1
|
Lanssens A, Tuts N, Welkenhuyzen L, Thielen H, Gillebert CR. The sustained attention to response task: Validation of a non-numerical parallel form. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:782-798. [PMID: 37210673 DOI: 10.1080/23279095.2023.2213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many activities in daily life rely on the ability to continuously keep attention on task requirements. Patients with acquired brain injury often suffer from deficits in sustained attention that impact quality of life and complicate rehabilitation. The sustained attention to response task (SART) is a commonly used go/no-go task in the assessment of sustained attention. However, its feasibility for patients with acquired brain injury could be questioned considering deficits in alphanumerical processing following brain damage. We investigated whether a SART with sinusoidal gratings instead of digits can be used to assess sustained attention. The Gratings SART and Digits SART were administered in a random and fixed sequence to 48 cognitively healthy participants. Performance of the neurotypical individuals on the random and fixed Gratings SART was only moderately different from and correlated with performance on the random and fixed Digits SART. As a proof of concept, the SARTs were also administered to 11 cases with acquired brain injury. Performance in the random and fixed variants of both the Gratings SART and Digits SART was sensitive to cognitive impairments of cases with acquired brain injury. In conclusion, the SART with sinusoidal gratings holds promise as a tool to (re-)assess sustained attention in clinical practice. Further research is critical to investigate whether its performance accurately predicts sustained attention in daily life since we failed to find a significant correlation between performance on any of the SARTs and a self-reported measure of sustained attention.
Collapse
Affiliation(s)
- Armien Lanssens
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nora Tuts
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lies Welkenhuyzen
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Centre for Translational Psychological Research, Hospital East-Limburg, Limburg, Belgium
| | - Hella Thielen
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Celine R Gillebert
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Centre for Translational Psychological Research, Hospital East-Limburg, Limburg, Belgium
| |
Collapse
|
2
|
Hung CC, Li YC, Tsai YC, Cheng CH. Aberrant error monitoring in traumatic brain injuries: A meta-analysis of event-related potential studies. Int J Psychophysiol 2024; 206:112462. [PMID: 39481647 DOI: 10.1016/j.ijpsycho.2024.112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE Although individuals with traumatic brain injuries (TBI) often manifest altered error monitoring, evidence using event-related potentials (ERPs) to index these cortical processes is inconsistent. Therefore, this meta-analysis study aimed to comprehensively compare the error-related negativity (ERN) and error positivity (Pe) between individuals with TBI and healthy controls (HC) from the existing literature. METHODS Literature search was performed using PubMed/MEDLINE, Web of Science, and Cochrane Library. The effect sizes (Hedges' g) in the comparisons of ERN and Pe amplitudes between TBI and HC groups were employed by a random-effect, inverse-variance weighted model. The effects of age, TBI severity and experimental tasks on both ERP components were also examined. RESULTS Random-effect models showed decreased ERN (g = 0.361, p = 0.010), but intact Pe (g = 0.105, p = 0.443), in those with TBI compared to HC. A further analysis revealed that the adult patients (g = 0.326, p = 0.038), but not the youth patients, showed significant reduction of ERN as compared to the HC. However, we did not find moderating effects of TBI severity and experimental paradigms on either ERN or Pe. CONCLUSIONS ERN and Pe reflect separate neurophysiological mechanisms and different aspects of error monitoring in TBI. Our findings suggest that attenuated ERN amplitude may be an electrophysiological parameter of error monitoring deficits in TBI.
Collapse
Affiliation(s)
- Chun-Che Hung
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Yo-Chun Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yun-Chih Tsai
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
3
|
Shin JH, Jeong E. Virtual reality-based music attention training for acquired brain injury: A protocol for randomized cross-over trial. Front Neurol 2023; 14:1192181. [PMID: 37638184 PMCID: PMC10450247 DOI: 10.3389/fneur.2023.1192181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Attention training is the primary step in the rehabilitation for patients with acquired brain injury (ABI). While active music performance has been reported to aid neural and functional recovery, its efficacy for patients with ABI remains uncertain due to methodological concerns. The purpose of the study is to develop a virtual reality-based music attention training (VR-MAT), which utilizes a visually guided, bilateral drumming in an immersive environment to train attention and executive functions. We also aims to examine the feasibility and effectiveness of the VR-MAT with a small sample size of participants (3-60 months after ABI, N = 20 approximately). Participants will be randomly assigned to either a waitlist control or music group, in which VR-MAT will take place five times weekly over 4 weeks (randomized crossover design). The evaluation of VR-MAT performance will include accuracy and response time in music responses. Neurocognitive outcome measures will be administered to quantify pre-post changes in attention, working memory, and executive functions. Additionally, functional near-infrared spectroscopy will be employed to explore the relationships between musical behavior, neurocognitive function, and neurophysiological responses.
Collapse
Affiliation(s)
- Joon-Ho Shin
- Department of Rehabilitation, National Rehabilitation Center, Ewha Womans University, Seoul, Republic of Korea
| | - Eunju Jeong
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study. Neuroimage Clin 2023; 37:103344. [PMID: 36804686 PMCID: PMC9969322 DOI: 10.1016/j.nicl.2023.103344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with alterations in cerebral blood flow (CBF), which may underlie functional disability and precipitate TBI-induced neurodegeneration. Although it is known that chronic moderate-severe TBI (msTBI) causes decreases in CBF, the temporal dynamics during the early chronic phase of TBI remain unknown. Using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI), we examined longitudinal CBF changes in 29 patients with msTBI at 3, 6, and 12 months post-injury in comparison to 35 demographically-matched healthy controls (HC). We investigated the difference between the two groups and the within-subject time effect in the TBI patients using whole-brain voxel-wise analysis. Mean CBF in gray matter (GM) was lower in the TBI group compared to HC at 6 and 12 months post-injury. Within the TBI group, we identified widespread regional decreases in CBF from 3 to 6 months post-injury. In contrast, there were no regions with decreasing CBF from 6 to 12 months post-injury, indicating stabilization of hypoperfusion. There was instead a small area of increase in CBF observed in the right precuneus. These CBF changes were not accompanied by cortical atrophy. The change in CBF was correlated with change in executive function from 3 to 6 months post-injury in TBI patients, suggesting functional relevance of CBF measures. Understanding the time course of TBI-induced hypoperfusion and its relationship with cognitive improvement could provide an optimal treatment window to benefit long-term outcome.
Collapse
Affiliation(s)
- Naomi L Gaggi
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Jeffrey B Ware
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Sudipto Dolui
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Daniel Brennan
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Julia Torrellas
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States.
| | - Ze Wang
- University of Maryland School of Medicine, 655 W Baltimore St. S, Baltimore, MD 21201, United States.
| | - John Whyte
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | - Ramon Diaz-Arrastia
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Junghoon J Kim
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| |
Collapse
|
5
|
Aberrant brain functional hubs convergence in the acute severe traumatic brain injury patients with rapidly recovering. Neuroradiology 2023; 65:145-155. [PMID: 36056968 DOI: 10.1007/s00234-022-03048-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/27/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE We aimed to identify the aberrant functional hubs in patients with acute severe traumatic brain injury (sTBI) and investigate whether they could help inform prognosis. METHODS Twenty-eight sTBI patients and health controls underwent imaging scanning. The graph-theoretical measure of degree centrality (DC) was applied to identify the abnormal brain functional hubs and conjoined with regions of interest-based analysis to investigate their interaction and impact on whole-brain. We further split sTBI patients into two subgroups according to their recovery to explore whether the fractional amplitude of low-frequency fluctuation (fALFF) roles in functional connectivity (FC) differential areas to help inform the patients' long-term prognosis. RESULTS We identified the part of prefrontal cortex (PFC), precentral and postcentral gyrus (Pre-/Post-CG), cingulate gyrus (CgG), posterior medial cortex (PMC), and brainstem that could be core hubs whose DC was significantly increased in patients with acute sTBI. The interaction strength of the paired hubs could be enhanced (CG-PFC, CgG-PFC, CG-brainstem, CgG-brainstem, PMC-brainstem, and PFC-brainstem) and weakened (CG-CgG, CG-PMC, CgG-PMC, and PMC-PFC), compared with healthy controls. We also found abnormal FC in 5 hubs to whole-brain. The spontaneous brain activities in the FC differential regions [e.g., the fALFF and mean fALFF value] were valid to predict outcome at 6-month in patients with sTBI. CONCLUSION We demonstrated a compensatory mechanism that part of brain regions will converge into abnormal functional hubs in patients with acute sTBI, which provides a potential approach to objectively predicting patients' long-term outcome.
