1
|
Oudmaijer CAJ, Komninos DSJ, Hoeijmakers JHJ, IJzermans JNM, Vermeij WP. Clinical implications of nutritional interventions reducing calories, a systematic scoping review. Clin Nutr ESPEN 2024; 63:427-439. [PMID: 38986906 DOI: 10.1016/j.clnesp.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS Caloric restriction (CR) constitutes a dietary approach of (temporarily) reducing calorie intake thereby inducing resilience and resistance mechanisms and promoting health. While CR's feasibility and safety have been proven in human trials, its full benefits and translation to different study populations warrants further exploration. METHODS We here conducted a systematic scoping review adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Our search resulted in 3745 individual records, of which 40 were included. We showed that all studies consistently demonstrated the feasibility and safety of CR-like interventions. The specific effects of nutritional preconditioning vary, further underscoring the need for carefully crafted strategies, according to the intended effect, patient population, and logistical limitations. CONCLUSIONS CR-like interventions (long-term CR or short-term fasting) are feasible in a broad range of patient populations. Whether it has clinical benefit, f.i. reducing treatment-induced side effects and enhancing therapy efficacy, has to be investigated further.
Collapse
Affiliation(s)
- C A J Oudmaijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - D S J Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - J H J Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, The Netherlands; Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - J N M IJzermans
- Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Fazzone B, Anderson EM, Rozowsky JM, Yu X, O’Malley KA, Robinson S, Scali ST, Cai G, Berceli SA. Short-Term Dietary Restriction Potentiates an Anti-Inflammatory Circulating Mucosal-Associated Invariant T-Cell Response. Nutrients 2024; 16:1245. [PMID: 38674935 PMCID: PMC11053749 DOI: 10.3390/nu16081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Short-term protein-calorie dietary restriction (StDR) is a promising preoperative strategy for modulating postoperative inflammation. We have previously shown marked gut microbial activity during StDR, but relationships between StDR, the gut microbiome, and systemic immunity remain poorly understood. Mucosal-associated invariant T-cells (MAITs) are enriched on mucosal surfaces and in circulation, bridge innate and adaptive immunity, are sensitive to gut microbial changes, and may mediate systemic responses to StDR. Herein, we characterized the MAIT transcriptomic response to StDR using single-cell RNA sequencing of human PBMCs and evaluated gut microbial species-level changes through sequencing of stool samples. Healthy volunteers underwent 4 days of DR during which blood and stool samples were collected before, during, and after DR. MAITs composed 2.4% of PBMCs. More MAIT genes were differentially downregulated during DR, particularly genes associated with MAIT activation (CD69), regulation of pro-inflammatory signaling (IL1, IL6, IL10, TNFα), and T-cell co-stimulation (CD40/CD40L, CD28), whereas genes associated with anti-inflammatory IL10 signaling were upregulated. Stool analysis showed a decreased abundance of multiple MAIT-stimulating Bacteroides species during DR. The analyses suggest that StDR potentiates an anti-inflammatory MAIT immunophenotype through modulation of TCR-dependent signaling, potentially secondary to gut microbial species-level changes.
