully suitable to agronomy. First, the functional and metabolic mechanisms of plants depend on environmental conditions, which can be controlled during the experiment if the scanner is transported into the growing chamber. Second, plants need to be imaged vertically, thus requiring a proper Field Of View. Third, the transverse Field of View needs to adapt to the different plant shapes, according to the species and the experimental protocols. In this paper, we perform a simulation study, proposing a novel design of dedicated plant PET scanners specifically conceived to address these agronomic issues. We estimate their expected sensitivity, count rate performance and spatial resolution, and we identify these specific features, which need to be investigated when realizing a plant PET scanner. Finally, we propose a novel approach to the measurement and verification of the performance of plant PET systems, including the design of dedicated plant phantoms, in order to provide a standard evaluation procedure for this emerging digital imaging agronomic technology.
Collapse
Affiliation(s)
- Emanuele Antonecchia
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
| | - Markus Bäcker
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Daniele Cafolla
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
| | | | - Charlotte Kühl
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Giancarlo Pagnani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Jiale Wang
- School of Information and Communication Engineering, University of Electronics Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute of University of Science and Technology of China, Quzhou, China
| | - Shuai Wang
- School of Information and Communication Engineering, University of Electronics Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute of University of Science and Technology of China, Quzhou, China
| | - Feng Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
| | - Lucio Gialanella
- Department of Mathematics and Physics, University of Campania L. Vanvitelli, Caserta, Italy
| | - Michele Pisante
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Georg Rose
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Mamet SD, Jimmo A, Conway A, Teymurazyan A, Talebitaher A, Papandreou Z, Chang YF, Shannon W, Peak D, Siciliano SD. Soil Buffering Capacity Can Be Used To Optimize Biostimulation of Psychrotrophic Hydrocarbon Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9864-9875. [PMID: 34170682 DOI: 10.1021/acs.est.1c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils. Here, we use PET to test two hypotheses: (1) optimizing phosphate bioavailability in soil will outperform a generic biostimulatory solution in promoting hydrocarbon remediation and (2) oligotrophic biostimulation will be more effective than eutrophic approaches. In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.
Collapse
Affiliation(s)
- Steven D Mamet
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Amy Jimmo
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Alexandra Conway
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Aram Teymurazyan
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Alizera Talebitaher
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zisis Papandreou
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yu-Fen Chang
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, Bergen 5063, Norway
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Whitney Shannon
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Derek Peak
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
7
|
Mincke J, Courtyn J, Vanhove C, Vandenberghe S, Steppe K. Guide to Plant-PET Imaging Using 11CO 2. FRONTIERS IN PLANT SCIENCE 2021; 12:602550. [PMID: 34149742 PMCID: PMC8206809 DOI: 10.3389/fpls.2021.602550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/03/2021] [Indexed: 05/12/2023]
Abstract
Due to its high sensitivity and specificity for tumor detection, positron emission tomography (PET) has become a standard and widely used molecular imaging technique. Given the popularity of PET, both clinically and preclinically, its use has been extended to study plants. However, only a limited number of research groups worldwide report PET-based studies, while we believe that this technique has much more potential and could contribute extensively to plant science. The limited application of PET may be related to the complexity of putting together methodological developments from multiple disciplines, such as radio-pharmacology, physics, mathematics and engineering, which may form an obstacle for some research groups. By means of this manuscript, we want to encourage researchers to study plants using PET. The main goal is to provide a clear description on how to design and execute PET scans, process the resulting data and fully explore its potential by quantification via compartmental modeling. The different steps that need to be taken will be discussed as well as the related challenges. Hereby, the main focus will be on, although not limited to, tracing 11CO2 to study plant carbon dynamics.
Collapse
Affiliation(s)
- Jens Mincke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- MEDISIP - INFINITY - IBiTech, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Jan Courtyn
- Medical Molecular Imaging and Therapy, Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Christian Vanhove
- MEDISIP - INFINITY - IBiTech, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP - INFINITY - IBiTech, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Galieni A, D'Ascenzo N, Stagnari F, Pagnani G, Xie Q, Pisante M. Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. FRONTIERS IN PLANT SCIENCE 2021; 11:609155. [PMID: 33584752 PMCID: PMC7873487 DOI: 10.3389/fpls.2020.609155] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 05/24/2023]
Abstract
Plant stress detection is considered one of the most critical areas for the improvement of crop yield in the compelling worldwide scenario, dictated by both the climate change and the geopolitical consequences of the Covid-19 epidemics. A complicated interconnection of biotic and abiotic stressors affect plant growth, including water, salt, temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants, pests and diseases. In facing this extended panorama, the technology choice is manifold. On the one hand, quantitative methods, such as metabolomics, provide very sensitive indicators of most of the stressors, with the drawback of a disruptive approach, which prevents follow up and dynamical studies. On the other hand qualitative methods, such as fluorescence, thermography and VIS/NIR reflectance, provide a non-disruptive view of the action of the stressors in plants, even across large fields, with the drawback of a poor accuracy. When looking at the spatial scale, the effect of stress may imply modifications from DNA level (nanometers) up to cell (micrometers), full plant (millimeters to meters), and entire field (kilometers). While quantitative techniques are sensitive to the smallest scales, only qualitative approaches can be used for the larger ones. Emerging technologies from nuclear and medical physics, such as computed tomography, magnetic resonance imaging and positron emission tomography, are expected to bridge the gap of quantitative non-disruptive morphologic and functional measurements at larger scale. In this review we analyze the landscape of the different technologies nowadays available, showing the benefits of each approach in plant stress detection, with a particular focus on the gaps, which will be filled in the nearby future by the emerging nuclear physics approaches to agriculture.
Collapse
Affiliation(s)
- Angelica Galieni
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics, Monsampolo del Tronto, Italy
| | - Nicola D'Ascenzo
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, I.R.C.C.S, Pozzilli, Italy
| | - Fabio Stagnari
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giancarlo Pagnani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Qingguo Xie
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, I.R.C.C.S, Pozzilli, Italy
| | - Michele Pisante
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|