Collapse
|
6
|
Jeong E, Ireland SJ. Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16285. [PMID: 36498353 PMCID: PMC9738551 DOI: 10.3390/ijerph192316285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The music-based attention assessment (MAA) is a melody contour identification task that evaluates different types of attention. Previous studies have examined the psychometric and physiological validity of the MAA across various age groups in clinical and typical populations. The purpose of this study was to confirm the MAA's criterion validity in individuals with traumatic brain injury (TBI) and to correlate this with standardized neuropsychological measurements. The MAA and various neurocognitive tests (i.e., the Wechsler adult intelligence scale DST, Delis-Kaplan executive functioning scale color-word interference test, and Conner's continuous performance test) were administered to 38 patients within two weeks prior to or post to the MAA administration. Significant correlations between MAA and neurocognitive batteries were found, indicating the potential of MAA as a valid measure of different types of attention deficits. An additional multiple regression analysis revealed that MAA was a significant factor in predicting attention ability.
Collapse
Affiliation(s)
- Eunju Jeong
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|
7
|
Wu Z, Cao M, Di X, Wu K, Gao Y, Li X. Regional Topological Aberrances of White Matter- and Gray Matter-Based Functional Networks for Attention Processing May Foster Traumatic Brain Injury-Related Attention Deficits in Adults. Brain Sci 2021; 12:brainsci12010016. [PMID: 35053760 PMCID: PMC8774280 DOI: 10.3390/brainsci12010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent in adults. TBI-related functional brain alterations have been linked with common post-TBI neurobehavioral sequelae, with unknown neural substrates. This study examined the systems-level functional brain alterations in white matter (WM) and gray matter (GM) for visual sustained-attention processing, and their interactions and contributions to post-TBI attention deficits. Task-based functional MRI data were collected from 42 adults with TBI and 43 group-matched normal controls (NCs), and analyzed using the graph theoretic technique. Global and nodal topological properties were calculated and compared between the two groups. Correlation analyses were conducted between the neuroimaging measures that showed significant between-group differences and the behavioral symptom measures in attention domain in the groups of TBI and NCs, respectively. Significantly altered nodal efficiencies and/or degrees in several WM and GM nodes were reported in the TBI group, including the posterior corona radiata (PCR), posterior thalamic radiation (PTR), postcentral gyrus (PoG), and superior temporal sulcus (STS). Subjects with TBI also demonstrated abnormal systems-level functional synchronization between the PTR and STS in the right hemisphere, hypo-interaction between the PCR and PoG in the left hemisphere, as well as the involvement of systems-level functional aberrances in the PCR in TBI-related behavioral impairments in the attention domain. The findings of the current study suggest that TBI-related systems-level functional alterations associated with these two major-association WM tracts, and their anatomically connected GM regions may play critical role in TBI-related behavioral deficits in attention domains.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.C.); (X.D.)
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.C.); (X.D.)
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510630, China;
| | - Yu Gao
- Department of Psychology, Brooklyn College, The City University of New York, New York, NY 11210, USA;
- The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Xiaobo Li
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.C.); (X.D.)
- Correspondence: or ; Tel.: +1-973-596-5880
| |
Collapse
|
8
|
Stein A, Iyer KK, Khetani AM, Barlow KM. Changes in working memory-related cortical responses following pediatric mild traumatic brain injury: A longitudinal fMRI study. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211006541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistent post-concussion symptoms (PPCS) lasting longer than 4 weeks affect 25% of children with mild traumatic brain injury (mTBI) or concussion. Working memory (WM) problems are a common complaint in children with PPCS. Despite normal function on traditional neuropsychological tests, these children exhibit aberrant cortical responses within the dorsolateral prefrontal cortex (dlPFC) and default mode network (DMN) regions – both of which are implicated in WM. Using a prospective, longitudinal cohort study design, we investigated changes in cortical fMRI responses within the dlPFC and DMN during an nback WM task at two timepoints: one and two months post-injury. Across these timepoints, the primary outcome was change in cortical activations (increase in BOLD) and deactivations (decrease in BOLD) of both dlPFC and DMN. Twenty-nine children (mean age 15.49 ± 2.15; 48.3% male) with fMRI scans at both timepoints were included, following data quality control. Student’s t-tests were used to examine cortical activations across time and task difficulty. ANCOVA F-tests examined cortical responses after removal of baseline across time, task difficulty and recovery. Volumes of interest (5 mm sphere) were placed in peak voxel regions of the DMN and dlPFC to compare cortical responses between recovered and unrecovered participants over time (one-way ANOVA). Between one and two months post-injury, we found significant increases in dlPFC activations and significant activations and deactivations in the DMN with increasing task difficulty, alongside improved task performance. Cortical responses of the DMN and bilateral dlPFC displayed increased intensity in recovered participants, together with improved attention and behavioural symptoms. Overall, our findings suggest evidence of neural compensation and ongoing cognitive recovery from pediatric TBI over time between one and two months post injury in children with PPCS. These results highlight the wider and persisting implications of mTBI in children, whose maturing brains are particularly vulnerable to TBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kartik K Iyer
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Aneesh M Khetani
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|
9
|
Allen D, Carlson BW, Carlson JR, Raynor RH, Neelon VJ. Assessing Discrepancies in Neurocognitive and Patient-Reported Measures of Brain Tumor Survivors. Oncol Nurs Forum 2020; 47:E1-E12. [PMID: 31845910 DOI: 10.1188/20.onf.e1-e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To examine the association between performance-based neurocognitive and patient-reported cognitive function tests and identify characteristics that may explain observed discrepancies as a means to advance intervention development. SAMPLE & SETTING 40 adults diagnosed with a primary brain tumor (PBT) (high-grade, n = 35) were recruited from two academic neuro-oncology clinics in North Carolina. METHODS & VARIABLES Eligibility included a Mini-Mental State Examination score of 24 or greater, having completed cancer treatment, and having tumor stability. Participants completed performance-based neurocognitive and patient-reported cognitive function, demographic, and symptom assessment tests at one time point. RESULTS Neurocognitive impairments included executive control, memory, and attention. Age, time since diagnosis, and tumor- or treatment-specific variables were not associated with neurocognitive or patient-reported cognitive function. Those reporting worse cognitive impairment tended also to report greater severity of PBT-specific and depressive symptoms. IMPLICATIONS FOR NURSING Patient-reported cognitive concerns warrant additional assessment for potential interventions to maintain function.
Collapse
|
10
|
Fox ME, King TZ. Functional Connectivity in Adult Brain Tumor Patients: A Systematic Review. Brain Connect 2019; 8:381-397. [PMID: 30141339 DOI: 10.1089/brain.2018.0623] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain tumor (BT) patients often experience reduced cognitive abilities and disrupted adaptive functioning before and after treatment. An innovative approach to understanding the underlying brain networks associated with these outcomes has been to study the brain's functional connectivity (FC), the spatially distributed and temporally correlated activity throughout the brain, and how it can be affected by a tumor. The present review synthesized the extant BT FC literature that utilizes functional magnetic resonance imaging to study FC strength of commonly observed networks during rest and task. A systematic review of English articles using PubMed was conducted. Search terms included brain tumor OR glioma AND functional connectivity, independent component analysis, ICA, psychophysiological interaction, OR PPI. Studies in which participants were diagnosed with BTs as adults that evaluated specific networks of interest using independent component analysis or seed-based component analysis were included. Twenty-five studies met inclusion criteria. BT patients often presented with decreases in FC strength within well-established networks and increases in atypical FC patterns. Network differences were tumor adjacent and distal, and left hemisphere tumors generally had a greater impact on FC. FC alterations often correlated with behavioral or cognitive outcomes when assessed. Overall, BTs appear to lead to various alterations in FC across different functional networks, and the most common change is a decrease in expected FC strength. More longitudinal studies are needed to determine the time course of network alterations across treatment and recovery, the role of medical treatments in BT survivors' FC, and the potential of FC patterns as biomarkers of cognitive outcomes.