Collapse
Affiliation(s)
- Brian Fazzone
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Erik M. Anderson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Jared M. Rozowsky
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Kerri A. O’Malley
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Scott Robinson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Salvatore T. Scali
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Scott A. Berceli
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
Agius T, Emsley R, Lyon A, MacArthur MR, Kiesworo K, Faivre A, Stavart L, Lambelet M, Legouis D, de Seigneux S, Golshayan D, Lazeyras F, Yeh H, Markmann JF, Uygun K, Ocampo A, Mitchell SJ, Allagnat F, Déglise S, Longchamp A. Short-term hypercaloric carbohydrate loading increases surgical stress resilience by inducing FGF21. Nat Commun 2024; 15:1073. [PMID: 38316771 PMCID: PMC10844297 DOI: 10.1038/s41467-024-44866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaella Emsley
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kevin Kiesworo
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Louis Stavart
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Florent Allagnat
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Oudmaijer CAJ, Pol RA, Minnee RC, Vermeij W, Ijzermans JNM. Do treats facilitate the interpretation of findings on caloric restriction? BMJ Nutr Prev Health 2023; 6:374-382. [PMID: 38618535 PMCID: PMC11009534 DOI: 10.1136/bmjnph-2023-000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 04/16/2024] Open
Abstract
Introduction Food can build social bonds and enhance interpersonal relationships. An area of research perhaps at odds with food abundance, is caloric restriction (CR), intermittent fasting (IF) or short-term fasting (STF). We aimed to study the impact of offering treats on the audience during presentations on IF and STF and whether this impacted the audience's reception of the subject. The contradiction of the tempting nature of sharing brownies juxtaposed with the potential health benefits presented is a light-hearted subject in a world where nutritional intake and health outcomes are the object of intense academic discussion. Objective Investigate how treats influence hospital personnel interpretation of information presented on the potential benefits of CR, IF and STF. Methods This trial consists of a cross-sectional study (CSS) and a randomised controlled trial (RCT) conducted at three study centres. The CSS involved a survey administered to healthcare professionals to assess their knowledge, experience and willingness regarding IF and/or STF. In the RCT, brownies were randomly provided to healthcare staff attending a scientific meeting on restricting calories. Results 135 participants were included in the CSS and 64 participants joined the randomised experiment. We found that the randomisation had no statistically significant effect. Only 2 out of 64 were aware of the irony of the provided treatment. In the CSS, participants most often cited the expected beneficial effects on their short-term and long-term health as important reasons for adhering to IF and/or STF. Perceiving fasting as beneficial was mostly influenced by knowledge on the topic and previously adhering to a fasting diet. Discussion In this light-hearted, holiday-inspired exploratory study, we found that providing your audience with treats does not influence participants' opinion of you or your research, even when it focuses on the benefits of reducing calorie intake. The recipients of the treat will remain critical of presented findings, and due to prior experiences will be receptive to the counterintuitive topic of fasting.
Collapse
Affiliation(s)
- Christiaan Albert Johan Oudmaijer
- Erasmus MC Transplant Institute, department of Surgery, division of Hepatobiliary and Transplantation Surgery, University Medical Center Rotterdam, Rotterdam, Zuid-Holland, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, Utrecht, The Netherlands
| | - Robert A Pol
- Department of Transplantation Surgery, University Medical Center Groningen, Groningen, Groningen, The Netherlands
| | - Robert C Minnee
- Erasmus MC Transplant Institute, department of Surgery, division of Hepatobiliary and Transplantation Surgery, University Medical Center Rotterdam, Rotterdam, Zuid-Holland, The Netherlands
| | - Wilbert Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, Utrecht, The Netherlands
| | - Jan N M Ijzermans
- Erasmus MC Transplant Institute, department of Surgery, division of Hepatobiliary and Transplantation Surgery, University Medical Center Rotterdam, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
5
|
Weinzierl A, Coerper M, Harder Y, Menger MD, Laschke MW. Caloric Restriction: A Novel Conditioning Strategy to Improve the Survival of Ischemically Challenged Musculocutaneous Random Pattern Flaps. Nutrients 2023; 15:4076. [PMID: 37764859 PMCID: PMC10536342 DOI: 10.3390/nu15184076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Caloric restriction (CR) is a cost-effective and easy-to-perform approach to counteracting surgical stress. The present study therefore evaluates the tissue-protective effects of a 30% CR in musculocutaneous flaps undergoing ischemia. For this purpose, a well-established murine dorsal skinfold chamber model, in combination with random pattern musculocutaneous flaps, was used. C57BL/6N mice were divided at random into a CR group (n = 8) and a control group with unrestricted access to standard chow (n = 8). The CR animals were subjected to a 30% reduction in caloric intake for 10 days before flap elevation. Intravital fluorescence microscopy was carried out on days 1, 3, 5, 7 and 10 after flap elevation to assess the nutritive blood perfusion, angiogenesis and flap necrosis. Subsequently, the flap tissue was harvested for additional histological and immunohistochemical analyses. The CR-treated animals exhibited a significantly higher functional capillary density and more newly formed microvessels within the flap tissue when compared to the controls; this was associated with a significantly higher flap survival rate. Immunohistochemical analyses showed a decreased invasion of myeloperoxidase-positive neutrophilic granulocytes into the flap tissue of the CR-treated mice. Moreover, the detection of cleaved caspase-3 revealed fewer cells undergoing apoptosis in the transition zone between the vital and necrotic tissue in the flaps of the CR-treated mice. These results demonstrate that a CR of 30% effectively prevents flap necrosis by maintaining microperfusion on a capillary level and inhibiting inflammation under ischemic stress. Hence, CR represents a promising novel conditioning strategy for improving the survival of musculocutaneous flaps with random pattern perfusion.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Maximilian Coerper
