1
|
Willis HE, Caron B, Cavanaugh MR, Starling L, Ajina S, Pestilli F, Tamietto M, Huxlin KR, Watkins KE, Bridge H. Rehabilitating homonymous visual field deficits: white matter markers of recovery-stage 2 registered report. Brain Commun 2024; 6:fcae323. [PMID: 39429244 PMCID: PMC11487913 DOI: 10.1093/braincomms/fcae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Damage to the primary visual cortex or its afferent white matter tracts results in loss of vision in the contralateral visual field that can present as homonymous visual field deficits. Evidence suggests that visual training in the blind field can partially reverse blindness at trained locations. However, the efficacy of visual training is highly variable across participants, and the reasons for this are poorly understood. It is likely that variance in residual neural circuitry following the insult may underlie the variation among patients. Many stroke survivors with visual field deficits retain residual visual processing in their blind field despite a lack of awareness. Previous research indicates that intact structural and functional connections between the dorsal lateral geniculate nucleus and the human extrastriate visual motion-processing area hMT+ are necessary for blindsight to occur. We therefore hypothesized that changes in this white matter pathway may underlie improvements resulting from motion discrimination training. Eighteen stroke survivors with long-standing, unilateral, homonymous field defects from retro-geniculate brain lesions completed 6 months of visual training at home. This involved performing daily sessions of a motion discrimination task, at two non-overlapping locations in the blind field, at least 5 days per week. Motion discrimination and integration thresholds, Humphrey perimetry and structural and diffusion-weighted MRI were collected pre- and post-training. Changes in fractional anisotropy (FA) were analysed in visual tracts connecting the ipsilesional dorsal lateral geniculate nucleus and hMT+, and the ipsilesional dorsal lateral geniculate nucleus and primary visual cortex. The (non-visual) tract connecting the ventral posterior lateral nucleus of the thalamus and the primary somatosensory cortex was analysed as a control. Changes in white matter integrity were correlated with improvements in motion discrimination and Humphrey perimetry. We found that the magnitude of behavioural improvement was not directly related to changes in FA in the pathway between the dorsal lateral geniculate nucleus and hMT+ or dorsal lateral geniculate nucleus and primary visual cortex. Baseline FA in either tract also failed to predict improvements in training. However, an exploratory analysis showed a significant increase in FA in the distal part of the tract connecting the dorsal lateral geniculate nucleus and hMT+, suggesting that 6 months of visual training in chronic, retro-geniculate strokes may enhance white matter microstructural integrity of residual geniculo-extrastriate pathways.
Collapse
Affiliation(s)
- Hanna E Willis
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Bradley Caron
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712-1043, USA
| | - Matthew R Cavanaugh
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Lucy Starling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Sara Ajina
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | - Franco Pestilli
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - Marco Tamietto
- Department of Medical and Clinical Psychology, Tilburg University, Warandelaan 2, 5037 AB Tilburg, Netherlands
- Department of Psychology, University of Torino, Torino 10123, Italy
| | - Krystel R Huxlin
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Mei X, Tsang L, Jacques T, Sabel BA, Leung CKS, Chan JCH, Thompson B, Cheong AMY. Glaucoma Rehabilitation Using ElectricAI Transcranial Stimulation (GREAT)-Optimizing Stimulation Protocol for Vision Enhancement Using an RCT. Transl Vis Sci Technol 2024; 13:25. [PMID: 39302646 PMCID: PMC11421665 DOI: 10.1167/tvst.13.9.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Purpose We compared the effect of three different transcranial electrical stimulation (tES) protocols delivered to the occipital lobe on peripheral vision in patients with glaucoma. Methods A double-masked, placebo-controlled study was conducted with 35 patients with glaucoma. We compared three different tES protocols: anodal transcranial direct current stimulation (a-tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS) against sham stimulation. Each patient attended four stimulation sessions (a-tDCS, tACS, tRNS, and sham) in a random order with at least 48 hours between visits. Stimulation involved placing an anodal electrode over the occipital lobe (Oz) and cathodal electrode on the cheek for 20 minutes. High-resolution perimetry (HRP) and multifocal visual evoked potential (mfVEP) measurements were made before and immediately after stimulation. Changes in HRP detection accuracy/reaction time and mfVEP signal-to-noise ratio (SNR)/latency were analyzed using linear mixed models. Results Compared to sham, HRP detection accuracy was significantly improved after a-tDCS in both the central 20-degree (b = 0.032, P = 0.018) and peripheral analysis (b = 0.051, P = 0.002). Additionally, mfVEP SNR was significantly increased (b = 0.016, P = 0.017) and the latency was shortened (b = -1.405, P = 0.04) by the a-tDCS in the central 20-degree analysis. In the peripheral analysis, there was a trend toward an enhancement of SNR after a-tDCS stimulation (b = 0.014, P = 0.052), but it did not reach statistical significance; latency was increased after tACS (b = 1.623, P = 0.041). No significant effects were found in comparison to other active tES protocols. Conclusions A single session of a-tDCS enhances perceptual and electrophysiologic measures of vision in patients with glaucoma. However, the small magnitude of changes observed in HRP (3.2% for accuracy in central and 5.1% in peripheral) did not exceed previous test variability and may not be clinically meaningful. Translational Relevance a-tDCS holds promise as a potential treatment for enhancing visual function. However, future studies are needed to evaluate the long-term effects and clinical relevance of this intervention using validated measures of perimetric changes in the visual field.