Collapse
Affiliation(s)
- Michelle E Fox
- 1 Department of Psychology, Georgia State University , Atlanta, Georgia
| | - Tricia Z King
- 1 Department of Psychology, Georgia State University , Atlanta, Georgia .,2 Neuroscience Institute, Georgia State University , Atlanta, Georgia
| |
Collapse
|
11
|
Ramage AE, Tate DF, New AB, Lewis JD, Robin DA. Effort and Fatigue-Related Functional Connectivity in Mild Traumatic Brain Injury. Front Neurol 2019; 9:1165. [PMID: 30713519 PMCID: PMC6345685 DOI: 10.3389/fneur.2018.01165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 11/23/2022] Open
Abstract
Mental fatigue in healthy individuals is typically observed under conditions of high cognitive demand, particularly when effort is required to perform a task for a long period of time-thus the concepts of fatigue and effort are closely related. In brain injured individuals, mental fatigue can be a persistent and debilitating symptom. Presence of fatigue after brain injury is prognostic for return to work/school and engagement in activities of daily life. As such, it should be a high priority for treatment in this population, but because there is little understanding of its behavioral and neural underpinnings, the target for such treatment is unknown. Here, the neural underpinnings of fatigue and effort are investigated in active duty military service members with mild traumatic brain injury (mTBI) and demographically-matched orthopedic controls. Participants performed a Constant Effort task for which they were to hold a pre-defined effort level constant for long durations during fMRI scanning. The task allowed for investigation of the neural systems underlying fatigue and their relationship with sense of effort. While brain activation associated with effort and fatigue did not differentiate the mTBI and controls, functional connectivity amongst active brain regions did. The mTBI group demonstrated immediate hyper-connectivity that increased with effort level but diminished quickly when there was a need to maintain effort. Controls, in contrast, demonstrated a similar pattern of hyper-connectivity, but only when maintaining effort over time. Connectivity, particularly between the left anterior insula, rostral anterior cingulate cortex, and right-sided inferior frontal regions, correlated with effort-level and state fatigue in mTBI participants. These connections also correlated with effort level in the Control group, but only the connection between the left insula and superior medial frontal gyrus correlated with fatigue, suggesting a differing pattern of connectivity. These findings align, in part, with the dopamine imbalance, and neural efficiency hypotheses that pose key roles for medial frontal connections with insular or striatal regions in motivating or optimizing performance. Sense of effort and fatigue are closely related. As people fatigue, sense of effort increases systematically. The data propose a complex link between sense of effort, fatigue, and mTBI that is centered in what may be an inefficient neural system due to brain trauma that warrants further investigation.
Collapse
Affiliation(s)
- Amy E. Ramage
- Department of Communication Sciences and the Interdisciplinary Program in Neuroscience and Behavior, University of New Hampshire, Durham, NH, United States
| | - David F. Tate
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Berkeley, MO, United States
| | - Anneliese B. New
- TIRR Memorial Hermann, Department of Neuropsychology, Houston, TX, United States
| | - Jeffrey D. Lewis
- Department of Neurology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, United States
| | - Donald A. Robin
- Department of Communication Sciences and the Interdisciplinary Program in Neuroscience and Behavior, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
12
|
Jeong E, Ryu H, Shin JH, Kwon GH, Jo G, Lee JY. High Oxygen Exchange to Music Indicates Auditory Distractibility in Acquired Brain Injury: An fNIRS Study with a Vector-Based Phase Analysis. Sci Rep 2018; 8:16737. [PMID: 30425287 PMCID: PMC6233191 DOI: 10.1038/s41598-018-35172-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/31/2018] [Indexed: 01/30/2023] Open
Abstract
Attention deficits due to auditory distractibility are pervasive among patients with acquired brain injury (ABI). It remains unclear, however, whether attention deficits following ABI specific to auditory modality are associated with altered haemodynamic responses. Here, we examined cerebral haemodynamic changes using functional near-infrared spectroscopy combined with a topological vector-based analysis method. A total of thirty-seven participants (22 healthy adults, 15 patients with ABI) performed a melodic contour identification task (CIT) that simulates auditory distractibility. Findings demonstrated that the melodic CIT was able to detect auditory distractibility in patients with ABI. The rate-corrected score showed that the ABI group performed significantly worse than the non-ABI group in both CIT1 (target contour identification against environmental sounds) and CIT2 (target contour identification against target-like distraction). Phase-associated response intensity during the CITs was greater in the ABI group than in the non-ABI group. Moreover, there existed a significant interaction effect in the left dorsolateral prefrontal cortex (DLPFC) during CIT1 and CIT2. These findings indicated that stronger hemodynamic responses involving oxygen exchange in the left DLPFC can serve as a biomarker for evaluating and monitoring auditory distractibility, which could potentially lead to the discovery of the underlying mechanism that causes auditory attention deficits in patients with ABI.
Collapse
Affiliation(s)
- Eunju Jeong
- Department of Arts and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Industrial Information Studies, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hokyoung Ryu
- Department of Arts and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, 04763, Republic of Korea
| | - Joon-Ho Shin
- Department of Neurorehabilitation, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, 01022, Republic of Korea
| | - Gyu Hyun Kwon
- Department of Arts and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, 04763, Republic of Korea
| | - Geonsang Jo
- Department of Arts and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ji-Yeong Lee
- Department of Neurorehabilitation, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, 01022, Republic of Korea
| |
Collapse
|
13
|
Wu Z, Mazzola CA, Catania L, Owoeye O, Yaramothu C, Alvarez T, Gao Y, Li X. Altered cortical activation and connectivity patterns for visual attention processing in young adults post-traumatic brain injury: A functional near infrared spectroscopy study. CNS Neurosci Ther 2018; 24:539-548. [PMID: 29359534 PMCID: PMC6490005 DOI: 10.1111/cns.12811] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
AIMS This study aimed at understanding the neurobiological mechanisms associated with inattention induced by traumatic brain injury (TBI). To eliminate the potential confounding caused by the heterogeneity of TBI, we focused on young adults postsports-related concussion (SRC). METHODS Functional near-infrared spectroscopy (fNIRS) data were collected from 27 young adults post-SRC and 27 group-matched normal controls (NCs), while performing a visual sustained attention task. Task responsive cortical activation maps and pairwise functional connectivity among six regions of interest were constructed for each subject. Correlations among the brain imaging measures and clinical measures of attention were calculated in each group. RESULTS Compared to the NCs, the SRC group showed significantly increased brain activation in left middle frontal gyrus (MFG) and increased functional connectivity between right inferior occipital cortex (IOC) bilateral calcarine gyri (CG). The left MFG activation magnitude was significantly negatively correlated with the hyperactive/impulsive symptom severity measure in the NCs, but not in the patients. The right hemisphere CG-IOC functional connectivity showed a significant positive correlation with the hyperactive/impulsive symptom severity measure in patients, but not in NCs. CONCLUSION The current data suggest that abnormal left MFG activation and hyper-communications between right IOC and bilateral CG during visual attention processing may significantly contribute to behavioral manifestations of attention deficits in patients with TBI.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | | | - Lori Catania
- North Jersey Neurodevelopmental CenterNorth HaledonNJUSA
| | - Oyindamola Owoeye
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | - Chang Yaramothu
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | - Tara Alvarez
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| | - Yu Gao
- Department of PsychologyBrooklyn College and the Graduate Center of the City University of New YorkBrooklynNYUSA
| | - Xiaobo Li
- Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJUSA
| |
Collapse
|
14
|
Scheibel RS. Functional Magnetic Resonance Imaging of Cognitive Control following Traumatic Brain Injury. Front Neurol 2017; 8:352. [PMID: 28824524 PMCID: PMC5543081 DOI: 10.3389/fneur.2017.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Novel and non-routine tasks often require information processing and behavior to adapt from moment to moment depending on task requirements and current performance. This ability to adapt is an executive function that is referred to as cognitive control. Patients with moderate-to-severe traumatic brain injury (TBI) have been reported to exhibit impairments in cognitive control and functional magnetic resonance imaging (fMRI) has provided evidence for TBI-related alterations in brain activation using various fMRI cognitive control paradigms. There is some support for greater and more extensive cognitive control-related brain activation in patients with moderate-to-severe TBI, relative to comparison subjects without TBI. In addition, some studies have reported a correlation between these activation increases and measures of injury severity. Explanations that have been proposed for increased activation within structures that are thought to be directly involved in cognitive control, as well as the extension of this over-activation into other brain structures, have included compensatory mechanisms, increased demand upon normal processes required to maintain adequate performance, less efficient utilization of neural resources, and greater vulnerability to cognitive fatigue. Recent findings are also consistent with the possibility that activation increases within some structures, such as the posterior cingulate gyrus, may reflect a failure to deactivate components of the default mode network (DMN) and that some cognitive control impairment may result from ineffective coordination between the DMN and components of the salience network. Functional neuroimaging studies examining cognitive control-related activation following mild TBI (mTBI) have yielded more variable results, with reports of increases, decreases, and no significant change. These discrepancies may reflect differences among the various mTBI samples under study, recovery of function in some patients, different task characteristics, and the presence of comorbid conditions such as depression and posttraumatic stress disorder that also alter brain activation. There may be mTBI populations with activation changes that overlap with those found following more severe injuries, including symptomatic mTBI patients and those with acute injuries, but future research to address such dysfunction will require well-defined samples with adequate controls for injury characteristics, comorbid disorders, and severity of post-concussive symptoms.