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
6
|
Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 2023; 20:109-125. [PMID: 35931887 PMCID: PMC9362470 DOI: 10.1038/s41569-022-00741-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
7
|
McKechnie T, Povolo CA, Lee J, Lee Y, Park L, Doumouras AG, Hong D, Bhandari M, Eskicioglu C. Very low energy diets before nonbariatric surgery: A systematic review and meta-analysis. Surgery 2022; 172:1733-1743. [PMID: 36273973 DOI: 10.1016/j.surg.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Very low energy diets serve as an intensive approach to weight loss in a short period of time. Although the preoperative use of very low energy diets to optimize patients with obesity before bariatric surgery is well established, the evidence for very low energy diets before other types of surgery remains unclear. The aim of this review was to determine the impact of preoperative very low energy diets on perioperative outcomes in nonbariatric surgery. METHODS Medline, EMBASE, CENTRAL, and PubMed were systematically searched from inception through to July 2021. Articles were included if they evaluated very low energy diets use before any type of nonbariatric surgery. The primary outcome was postoperative morbidity. Secondary outcomes included compliance, safety, and preoperative weight loss. A pairwise meta-analyses using inverse variance random effects was performed. RESULTS From 792 citations, 13 studies with 395 patients (mean age: 56.5 years, 55.8% female) receiving very low energy diets preoperatively in preparation for nonbariatric surgery were included. Mean duration of preoperative very low energy diets was 6.6 weeks (range, 0.42-17 weeks). Target daily caloric intake ranged from 450 kcal to 1,400 kcal. Compliance with very low energy diets ranged from 94% to 100%. The mean preoperative weight loss ranged from 3.2 kg to 19.2 kg. There were no significant differences in postoperative morbidity (odds ratio, 1.10; 95% confidence interval, 0.64-1.91; P = .72), operative time (standard mean difference -0.35; 95% confidence interval, 1.13-0.43, P = .38), or postoperative length of stay (standard mean difference 0.40, 95% confidence interval -0.11-0.91, P = .12) with very low energy diets. CONCLUSION Although the currently available evidence is heterogenous, preoperative very low energy diets are safe, well tolerated, and effectively induce preoperative weight loss in patients undergoing nonbariatric surgery for both benign and malignant disease. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Tyler McKechnie
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/tylermckechnie
| | - Christopher A Povolo
- McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Jay Lee
- McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Yung Lee
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/YungLeeMD
| | - Lily Park
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/lilyistweetingg
| | - Aristithes G Doumouras
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada; McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Division of General Surgery, Department of Surgery, St. Joseph's Healthcare-Hamilton, Ontario, Canada
| | - Dennis Hong
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada; McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Division of General Surgery, Department of Surgery, St. Joseph's Healthcare-Hamilton, Ontario, Canada
| | - Mohit Bhandari
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada; McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Cagla Eskicioglu
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada; McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Division of General Surgery, Department of Surgery, St. Joseph's Healthcare-Hamilton, Ontario, Canada.
| |
Collapse
|
8
|
Yin L, Gregg AC, Riccio AM, Hoyt N, Islam ZH, Ahn J, Le Q, Patel P, Zhang M, He X, McKinney M, Kent E, Wang B. Dietary therapy in abdominal aortic aneurysm - Insights from clinical and experimental studies. Front Cardiovasc Med 2022; 9:949262. [PMID: 36211542 PMCID: PMC9532600 DOI: 10.3389/fcvm.2022.949262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent vascular disease with high mortality rates upon rupture. Despite its prevalence in elderly populations, there remain limited treatment options; invasive surgical repair, while risky, is the only therapeutic intervention with proven clinical benefits. Dietary factors have long been suggested to be closely associated with AAA risks, and dietary therapies recently emerged as promising avenues to achieve non-invasive management of a wide spectrum of diseases. However, the role of dietary therapies in AAA remains elusive. In this article, we will summarize the recent clinical and pre-clinical efforts in understanding the therapeutic and mechanistic implications of various dietary patterns and therapeutic approaches in AAA.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Zain Hussain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jungeun Ahn
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Quang Le
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paranjay Patel
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xinran He
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Matthew McKinney
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Eric Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Bowen Wang
| |
Collapse
|
9
|
Kalafut KC, Mitchell SJ, MacArthur MR, Mitchell JR. Short-Term Ketogenic Diet Induces a Molecular Response That Is Distinct From Dietary Protein Restriction. Front Nutr 2022; 9:839341. [PMID: 35433789 PMCID: PMC9005751 DOI: 10.3389/fnut.2022.839341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and may extend lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. >18% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF-fed animals had significantly improved insulin tolerance compared to KD. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing more than 5% of energy from protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets may occur via distinct underlying mechanisms.