Collapse
Affiliation(s)
- Xiaolin Mei
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - LaiLin Tsang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Theodore Jacques
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bernhard A Sabel
- Institute of Medical Psychology, University of Magdeburg, Magdeburg, Germany
| | | | | | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Allen Ming Yan Cheong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
3
|
Park AS, Thompson B. Non-invasive brain stimulation and vision rehabilitation: a clinical perspective. Clin Exp Optom 2024; 107:594-602. [PMID: 38772676 DOI: 10.1080/08164622.2024.2349565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Non-invasive brain stimulation techniques allow targeted modulation of brain regions and have emerged as a promising tool for vision rehabilitation. This review presents an overview of studies that have examined the use of non-invasive brain stimulation techniques for improving vision and visual functions. A description of the proposed neural mechanisms that underpin non-invasive brain stimulation effects is also provided. The clinical implications of non-invasive brain stimulation in vision rehabilitation are examined, including their safety, effectiveness, and potential applications in specific conditions such as amblyopia, post-stroke hemianopia, and central vision loss associated with age-related macular degeneration. Additionally, the future directions of research in this field are considered, including the need for larger and more rigorous clinical trials to validate the efficacy of these techniques. Overall, this review highlights the potential for brain stimulation techniques as a promising avenue for improving visual function in individuals with impaired vision and underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Adela Sy Park
- Centre for Eye & Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
4
|
Wu D, Zhu Y, Wang Y, Liu N, Zhang P. Transcranial direct current stimulation of the prefrontal and visual cortices diversely affects early and late perceptual learning. Brain Behav 2024; 14:e3620. [PMID: 38989886 PMCID: PMC11238241 DOI: 10.1002/brb3.3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Research has shown that visual perceptual learning (VPL) is related to modifying neural activity in higher level decision-making regions. However, the causal roles of the prefrontal and visual cortexes in VPL are still unclear. Here, we investigated how anodal transcranial direct current stimulation (tDCS) of the prefrontal and visual cortices modulates VPL in the early and later phases and the role of multiple brain regions. METHODS Perceptual learning on the coherent motion direction identification task included early and later stages. After early training, participants needed to continuously train to reach a plateau; once the plateau was reached, participants entered a later stage. Sixty participants were randomly divided into five groups. Regardless of the training at the early and later stages, four groups received multitarget tDCS over the right dorsolateral prefrontal cortex (rDLPFC) and right middle temporal area (rMT), single-target tDCS over the rDLPFC, and single-target tDCS over the rMT or sham stimulation, and one group was stimulated at the ipsilateral brain region (i.e., left MT). RESULTS Compared with sham stimulation, multitarget and two single-target tDCS over the rDLPFC or rMT improved posttest performance and accelerated learning during the early period. However, multitarget tDCS and two single-target tDCS led to equivalent benefits for VPL. Additionally, these beneficial effects were absent when anodal tDCS was applied to the ipsilateral brain region. For the later period, the above facilitating effects on VPL induced by multitarget or single-target tDCS disappeared. CONCLUSIONS This study suggested the causal role of the prefrontal and visual cortices in visual motion perceptual learning by anodal tDCS but failed to find greater beneficial effects by simultaneously stimulating the prefrontal and visual cortices. Future research should investigate the functional associations between multiple brain regions to further promote VPL.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
- Department of NeurobiologyBasic Medical SchoolAir Force Medical UniversityXi'anShaanxiChina
| | - Yan Zhu
- Department of Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
| | - Yifan Wang
- Department of Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
| | - Na Liu
- Department of NursingAir Force Medical UniversityXi'anShaanxiChina
| | - Pan Zhang
- Department of PsychologyHebei Normal UniversityShijiazhuangHebeiChina
| |
Collapse
|
5
|
Tol S, de Haan GA, Postuma EMJL, Jansen JL, Heutink J. Reading Difficulties in Individuals with Homonymous Visual Field Defects: A Systematic Review of Reported Interventions. Neuropsychol Rev 2024:10.1007/s11065-024-09636-4. [PMID: 38639880 DOI: 10.1007/s11065-024-09636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 04/20/2024]
Abstract