Collapse
Affiliation(s)
- Randall S Scheibel
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Xiao H, Jacobsen A, Chen Z, Wang Y. Detecting social-cognitive deficits after traumatic brain injury: An ALE meta-analysis of fMRI studies. Brain Inj 2017. [DOI: 10.1080/02699052.2017.1319576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hui Xiao
- Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, China
| | - Andre Jacobsen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ziqian Chen
- Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, China
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Ng LJ, Volman V, Gibbons MM, Phohomsiri P, Cui J, Swenson DJ, Stuhmiller JH. A Mechanistic End-to-End Concussion Model That Translates Head Kinematics to Neurologic Injury. Front Neurol 2017; 8:269. [PMID: 28663736 PMCID: PMC5471336 DOI: 10.3389/fneur.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Past concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology). A comprehensive approach that connects all length scales and relates measurable macroscopic parameters to neurological outcomes is the first step toward rationally unraveling the complexity of this multi-scale system, for better guidance of future research. This paper describes the development of the first quantitative end-to-end (E2E) multi-scale model that links gross head motion to neurological injury by integrating fundamental elements of tissue and cellular mechanical response with axonal dysfunction. The model quantifies axonal stretch (i.e., tension) injury in the corpus callosum, with axonal functionality parameterized in terms of axonal signaling. An internal injury correlate is obtained by calculating a neurological injury measure (the average reduction in the axonal signal amplitude) over the corpus callosum. By using a neurologically based quantity rather than externally measured head kinematics, the E2E model is able to unify concussion data across a range of exposure conditions and species with greater sensitivity and specificity than correlates based on external measures. In addition, this model quantitatively links injury of the corpus callosum to observed specific neurobehavioral outcomes that reflect clinical measures of mild traumatic brain injury. This comprehensive modeling framework provides a basis for the systematic improvement and expansion of this mechanistic-based understanding, including widening the range of neurological injury estimation, improving concussion risk correlates, guiding the design of protective equipment, and setting safety standards.
Collapse
Affiliation(s)
- Laurel J Ng
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Vladislav Volman
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Melissa M Gibbons
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Pi Phohomsiri
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Jianxia Cui
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| | - Darrell J Swenson
- Cardiac Rhythm and Heart Failure Numerical Modeling, Medtronic, Mounds View, MN, United States
| | - James H Stuhmiller
- Simulation Engineering and Testing, L-3 Applied Technologies, Inc., San Diego, CA, United States
| |
Collapse
|
17
|
Gardner AJ, Shih SL, Adamov EV, Zafonte RD. Research Frontiers in Traumatic Brain Injury. Phys Med Rehabil Clin N Am 2017; 28:413-431. [DOI: 10.1016/j.pmr.2016.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Cui J, Ng LJ, Volman V. Callosal dysfunction explains injury sequelae in a computational network model of axonal injury. J Neurophysiol 2016; 116:2892-2908. [PMID: 27683891 DOI: 10.1152/jn.00603.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) often results in neurobehavioral aberrations such as impaired attention and increased reaction time. Diffusion imaging and postmortem analysis studies suggest that mTBI primarily affects myelinated axons in white matter tracts. In particular, corpus callosum, mediating interhemispheric information exchange, has been shown to be affected in mTBI. Yet little is known about the mechanisms linking the injury of myelinated callosal axons to the neurobehavioral sequelae of mTBI. To address this issue, we devised and studied a large, biologically plausible neuronal network model of cortical tissue. Importantly, the model architecture incorporated intra- and interhemispheric organization, including myelinated callosal axons and distance-dependent axonal conduction delays. In the resting state, the intact model network exhibited several salient features, including alpha-band (8-12 Hz) collective activity with low-frequency irregular spiking of individual neurons. The network model of callosal injury captured several clinical observations, including 1) "slowing down" of the network rhythms, manifested as an increased resting-state theta-to-alpha power ratio, 2) reduced response to attention-like network stimulation, manifested as a reduced spectral power of collective activity, and 3) increased population response time in response to stimulation. Importantly, these changes were positively correlated with injury severity, supporting proposals to use neurobehavioral indices as biomarkers for determining the severity of injury. Our modeling effort helps to understand the role played by the injury of callosal myelinated axons in defining the neurobehavioral sequelae of mTBI.
Collapse
Affiliation(s)
- Jianxia Cui
- L-3 Applied Technologies, Inc., San Diego, California
| | - Laurel J Ng
- L-3 Applied Technologies, Inc., San Diego, California
| | | |
Collapse
|
19
|
Gooijers J, Beets IAM, Albouy G, Beeckmans K, Michiels K, Sunaert S, Swinnen SP. Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain 2016; 139:2469-85. [DOI: 10.1093/brain/aww177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/27/2016] [Indexed: 12/30/2022] Open
|
20
|
Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging Behav 2016; 9:367-402. [PMID: 26350144 DOI: 10.1007/s11682-015-9444-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Traumatic brain injury (TBI) remains one of the most prevalent forms of morbidity among Veterans and Service Members, particularly for those engaged in the conflicts in Iraq and Afghanistan. Neuroimaging has been considered a potentially useful diagnostic and prognostic tool across the spectrum of TBI generally, but may have particular importance in military populations where the diagnosis of mild TBI is particularly challenging, given the frequent lack of documentation on the nature of the injuries and mixed etiologies, and highly comorbid with other disorders such as post-traumatic stress disorder, depression, and substance misuse. Imaging has also been employed in attempts to understand better the potential late effects of trauma and to evaluate the effects of promising therapeutic interventions. This review surveys the use of structural and functional neuroimaging techniques utilized in military studies published to date, including the utilization of quantitative fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), volumetric analysis, diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), positron emission tomography (PET), magnetoencephalography (MEG), task-based and resting state functional MRI (fMRI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS). The importance of quality assurance testing in current and future research is also highlighted. Current challenges and limitations of each technique are outlined, and future directions are discussed.
Collapse
|
21
|
Evaluation of the Military Functional Assessment Program: Preliminary Assessment of the Construct Validity Using an Archived Database of Clinical Data. J Head Trauma Rehabil 2016; 30:E11-20. [PMID: 24922040 DOI: 10.1097/htr.0000000000000060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several important factors must be considered when deciding to return a soldier to duty after a traumatic brain injury (TBI). Premature return increases risk for not only second-impact syndrome during the acute phase but also permanent changes from repetitive concussions. Thus, there is a critical need for return-to-duty (RTD) assessment criteria that encompass the spectrum of injury and disease experienced by US soldiers, particularly TBI. OBJECTIVES To provide evidence-based standards to eventually serve as criteria for operational competence and performance of a soldier after injury. Specifically, the relationships between clinical assessments and novel military-specific tasks were evaluated. METHOD Exploratory analyses (including nonparametric tests and Spearman rank correlations) of an archived database. PARTICIPANTS A total of 79 patients with TBI who participated in an RTD assessment program at a US Army rehabilitation and recovery center. MAIN MEASURES Military Functional Assessment Program (to determine a soldier's operational competence and performance after TBI) tasks; Dizziness Handicap Inventory; Dynamic Visual Acuity (vestibular function); Sensory Organization Test (postural control); Repeatable Battery for the Assessment of Neuropsychological Status (neuropsychological screening test); Beck Depression Inventory-II; Beck Anxiety Inventory; Comprehensive Trail Making Test (visual search and sequencing); posttraumatic stress disorder checklist military version; Alcohol Use Disorders Identification Test; Epworth Sleepiness Scale; Patient Health Questionnaire; and Military Acute Concussion Evaluation. RESULTS Selected military operational assessment tasks correlated significantly with clinical measures of vestibular function, psychological well-being, and cognitive function. Differences on occupational therapy assessments, a concussion screening tool, and a self-report health questionnaire were seen between those who passed and those who failed the RTD assessment. Specifically, those who passed the RTD assessment scored more favorably on these clinical assessments. CONCLUSIONS This study demonstrated convergent validity between Military Functional Assessment Program tasks and clinical assessment scores. The Military Functional Assessment Program shows promise for augmenting decision making related to RTD and soldier skills. Additional research is needed to determine the effectiveness of this program in predicting RTD success.