Collapse
Affiliation(s)
- Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| | - James R. Mitchell
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Efficacy of Restricting Dietary Protein Intake Combined with Buyang Huanwu Decoction in Treating Diabetic Nephropathy and Its Effect on Patients' Inflammatory Factor Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5906244. [PMID: 34858508 PMCID: PMC8632459 DOI: 10.1155/2021/5906244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/15/2023]
Abstract
Objective To study the efficacy of restricting dietary protein intake combined with Buyang Huanwu decoction in treating diabetic nephropathy (DN) and its effect on patients' inflammatory factor levels. Methods The medical data of 150 DN patients treated in Wuhan No.1 Hospital (June 2018—May 2021) were retrospectively analyzed. All patients received regular therapy, those who received the intervention of restricting dietary protein intake were included in the control group (n = 75), and on this basis, those treated with Buyang Huanwu decoction were included in the experimental group (n = 75), so as to scientifically evaluate their efficacy and inflammatory factor levels after treatment. Results The patients' general information was not statistically different between the two groups (P > 0.05); after treatment, the experimental group gained remarkably higher marked effective rate and total effective rate of treatment than the control group (P < 0.05); the inflammatory factor levels of all patients were obviously better than before (P < 0.05), and the levels of TNF-α, IL-2, IL-8, IL-4, and IL-10 were obviously lower in the experimental group than in the control group (P < 0.05); the levels of fasting blood glucose, 2 h postprandial blood glucose, and glycosylated hemoglobin of all patients were remarkably lower than before (P < 0.05), but with no significant between-group difference (P > 0.05); the renal function indexes of all patients were better than before, and between the two groups, the levels of 24 h microalbuminuria, 24 h urine protein excretion, and serum creatinine were obviously lower and the glomerular filtration rate was significantly higher in the experimental group (P all <0.05), and the patients' traditional Chinese medicine (TCM) symptom scores were remarkably lower in the experimental group (P < 0.05). Conclusion Jointly applying Buyang Huanwu decoction on the basis of restricting dietary protein intake can effectively promote the clinical efficacy of DN, which is conducive to adjusting the inflammatory factor levels, promoting the patients' renal function, and alleviating the clinical symptoms.
Collapse
|
11
|
Kip P, Sluiter TJ, Moore JK, Hart A, Ruske J, O’Leary J, Jung J, Tao M, MacArthur MR, Heindel P, de Jong A, de Vries MR, Burak MF, Mitchell SJ, Mitchell JR, Ozaki CK. Short-Term Pre-Operative Protein Caloric Restriction in Elective Vascular Surgery Patients: A Randomized Clinical Trial. Nutrients 2021; 13:nu13114024. [PMID: 34836280 PMCID: PMC8621550 DOI: 10.3390/nu13114024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023] Open
Abstract
(1) Background: Vascular surgery operations are hampered by high failure rates and frequent occurrence of peri-operative cardiovascular complications. In pre-clinical studies, pre-operative restriction of proteins and/or calories (PCR) has been shown to limit ischemia-reperfusion damage, slow intimal hyperplasia, and improve metabolic fitness. However, whether these dietary regimens are feasible and safe in the vascular surgery patient population remains unknown. (2) Methods: We performed a randomized controlled trial in patients scheduled for any elective open vascular procedure. Participants were randomized in a 3:2 ratio to either four days of outpatient pre-operative PCR (30% calorie, 70% protein restriction) or their regular ad-libitum diet. Blood was drawn at baseline, pre-operative, and post-operative day 1 timepoints. A leukocyte subset flow cytometry panel was performed at these timepoints. Subcutaneous/perivascular adipose tissue was sampled and analyzed. Follow-up was one year post-op. (3) Results: 19 patients were enrolled, of whom 11 completed the study. No diet-related reasons for non-completion were reported, and there was no intervention group crossover. The PCR diet induced weight loss and BMI decrease without malnutrition. Insulin sensitivity was improved after four days of PCR (p = 0.05). Between diet groups, there were similar rates of re-intervention, wound infection, and cardiovascular complications. Leukocyte populations were maintained after four days of PCR. (4) Conclusions: Pre-operative PCR is safe and feasible in elective vascular surgery patients.