Reading difficulties are amongst the most commonly reported problems in individuals with homonymous visual field defects (HVFDs). To be able to provide guidance for healthcare professionals considering offering reading training, researchers in this field and interested individuals with HVFDs, this systematic review aims to (1) provide an overview of the contextual and intervention characteristics of all published HVFD interventions and (2) generate insights into the different reading outcome measures that these studies adopted. A search on PsycINFO, MEDLINE and Web of Science was conducted up to February 2, 2023. All intervention studies for HVFD in which reading was measured were included. Data was collected about the intervention type, session duration, number of sessions, the intensity, duration, circumstance of the interventions, country in which the intervention was studied and reading measures. Sixty records are included, describing 70 interventions in total of which 21 are specifically reading interventions. Overall, adjusted saccadic behaviour interventions occur most in the literature. A wide range within all intervention characteristics was observed. Forty-nine records reported task-performance reading measures, and 33 records reported self-reported reading measures. The majority of task-performance measures are based on self-developed paragraph reading tasks with a time-based outcome measure (e.g. words per minute). Future research could benefit from making use of validated reading tests, approaching the measurement of reading mixed-methods and providing participants the possibility to supply outcomes relevant to them.
Collapse
Affiliation(s)
- S Tol
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands.
| | - G A de Haan
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Royal Dutch Visio, Centre of Expertise for Blind and Partially Sighted People, Amersfoortsestraatweg 180, 1272 RR, Huizen, The Netherlands
| | - E M J L Postuma
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - J L Jansen
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - J Heutink
- Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Royal Dutch Visio, Centre of Expertise for Blind and Partially Sighted People, Amersfoortsestraatweg 180, 1272 RR, Huizen, The Netherlands
| |
Collapse
|
6
|
Diana L, Casati C, Melzi L, Bianchi Marzoli S, Bolognini N. The effects of occipital and parietal tDCS on chronic visual field defects after brain injury. Front Neurol 2024; 15:1340365. [PMID: 38419713 PMCID: PMC10899507 DOI: 10.3389/fneur.2024.1340365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Homonymous visual field defects (HVFDs) following acquired brain lesions affect independent living by hampering several activities of everyday life. Available treatments are intensive and week- or month-long. Transcranial Direct current stimulation (tDCS), a plasticity-modulating non-invasive brain stimulation technique, could be combined with behavioral trainings to boost their efficacy or reduce treatment duration. Some promising attempts have been made pairing occipital tDCS with visual restitution training, however less is knows about which area/network should be best stimulated in association with compensatory approaches, aimed at improving exploratory abilities, such as multisensory trainings. Methods In a proof-of-principle, sham-controlled, single-blind study, 15 participants with chronic HVFDs underwent four one-shot sessions of active or sham anodal tDCS applied over the ipsilesional occipital cortex, the ipsilesional or contralesional posterior parietal cortex. tDCS was delivered during a compensatory multisensory (audiovisual) training. Before and immediately after each tDCS session, participants carried out a visual detection task, and two visual search tasks (EF and Triangles search tests). Accuracy (ACC) and response times (RTs) were analyzed with generalized mixed models. We investigated differences in baseline performance, clinical-demographic and lesion factors between tDCS responders and non-responders, based on post-tDCS behavioral improvements. Lastly, we conducted exploratory analyses to compare left and right brain-damaged participants. Results RTs improved after active ipsilesional occipital and parietal tDCS in the visual search tasks, while no changes in ACC were detected. Responders to ipsilesional occipital tDCS (Triangle task) had shorter disease duration and smaller lesions of the parietal cortex and the superior longitudinal fasciculus. On the other end, on the EF test, those participants with larger damage of the temporo-parietal cortex or the fronto-occipital white matter tracts showed a larger benefit from contralesional parietal tDCS. Overall, the visual search RTs improvements were larger in participants with right-sided hemispheric lesions. Conclusion The present result shows the facilitatory effects of occipital and parietal tDCS combined with compensatory multisensory training on visual field exploration in HVFDs, suggesting a potential for the development of new neuromodulation treatments to improve visual scanning behavior in brain-injured patients.