Collapse
|
22
|
Medaglia JD, McAleavey AA, Rostami S, Slocomb J, Hillary FG. Modeling distinct imaging hemodynamics early after TBI: the relationship between signal amplitude and connectivity. Brain Imaging Behav 2016; 9:285-301. [PMID: 24906546 DOI: 10.1007/s11682-014-9306-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past decade, fMRI studies of cognitive change following traumatic brain injury (TBI) have investigated blood oxygen level dependent (BOLD) activity during working memory (WM) performance in individuals in early and chronic phases of recovery. Recently, BOLD fMRI work has largely shifted to focus on WM and resting functional connectivity following TBI. However, fundamental questions in WM remain. Specifically, the effects of injury on the basic relationships between local and interregional functional neuroimaging signals during WM processing early following moderate to severe TBI have not been examined. This study employs a mixed effects model to examine prefrontal cortex and parietal lobe signal change during a WM task, the n-back, and whether there is covariance between regions of high amplitude signal change, (synchrony of elicited activity (SEA) very early following TBI. We also examined whether signal change and SEA differentially predict performance during WM. Overall, percent signal change in the right prefrontal cortex (rPFC) was and important predictor of both reaction time (RT) and SEA in early TBI and matched controls. Right prefrontal cortex (rPFC) percent signal change positively predicted SEA within and between persons regardless of injury status, suggesting that the link between these neurodynamic processes in WM-activated regions remains unaffected even very early after TBI. Additionally, rPFC activity was positively related to RT within and between persons in both groups. Right parietal (rPAR) activity was negatively related to RT within subjects in both groups. Thus, the local signal intensity of the rPFC in TBI appears to be a critical property of network functioning and performance in WM processing and may be a precursor to recruitment observed in chronic samples. The present results suggest that as much research moves toward large scale functional connectivity modeling, it will be essential to develop integrated models of how local and distant neurodynamics promote WM performance after TBI.
Collapse
Affiliation(s)
- John D Medaglia
- Psychology Department, Pennsylvania State University, State College, 313 Moore Building, University Park, PA, 16802, USA
| | | | | | | | | |
Collapse
|
23
|
Mental fatigue after mild traumatic brain injury: a 3D-ASL perfusion study. Brain Imaging Behav 2016; 10:857-68. [DOI: 10.1007/s11682-015-9492-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Systematic review of interventions for fatigue after traumatic brain injury: a NIDRR traumatic brain injury model systems study. J Head Trauma Rehabil 2015; 29:490-7. [PMID: 25370441 DOI: 10.1097/htr.0000000000000102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To conduct a systematic review of the evidence on interventions for posttraumatic brain injury fatigue (PTBIF). METHODS Systematic searches of multiple databases for peer-reviewed studies published in English on interventions targeting PTBIF as a primary or secondary outcome through January 22, 2014. Reference sections were also reviewed to identify additional articles. Articles were rated using the 2011 American Academy of Neurology Classification of Evidence Scheme for therapeutic studies. RESULTS The searches yielded 1526 articles. Nineteen articles met all inclusion criteria: 4 class I, 1 class II/III, 10 class III, and 4 class IV. Only 5 articles examined fatigue as a primary outcome. Interventions were pharmacological and psychological or involved physical activity, bright blue light, electroencephalographic biofeedback, or electrical stimulation. Only 2 interventions (modafinil and cognitive behavioral therapy with fatigue management) were evaluated in more than 1 study. CONCLUSIONS Despite areas of promise, there is insufficient evidence to recommend or contraindicate any treatments of PTBIF. Modafinil is not likely to be effective for PTBIF. Piracetam may reduce it, as may bright blue light. Cognitive behavioral therapy deserves additional study. High-quality research incorporating appropriate definition and measurement of fatigue is required to explore the potential benefits of promising interventions, evaluate fatigue treatments shown to be effective in other populations, and develop new interventions for PTBIF.
Collapse
|
25
|
Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury. Neural Plast 2015; 2016:4072402. [PMID: 26819765 PMCID: PMC4706919 DOI: 10.1155/2016/4072402] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.
Collapse
|
26
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
27
|
Transcranial magnetic stimulation facilitates neurorehabilitation after pediatric traumatic brain injury. Sci Rep 2015; 5:14769. [PMID: 26440604 PMCID: PMC4594036 DOI: 10.1038/srep14769] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/09/2015] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability among children in the United States. Affected children will often suffer from emotional, cognitive and neurological impairments throughout life. In the controlled cortical impact (CCI) animal model of pediatric TBI (postnatal day 16-17) it was demonstrated that injury results in abnormal neuronal hypoactivity in the non-injured primary somatosensory cortex (S1). It materializes that reshaping the abnormal post-injury neuronal activity may provide a suitable strategy to augment rehabilitation. We tested whether high-frequency, non-invasive transcranial magnetic stimulation (TMS) delivered twice a week over a four-week period can rescue the neuronal activity and improve the long-term functional neurophysiological and behavioral outcome in the pediatric CCI model. The results show that TBI rats subjected to TMS therapy showed significant increases in the evoked-fMRI cortical responses (189%), evoked synaptic activity (46%), evoked neuronal firing (200%) and increases expression of cellular markers of neuroplasticity in the non-injured S1 compared to TBI rats that did not receive therapy. Notably, these rats showed less hyperactivity in behavioral tests. These results implicate TMS as a promising approach for reversing the adverse neuronal mechanisms activated post-TBI. Importantly, this intervention could readily be translated to human studies.
Collapse
|
28
|
Altered Recruitment of the Attention Network Is Associated with Disability and Cognitive Impairment in Pediatric Patients with Acquired Brain Injury. Neural Plast 2015; 2015:104282. [PMID: 26448878 PMCID: PMC4581560 DOI: 10.1155/2015/104282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/23/2015] [Accepted: 08/26/2015] [Indexed: 01/13/2023] Open
Abstract
We assessed abnormalities of brain functional magnetic resonance imaging (fMRI) activity during a sustained attention task (Conners' Continuous Performance Test (CCPT)) in 20 right-handed pediatric acquired brain injury (ABI) patients versus 7 right-handed age-matched healthy controls, and we estimated the correlation of such abnormalities with clinical and cognitive deficits. Patients underwent the Wechsler Intelligence Scale for Children (WISC), Wisconsin Card Sorting Test, and Functional Independence Measure (FIM) evaluations. During fMRI, patients and controls activated regions of the attention network. Compared to controls, ABI patients experienced a decreased average fMRI recruitment of the left cerebellum and a decreased deactivation of the left anterior cingulate cortex. With increasing task demand, compared to controls, ABI patients had an impaired ability to increase the recruitment of several posterior regions of the attention network. They also experienced a greater activation of frontal regions, which was correlated with worse performance on FIM, WISC, and fMRI CCPT. Such abnormal brain recruitment was significantly influenced by the type of lesion (focal versus diffuse axonal injury) and time elapsed from the event. Pediatric ABI patients experienced an inability to optimize attention network recruitment, especially when task difficulty was increased, which likely contributes to their clinical and cognitive deficits.