Collapse
Affiliation(s)
- Peter Kip
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.)
| | - Thijs J. Sluiter
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.)
| | - Jodene K. Moore
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA;
| | - Abby Hart
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
| | - Jack Ruske
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
| | - James O’Leary
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
| | - Jonathan Jung
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
- School of Medicine, University of Glasgow, Glasgow G12 8QF, UK
| | - Ming Tao
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
| | - Michael R. MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Patrick Heindel
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
| | - Alwin de Jong
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.)
| | - Margreet R. de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.)
| | - M. Furkan Burak
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
| | - Sarah J. Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - James R. Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.J.); (M.R.M.); (S.J.M.); (J.R.M.)
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - C. Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; (P.K.); (T.J.S.); (A.H.); (J.R.); (J.O.); (M.T.); (P.H.); (M.F.B.)
- Correspondence:
| |
Collapse
|
12
|
Kip P, Tao M, Trocha KM, MacArthur MR, Peters HAB, Mitchell SJ, Mann CG, Sluiter TJ, Jung J, Patterson S, Quax PHA, de Vries MR, Mitchell JR, Keith Ozaki C. Periprocedural Hydrogen Sulfide Therapy Improves Vascular Remodeling and Attenuates Vein Graft Disease. J Am Heart Assoc 2020; 9:e016391. [PMID: 33146045 PMCID: PMC7763704 DOI: 10.1161/jaha.120.016391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
Background Failure rates after revascularization surgery remain high, both in vein grafts (VG) and arterial interventions. One promising approach to improve outcomes is endogenous upregulation of the gaseous transmitter-molecule hydrogen sulfide, via short-term dietary restriction. However, strict patient compliance stands as a potential translational barrier in the vascular surgery patient population. Here we present a new therapeutic approach, via a locally applicable gel containing the hydrogen sulfide releasing prodrug (GYY), to both mitigate graft failure and improve arterial remodeling. Methods and Results All experiments were performed on C57BL/6 (male, 12 weeks old) mice. VG surgery was performed by grafting a donor-mouse cava vein into the right common carotid artery of a recipient via an end-to-end anastomosis. In separate experiments arterial intimal hyperplasia was assayed via a right common carotid artery focal stenosis model. All mice were harvested at postoperative day 28 and artery/graft was processed for histology. Efficacy of hydrogen sulfide was first tested via GYY supplementation of drinking water either 1 week before VG surgery (pre-GYY) or starting immediately postoperatively (post-GYY). Pre-GYY mice had a 36.5% decrease in intimal/media+adventitia area ratio compared with controls. GYY in a 40% Pluronic gel (or vehicle) locally applied to the graft/artery had decreased intimal/media area ratios (right common carotid artery) and improved vessel diameters. GYY-geltreated VG had larger diameters at both postoperative days 14 and 28, and a 56.7% reduction in intimal/media+adventitia area ratios. Intimal vascular smooth muscle cell migration was decreased 30.6% after GYY gel treatment, which was reproduced in vitro. Conclusions Local gel-based treatment with the hydrogen sulfide-donor GYY stands as a translatable therapy to improve VG durability and arterial remodeling after injury.
Collapse
Affiliation(s)
- Peter Kip
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Ming Tao
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Kaspar M. Trocha
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Michael R. MacArthur
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Hendrika A. B. Peters
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Sarah J. Mitchell
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Charlotte G. Mann
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Thijs J. Sluiter
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Jonathan Jung
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
- School of MedicineUniversity of GlasgowGlasgowUK
| | - Suzannah Patterson
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Margreet R. de Vries
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - James R. Mitchell
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - C. Keith Ozaki
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| |
Collapse
|