Collapse
Affiliation(s)
- Lorenzo Diana
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carlotta Casati
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, University of Milano-Bicocca and NeuroMI, Milan, Italy
| |
Collapse
|
7
|
Lian Y, Cheng X, Chen Q, Huang L, Xie L, Wang W, Ni J, Chen X. Case report: Beneficial effects of visual cortex tDCS stimulation combined with visual training in patients with visual field defects. Front Neurol 2024; 15:1344348. [PMID: 38327623 PMCID: PMC10847570 DOI: 10.3389/fneur.2024.1344348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Background Visual field defect (VFD) refers to the phenomenon that the eye is unable to see a certain area within the normal range of vision, which may be caused by eye diseases, neurological diseases and other reasons. Transcranial direct current stimulation (tDCS) is expected to be an effective treatment for the recovery or partial recovery of VFD. This paper describes the potential for tDCS in combination with visual retraining strategies to have a positive impact on vision recovery, and the potential for neuroplasticity to play a key role in vision recovery. Methods This case report includes two patients. Patient 1 was diagnosed with a right occipital hemorrhage and homonymous hemianopia. Patient 2 had multiple facial fractures, a contusion of the right eye, and damage to the optic nerve of the right eye, which was diagnosed as a peripheral nerve injury (optic nerve injury). We administered a series of treatments to two patients, including transcranial direct current stimulation; visual field restoration rehabilitation: paracentric gaze training, upper and lower visual field training, VR rehabilitation, and perceptual training. One time per day, 5 days per week, total 6 weeks. Results After 6 weeks of visual rehabilitation and tDCS treatment, Patient 1 Humphrey visual field examination showed a significant improvement compared to the initial visit, with a reduction in the extent of visual field defects, increased visual acuity, and improvement in most visual functions. Patient 2 had an expanded visual field, improved visual sensitivity, and substantial improvement in visual function. Conclusion Our case reports support the feasibility and effectiveness of tDCS combined with visual rehabilitation training in the treatment of occipital stroke and optic nerve injury settings.
Collapse
Affiliation(s)
- Yanhua Lian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation, Fuzhou Second Hospital, Fuzhou, China
| | - Xiaoping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qunlin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Libin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lili Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenzong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Navarro PA, Contreras-Lopez WO, Tello A, Cardenas PL, Vargas MD, Martinez LC, Yepes-Nuñez JJ. Effectiveness and Safety of Non-Invasive Neuromodulation for Vision Restoration: A Systematic Review and Meta-Analysis. Neuroophthalmology 2023; 48:93-110. [PMID: 38487361 PMCID: PMC10936670 DOI: 10.1080/01658107.2023.2279092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 03/17/2024] Open
Abstract
We carried out a systematic review and meta-analysis to determine the effectiveness and safety of non-invasive electrical stimulation (NES) for vision restoration. We systematically searched for randomised controlled trials (RCTs) comparing NES with sham stimulation, for vision restoration between 2000 and 2022 in CENTRAL, MEDLINE, EMBASE, and LILACS. The main outcomes were as follows: visual acuity (VA); detection accuracy; foveal threshold; mean sensitivity as the parameter for the visual field; reading performance; contrast sensitivity (CS); electroencephalogram; quality of life (QoL), and safety. Two reviewers independently selected studies, extracted data, and evaluated the risk of bias using the Cochrane risk of bias 2.0 tool. The certainty in the evidence was determined using the GRADE framework. Protocol registration: CRD42022329342. Thirteen RCTs involving 441 patients with vision impairment indicate that NES may improve VA in the immediate post-intervention period (mean difference [MD] = -0.02 logMAR, 95% confidence intervals [CI] -0.08 to 0.04; low certainty), and probably increases QoL and detection accuracy (MD = 0.08, 95% CI -0.25 to 0.42 and standardised MD [SMD] = 0.09, 95% CI -0.58 to 0.77, respectively; both moderate certainty). NES likely results in little or no difference in mean sensitivity (SMD = -0.03, 95% CI -0.53 to 0.48). Compared with sham stimulation, NES increases the risk of minor adverse effects (risk ratio = 1.24, 95% CI 0.99 to 1.54; moderate certainty). The effect of NES on CS, reading performance, and electroencephalogram was uncertain. Our study suggests that although NES may slightly improve VA, detection accuracy, and QoL, the clinical relevance of these findings remains uncertain. Future research should focus on improving the available evidence's precision and consistency.