Collapse
|
29
|
Mayer AR, Hanlon FM, Dodd AB, Ling JM, Klimaj SD, Meier TB. A functional magnetic resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain injury. Hum Brain Mapp 2015; 36:4394-406. [PMID: 26493161 DOI: 10.1002/hbm.22930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022] Open
Abstract
Mild traumatic brain injury patients (mTBI) frequently report symptoms of increased distractability and sensory disturbances during mutisensory stimulation. These common post-concussive symptoms could putatively result from dysfunction within the cognitive control network (CCN; top-down) or from unisensory cortex (bottom-up) itself. Functional magnetic resonance imaging (fMRI) and high-resolution structural data were therefore prospectively collected during a multisensory (audio-visual) cognitive control task from 46 mTBI patients within 3 weeks of injury and 46 matched healthy controls (HC), with a subset of participants returning at 4 months. Multisensory stimuli were presented at two frequencies to manipulate cognitive and perceptual load. Patients self-reported more cognitive, emotional, somatic, vestibular and visual symptoms relative to HC, which improved, but did not entirely resolve, over the 4 month follow-up period. There were no group differences in behavior or functional activation during cognitive control (incongruent--congruent trials). In contrast, patients exhibited abnormal activation within different regions of visual cortex that depended on whether attention was focused on auditory or visual information streams. Patients also exhibited increased activation within bilateral inferior parietal lobules during higher cognitive/perceptual loads, suggesting a compensatory mechanism to achieve similar levels of behavioral performance. Functional abnormalities within the visual cortex and inferior parietal lobules were only partially resolved at 4 months post-injury, suggesting that neural abnormalities may take longer to resolve than behavioral measures used in most clinical settings. In summary, current results indicate that abnormalities within unisensory cortex (particularly visual areas) following mTBI, which likely contribute to deficits commonly reported during multisensory stimulation.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Stefan D Klimaj
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Timothy B Meier
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| |
Collapse
|
30
|
Hillary FG, Medaglia JD, Gates KM, Molenaar PC, Good DC. Examining network dynamics after traumatic brain injury using the extended unified SEM approach. Brain Imaging Behav 2015; 8:435-45. [PMID: 23138853 DOI: 10.1007/s11682-012-9205-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current study uses effective connectivity modeling to examine how individuals with traumatic brain injury (TBI) learn a new task. We make use of recent advancements in connectivity modeling (extended unified structural equation modeling, euSEM) and a novel iterative grouping procedure (Group Iterative Multiple Model Estimation, GIMME) in order to examine network flexibility after injury. The study enrolled 12 individuals sustaining moderate and severe TBI to examine the influence of task practice on connections between 8 network nodes (bilateral prefrontal cortex, anterior cingulate, inferior parietal lobule, and Crus I in the cerebellum). The data demonstrate alterations in networks from pre to post practice and differences in the models based upon distinct learning trajectories observed within the TBI sample. For example, better learning in the TBI sample was associated with diminished connectivity within frontal systems and increased frontal to parietal connectivity. These findings reveal the potential for using connectivity modeling and the euSEM to examine dynamic networks during task engagement and may ultimately be informative regarding when networks are moving in and out of periods of neural efficiency.
Collapse
Affiliation(s)
- F G Hillary
- Department of Psychology, The Pennsylvania State University, 347 Moore Building, University Park, PA, 16802, USA,
| | | | | | | | | |
Collapse
|
31
|
The suppression of brain activation in post-deployment military personnel with posttraumatic stress symptoms. Brain Imaging Behav 2015; 9:513-26. [PMID: 25875014 DOI: 10.1007/s11682-015-9376-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous research using cognitive paradigms has found task-related activation that includes prefrontal brain structures and that is attenuated in association with posttraumatic stress symptoms (PTSS). The present investigation used a cognitive control paradigm, the Arrows Task, to study subjects who had not sustained a traumatic brain injury during deployment and who had a wide range of scores on the Posttraumatic Stress Disorder Checklist (PCL). During the Arrows Task there was no significant activation within the full sample of 15 subjects, but deactivation was found within areas that are likely to be involved in cognitive control, including the dorsal anterior cingulate gyrus and parietal cortex. Exploratory analyses were also conducted to compare subjects with relatively high PTSS (HIGH PTSS, n = 7) to those with lower severity or no symptoms (LOW PTSS, n = 8). LOW PTSS subjects exhibited activation in nonfrontal brain areas and their activation was greater relative to the HIGH PTSS subjects. In contrast, the HIGH PTSS group had extensive deactivation and there was a negative relationship between activation and PCL scores within subcortical structures, the cerebellum, and higher-order cortical association areas. For the HIGH PTSS group there was also a positive relationship between PCL scores and activation within basic sensory and motor areas, as well as structures thought to have a role in emotion and the regulation of internal bodily states. These findings are consistent with widespread neural dysfunction in subjects with greater PTSS, including changes similar to those reported to occur with acute stress and elevated noradrenergic activity.
Collapse
|
32
|
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability, and therefore an important health and socioeconomic problem for our society. Individuals surviving from a moderate to severe TBI frequently suffer from long-lasting cognitive deficits. Such deficits include different aspects of cognition such as memory, attention, executive functions, and awareness of their deficits. This chapter presents a review of the main neuropsychological and neuroimaging studies of patients with TBI. These studies found that patients evolve differently according to the severity of the injury, the mechanism causing the injury, and the lesion location. Further research is necessary to develop rehabilitation methods that enhance brain plasticity and recovery after TBI. In this chapter, we summarize current knowledge and controversies, focusing on cognitive sequelae after TBI. Recommendations from the Common Data Elements are provided, with an emphasis on diagnosis, outcome measures, and studies organization to make data more comparable across studies. Final considerations on neuroimaging advances, rehabilitation approaches, and genetics are described in the final section of the chapter.
Collapse
Affiliation(s)
- Irene Cristofori
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Harvey S Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Yuan W, Wade SL, Babcock L. Structural connectivity abnormality in children with acute mild traumatic brain injury using graph theoretical analysis. Hum Brain Mapp 2014; 36:779-92. [PMID: 25363671 DOI: 10.1002/hbm.22664] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023] Open
Abstract
The traumatic biomechanical forces associated with mild traumatic brain injury (mTBI) typically impart diffuse, as opposed to focal, brain injury potentially disrupting the structural connectivity between neural networks. Graph theoretical analysis using diffusion tensor imaging was used to assess injury-related differences in structural connectivity between 23 children (age 11-16 years) with mTBI and 20 age-matched children with isolated orthopedic injuries (OI) scanned within 96 h postinjury. The distribution of hub regions and the associations between alterations in regional network measures and symptom burden, as assessed by the postconcussion symptom scale score (PCSS), were also examined. In comparison to the OI group, the mTBI group was found to have significantly higher small-worldness (P < 0.0001), higher normalized clustering coefficients (P < 0.0001), higher normalized characteristic path length (P = 0.007), higher modularity (P = 0.0005), and lower global efficiency (P < 0.0001). A series of hub regions in the mTBI group were found to have significant alterations in regional network measures including nodal degree, nodal clustering coefficient, and nodal between-ness centrality. Correlation analysis showed that PCSS total score acquired at the time of imaging was significantly associated with the nodal degree of two hubs, the superior frontal gyrus at orbital section and the middle frontal gyrus. These findings provide new evidence of acute white matter alteration at both global and regional network level following mTBI in children furthering our understanding of underlying mechanisms of acute neurological insult associated with mTBI.
Collapse
Affiliation(s)
- Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; College of Medicine University of Cincinnati, Cincinnati, Ohio
| | | | | |
Collapse
|
34
|
Olsen A, Brunner JF, Indredavik Evensen KA, Finnanger TG, Vik A, Skandsen T, Landrø NI, Håberg AK. Altered Cognitive Control Activations after Moderate-to-Severe Traumatic Brain Injury and Their Relationship to Injury Severity and Everyday-Life Function. Cereb Cortex 2014; 25:2170-80. [PMID: 24557637 PMCID: PMC4494028 DOI: 10.1093/cercor/bhu023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study investigated how the neuronal underpinnings of both adaptive and stable cognitive control processes are affected by traumatic brain injury (TBI). Functional magnetic resonance imaging (fMRI) was undertaken in 62 survivors of moderate-to-severe TBI (>1 year after injury) and 68 healthy controls during performance of a continuous performance test adapted for use in a mixed block- and event-related design. Survivors of TBI demonstrated increased reliance on adaptive task control processes within an a priori core region for cognitive control in the medial frontal cortex. TBI survivors also had increased activations related to time-on-task effects during stable task-set maintenance in right inferior parietal and prefrontal cortices. Increased brain activations in TBI survivors had a dose-dependent linear positive relationship to injury severity and were negatively correlated with self-reported cognitive control problems in everyday-life situations. Results were adjusted for age, education, and fMRI task performance. In conclusion, evidence was provided that the neural underpinnings of adaptive and stable control processes are differently affected by TBI. Moreover, it was demonstrated that increased brain activations typically observed in survivors of TBI might represent injury-specific compensatory adaptations also utilized in everyday-life situations.
Collapse
Affiliation(s)
- Alexander Olsen
- MI-Lab and Department of Circulation and Medical Imaging
- Department of Physical Medicine and Rehabilitation
| | - Jan Ferenc Brunner
- Department of Neuroscience
- Department of Physical Medicine and Rehabilitation
| | - Kari Anne Indredavik Evensen
- Department of Public Health and General Practice
- Department of Laboratory Medicine, Children's and Women's Health and
- Department of Physiotherapy, Trondheim Municipality, Trondheim, Norway
| | - Torun Gangaune Finnanger
- The Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU) – Central Norway, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic
| | - Anne Vik
- Department of Neuroscience
- Department of Neurosurgery
| | - Toril Skandsen
- Department of Neuroscience
- Department of Physical Medicine and Rehabilitation
| | - Nils Inge Landrø
- National Competence Centre for Complex Symptom Disorders and
- Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway
| | - Asta Kristine Håberg
- Department of Neuroscience
- Department of Radiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
35
|
Verbal working memory impairments following traumatic brain injury: an fNIRS investigation. Brain Imaging Behav 2013; 8:446-59. [DOI: 10.1007/s11682-013-9258-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, Grossman RI, Ge Y. Default-mode network disruption in mild traumatic brain injury. Radiology 2013; 265:882-92. [PMID: 23175546 DOI: 10.1148/radiol.12120748] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the integrity of the default-mode network (DMN) by using independent component analysis (ICA) methods in patients shortly after mild traumatic brain injury (MTBI) and healthy control subjects, and to correlate DMN connectivity changes with neurocognitive tests and clinical symptoms. MATERIALS AND METHODS This study was approved by the institutional review board and complied with HIPAA regulations. Twenty-three patients with MTBI who had posttraumatic symptoms shortly after injury (<2 months) and 18 age-matched healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging was performed at 3 T to characterize the DMN by using ICA methods, including a single-participant ICA on the basis of a comprehensive template from core seeds in the posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) nodes. ICA z images of DMN components were compared between the two groups and correlated with neurocognitive tests and clinical performance in patients by using Pearson and Spearman rank correlation. RESULTS When compared with the control subjects, there was significantly reduced connectivity in the PCC and parietal regions and increased frontal connectivity around the MPFC in patients with MTBI (P < .01). These frontoposterior opposing changes within the DMN were significantly correlated (r = -0.44, P = .03). The reduced posterior connectivity correlated positively with neurocognitive dysfunction (eg, cognitive flexibility), while the increased frontal connectivity correlated negatively with posttraumatic symptoms (ie, depression, anxiety, fatigue, and postconcussion syndrome). CONCLUSION These results showed abnormal DMN connectivity patterns in patients with MTBI, which may provide insight into how neuronal communication and information integration are disrupted among DMN key structures after mild head injury.
Collapse
Affiliation(s)
- Yongxia Zhou
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mayer AR, Yang Z, Yeo RA, Pena A, Ling JM, Mannell MV, Stippler M, Mojtahed K. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav 2012; 6:343-54. [PMID: 22673802 DOI: 10.1007/s11682-012-9178-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous work suggests that the ability to selectively attend to and resolve conflicting information may be the most enduring cognitive deficit following mild traumatic brain injury (mTBI). The current study used fMRI to evaluate potential differences in hemodynamic activation in 22 mTBI patients and 22 carefully matched healthy controls (HC) during a multimodal selective attention task (numeric Stroop). Behavioral data indicated faster reaction times for congruent versus incongruent trials and for stimuli presented at 0.66 compared to 0.33 Hz across both groups, with minimal differences in behavioral performance across the groups. Similarly, there were no group-wise differences in functional activation within lateral and medial prefrontal cortex during the execution of cognitive control (incongruent versus congruent trials). In contrast, within-group comparisons indicated robust patterns of attention-related modulations (ARM) within the bilateral dorsolateral prefrontal cortex and bilateral visual streams for HC but not mTBI patients. In addition, mTBI patients failed to exhibit task-induced deactivation within the default-mode network (DMN) under conditions of higher attentional load. In summary, in spite of near normal behavioral performance, current results suggest within-group abnormalities during both the top-down allocation of visual attention and in regulating the DMN during the semi-acute stage of mTBI.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim J, Whyte J, Patel S, Europa E, Slattery J, Coslett HB, Detre JA. A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair 2012; 26:870-80. [PMID: 22357634 PMCID: PMC5650500 DOI: 10.1177/1545968311434553] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Given that traumatic brain injury (TBI) results in chronic alteration of baseline cerebral perfusion, a perfusion functional MRI (fMRI) method that dissociates resting- and task-related cerebral blood flow (CBF) changes can be useful in noninvasively investigating the neural correlates of cognitive dysfunction and recovery in TBI. OBJECTIVE The authors used continuous arterial spin-labeled (ASL) perfusion fMRI to characterize CBF at rest and during sustained-attention and working-memory tasks. METHODS A total of 18 to 21 individuals with moderate to severe TBI and 14 to 18 demographically matched healthy controls completed 3 continuous 6-minute perfusion fMRI scans (resting, visual sustained attention, and 2-back working memory). RESULTS For both tasks, TBI participants showed worse behavioral performance than controls. Voxelwise neuroimaging analysis of the 2-back task found that group differences in task-induced CBF changes were localized to bilateral superior occipital cortices and the left superior temporal cortex. Whereas controls deactivated these areas during task performance, TBI participants tended to activate these same areas. These regions were among those found to be disproportionately hypoperfused at rest after TBI. For both tasks, the control and TBI groups showed different patterns of correlation between performance and task-related CBF changes. CONCLUSIONS ASL perfusion fMRI demonstrated differences between individuals with TBI and healthy controls in resting perfusion and in task-evoked CBF changes as well as different patterns of performance-activation correlation. These results are consistent with the notion that sensory/attentional modulation deficits contribute to higher cognitive dysfunction in TBI.
Collapse
Affiliation(s)
- Junghoon Kim
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, PA 19027, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Caeyenberghs K, Leemans A, Heitger MH, Leunissen I, Dhollander T, Sunaert S, Dupont P, Swinnen SP. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain 2012; 135:1293-307. [PMID: 22427332 DOI: 10.1093/brain/aws048] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karen Caeyenberghs
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Biomedical Sciences Group, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hunter JV, Wilde EA, Tong KA, Holshouser BA. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma 2012; 29:654-71. [PMID: 21787167 PMCID: PMC3289847 DOI: 10.1089/neu.2011.1906] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.
Collapse
Affiliation(s)
- Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Literature suggests that individuals with mild traumatic brain injury (mTBI) show subtle abnormalities in the cognitive control process of performance monitoring. The neural bases of performance monitoring can be measured using the error-related negaitivity (ERN) and post-error positivity (Pe) components of the scalp-recorded event-related potential (ERP). Thirty-six individuals with mTBI and 46 demographically similar controls completed a modified color-naming Stroop task while ERPs were recorded. Separate repeated-measures analyses of variance were used to examine the behavioral (response times [RT] and error rates) and ERP (ERN and Pe amplitudes) indices of performance monitoring. Both groups showed slower RTs and increased error rates on incongruent trials relative to congruent trials. Likewise, both groups showed more negative ERN and more positive Pe amplitude to error trials relative to correct trials. Notably, there were no significant main effects or interactions of group for behavioral and ERP measures. Subgroup and correlational analyses with post-concussive symptoms and indices of injury severity were also not significant. Findings suggest comparable performance to non-injured individuals in some aspects of cognitive control in this sample. Neuropsychological implications and comparison with other cognitive control component processes in individuals with TBI are provided.
Collapse
|
42
|
Leunissen I, Coxon JP, Geurts M, Caeyenberghs K, Michiels K, Sunaert S, Swinnen SP. Disturbed cortico-subcortical interactions during motor task switching in traumatic brain injury. Hum Brain Mapp 2012; 34:1254-71. [PMID: 22287257 DOI: 10.1002/hbm.21508] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/06/2011] [Accepted: 10/10/2011] [Indexed: 01/07/2023] Open
Abstract
The ability to suppress and flexibly adapt motor behavior is a fundamental mechanism of cognitive control, which is impaired in traumatic brain injury (TBI). Here, we used a combination of functional magnetic resonance imaging and diffusion weighted imaging tractography to study changes in brain function and structure associated with motor switching performance in TBI. Twenty-three young adults with moderate-severe TBI and twenty-six healthy controls made spatially and temporally coupled bimanual circular movements. A visual cue signaled the right hand to switch or continue its circling direction. The time to initiate the switch (switch response time) was longer and more variable in the TBI group and TBI patients exhibited a higher incidence of complete contralateral (left hand) movement disruptions. Both groups activated the basal ganglia and a previously described network for task-set implementation, including the supplementary motor complex and bilateral inferior frontal cortex (IFC). Relative to controls, patients had significantly increased activation in the presupplementary motor area (preSMA) and left IFC, and showed underactivation of the subthalamic nucleus (STN) region. This altered functional engagement was related to the white matter microstructural properties of the tracts connecting preSMA, IFC, and STN. Both functional activity in preSMA, IFC, and STN, and the integrity of the connections between them were associated with behavioral performance across patients and controls. We suggest that damage to these key pathways within the motor switching network because of TBI, shifts the patients toward the lower end of the existing structure-function-behavior spectrum.
Collapse
Affiliation(s)
- Inge Leunissen
- Motor Control Laboratory, Research Centre of Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, K.U. Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Altered brain activation in military personnel with one or more traumatic brain injuries following blast. J Int Neuropsychol Soc 2012; 18:89-100. [PMID: 22132942 DOI: 10.1017/s1355617711001433] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Explosive blast is a frequent cause of traumatic brain injury (TBI) among personnel deployed to Afghanistan and Iraq. Functional magnetic resonance imaging (fMRI) with an event-related stimulus-response compatibility task was used to compare 15 subjects with mild, chronic blast-related TBI with 15 subjects who had not experienced a TBI or blast exposure during deployment. Six TBI subjects reported multiple injuries. Relative to the control group, TBI subjects had slightly slower responses during fMRI and increased somatic complaints and symptoms of post-traumatic stress disorder (PTSD) and depression. A between-group analysis indicated greater activation during stimulus-response incompatibility in TBI subjects within the anterior cingulate gyrus, medial frontal cortex, and posterior cerebral areas involved in visual and visual-spatial functions. This activation pattern was more extensive after statistically controlling for reaction time and symptoms of PTSD and depression. There was also a negative relationship between symptoms of PTSD and activation within posterior brain regions. These results provide evidence for increased task-related activation following mild, blast-related TBI and additional changes associated with emotional symptoms. Limitations of this study include no matching for combat exposure and different recruitment strategies so that the control group was largely a community-based sample, while many TBI subjects were seeking services.
Collapse
|
44
|
Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 2011; 31:13442-51. [PMID: 21940437 DOI: 10.1523/jneurosci.1163-11.2011] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) frequently produces impairments of attention in humans. These can result in a failure to maintain consistent goal-directed behavior. A predominantly right-lateralized frontoparietal network is often engaged during attentionally demanding tasks. However, lapses of attention have also been associated with increases in activation within the default mode network (DMN). Here, we study TBI patients with sustained attention impairment, defined on the basis of the consistency of their behavioral performance over time. We show that sustained attention impairments in patients are associated with an increase in DMN activation, particularly within the precuneus and posterior cingulate cortex. Furthermore, the interaction of the precuneus with the rest of the DMN at the start of the task, i.e., its functional connectivity, predicts which patients go on to show impairments of attention. Importantly, this predictive information is present before any behavioral evidence of sustained attention impairment, and the relationship is also found in a subgroup of patients without focal brain damage. TBI often results in diffuse axonal injury, which produces cognitive impairment by disconnecting nodes in distributed brain networks. Using diffusion tensor imaging, we demonstrate that structural disconnection within the DMN also correlates with the level of sustained attention. These results show that abnormalities in DMN function are a sensitive marker of impairments of attention and suggest that changes in connectivity within the DMN are central to the development of attentional impairment after TBI.
Collapse
|
45
|
Newsome MR, Scheibel RS, Chu Z, Hunter JV, Li X, Wilde EA, Lu H, Wang ZJ, Lin X, Steinberg JL, Vasquez AC, Cook L, Levin HS. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation. Int J Dev Neurosci 2011; 30:255-66. [PMID: 22120754 DOI: 10.1016/j.ijdevneu.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022] Open
Abstract
Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (p<.055) in the TBI group. To understand any role reduced CBF may play in diffuse extra-activation, we then related the right non-prefrontal CBF to activation. CBF in the right non-prefrontal region in the TD group was positively associated with prefrontal activation, suggesting an interactive role of non-prefrontal and prefrontal blood flow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological tissue associated with T2-hyperintensities, may provide contributions to the diffuse, primarily posterior extra-activation observed in adolescents following moderate to severe TBI.
Collapse
Affiliation(s)
- Mary R Newsome
- Traumatic Brain Injury Center of Excellence, Michael E. DeBakey VA Medical Center, Houston, TX, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Duncan CC, Summers AC, Perla EJ, Coburn KL, Mirsky AF. Evaluation of traumatic brain injury: Brain potentials in diagnosis, function, and prognosis. Int J Psychophysiol 2011; 82:24-40. [DOI: 10.1016/j.ijpsycho.2011.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022]
|
47
|
Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle V, De Boissezon X, Powell JH, Counsell SJ, Patel MC, Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011; 134:2233-47. [DOI: 10.1093/brain/awr175] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study. Int J Psychophysiol 2011; 82:97-106. [PMID: 21756946 DOI: 10.1016/j.ijpsycho.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 11/24/2022]
Abstract
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI.
Collapse
|
49
|
Medaglia JD, Chiou KS, Slocomb J, Fitzpatrick NM, Wardecker BM, Ramanathan D, Vesek J, Good DC, Hillary FG. The less BOLD, the wiser: support for the latent resource hypothesis after traumatic brain injury. Hum Brain Mapp 2011; 33:979-93. [PMID: 21591026 DOI: 10.1002/hbm.21264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/11/2010] [Accepted: 12/27/2010] [Indexed: 11/11/2022] Open
Abstract
Previous studies of the BOLD response in the injured brain have revealed neural recruitment relative to controls during working memory tasks in several brain regions, most consistently the right prefrontal cortex and anterior cingulate cortices. We previously proposed that the recruitment observed in this literature represents auxiliary support resources, and that recruitment of PFC is not abnormal or injury specific and should reduce as novelty and challenge decrease. The current study directly tests this hypothesis in the context of practice of a working memory task. It was hypothesized that individuals with brain injury would demonstrate recruitment of previously indicated regions, behavioral improvement following task practice, and a reduction in the BOLD signal in recruited regions after practice. Individuals with traumatic brain injury and healthy controls performed the n-back during fMRI acquisition, practiced each task out of the scanner, and returned to the scanner for additional fMRI n-back acquisition. Statistical parametric maps demonstrated a number of regions of recruitment in the 1-back in individuals with brain injury and a number of corresponding regions of reduced activation in individuals with brain injury following practice in both the 1-back and 2-back. Regions of interest demonstrated reduced activation following practice, including the anterior cingulate and right prefrontal cortices. Individuals with brain injury demonstrated modest behavioral improvements following practice. These findings suggest that neural recruitment in brain injury does not represent reorganization but a natural extension of latent mechanisms that engage transiently and are contingent upon cerebral challenge.
Collapse
Affiliation(s)
- John D Medaglia
- Psychology Department, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hillary FG, Medaglia JD, Gates K, Molenaar PC, Slocomb J, Peechatka A, Good DC. Examining working memory task acquisition in a disrupted neural network. ACTA ACUST UNITED AC 2011; 134:1555-70. [PMID: 21571783 DOI: 10.1093/brain/awr043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is mounting literature that examines brain activation during tasks of working memory in individuals with neurological disorders such as traumatic brain injury. These studies represent a foundation for understanding the functional brain changes that occur after moderate and severe traumatic brain injury, but the focus on topographical brain-'activation' differences ignores potential alterations in how nodes communicate within a distributed neural network. The present study makes use of the most recently developed connectivity modelling (extended-unified structural equation model) to examine performance during a well-established working-memory task (the n-back) in individuals sustaining moderate and severe traumatic brain injury. The goal is to use the findings observed in topographical activation analysis as the basis for second-level effective connectivity modelling. Findings reveal important between-group differences in within-hemisphere connectivity during task acquisition, with the control sample demonstrating rapid within-left hemisphere connectivity increases and the traumatic brain injury sample demonstrating consistently elevated within-right hemisphere connectivity. These findings also point to important maturational effects from 'early' to 'late' during task performance, including diminished right prefrontal cortex involvement and an anterior to posterior shift in connectivity with increased task exposure. We anticipate that this approach to functional imaging data analysis represents an important future direction for understanding how neural plasticity is expressed in brain disorders.
Collapse
Affiliation(s)
- Frank G Hillary
- Department of Psychology, Pennsylvania State University, 223 Bruce V. Moore Building, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|