Collapse
Affiliation(s)
| | - William Omar Contreras-Lopez
- Departament of Neuromodulation, NEMOD Research Group, Bucaramanga, Colombia
- Department of Neurosurgery, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
| | - Alejandro Tello
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Department of Neuro-Ophthalmology, Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Department of Ophthalmology, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- School of Medicine, Department of Ophthalmology, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
| | - Pedro Luis Cardenas
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Department of Neuro-Ophthalmology, Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Department of Ophthalmology, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- School of Medicine, Department of Ophthalmology, Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
| | | | - Luz Catherine Martinez
- School of Medicine, Department of Ophthalmology, Universidad Autonoma de Bucaramanga (UNAB), Bucaramanga, Colombia
- Department of Ophthalmology, Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
| | - Juan José Yepes-Nuñez
- School of Medicine, Universidad de los Andes, Bogotá DC, Colombia
- Department of Epidemiology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá DC, Colombia
| |
Collapse
|
9
|
Wang J, Zou L, Jiang X, Wang D, Mao L, Yang X. Visual stimulation rehabilitation for cortical blindness after vertebral artery interventional surgery: A case report and literature review. Int J Surg Case Rep 2023; 110:108753. [PMID: 37651808 PMCID: PMC10509878 DOI: 10.1016/j.ijscr.2023.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Cortical blindness (CB) after vertebral artery interventional surgery is not a frequently reported complication. In this study, the efficacy of visual stimulation rehabilitation consisting of visual recovery training and repetitive transcranial magnetic stimulation (rTMS) for cortical blindness was investigated by clinical evaluation, ophthalmologic examination, and electroencephalography (EEG). CASE PRESENTATION This study reports on a 55-year-old male who showed partial bilateral posterior cerebral artery cortical branch occlusion after timely embolectomy due to thrombus dislodgement during right vertebral artery opening, stenting resulting in basilar artery tip occlusion. The lesions were mainly located in the right cerebellar hemisphere and bilateral occipital lobes, and the patient suffered from bilateral loss of vision, with only light perception preserved. The patient began to receive visual recovery training and 15 sessions of right occipital high-frequency transcranial magnetic stimulation 5 days after the onset. CLINICAL DISCUSSION After treatment, the patient's capacity to identify things improved, allowing him to watch television, as did the precision and fluency of random hand movements, walking, and self-care. CONCLUSION Visual stimulation rehabilitation composed of visual recovery training and rTMS is a promising therapy option for cortical blindness, and our case report provides clinical experience with vision recovery for patients with cortical blindness.
Collapse
Affiliation(s)
- Juehan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liliang Zou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, China
| | - Daming Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Di W, Yifan W, Na L, Pan Z. Dissociable effects of transcranial direct current stimulation (tDCS) on early and later stages of visual motion perceptual learning. Brain Res Bull 2023; 199:110669. [PMID: 37196735 DOI: 10.1016/j.brainresbull.2023.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Transcranial direct current stimulation (tDCS) has the potential to benefit visual perceptual learning (VPL). However, previous studies investigated the effect of tDCS on VPL within early sessions, and the influence of tDCS on learning effects at later stages (plateau level) is unclear. Here, participants completed 9 days of training on coherent motion direction identification to reach a plateau (stage 1) and then continued training for 3 days (stage 2). The coherent thresholds were measured before training, after stage 1 and after stage 2. In the first group, anodal tDCS was applied when participants trained over a period of 12 days (stage 1+ stage 2). In the second group, participants completed a 9-day training period without any stimulation to reach a plateau (stage 1); after that, participants completed a 3-day training period while anodal tDCS was administered (stage 2). The third group was treated the same as the second group except that anodal tDCS was replaced by sham tDCS. The results showed that anodal tDCS did not improve posttest performance after the plateau was reached. The comparison of learning curves between the first and third groups showed that anodal tDCS decreased the threshold at the early stage, but it did not improve the plateau level. For the second and third groups, anodal tDCS did not further enhance the plateau level after a continued 3-day training period. These results suggest that anodal tDCS boosts VLP during the early period of training sessions, but it fails to facilitate later learning effects. This study contributed to a deep understanding of the dissociable tDCS effects at distinct temporal stages, which may be due to the dynamic change in brain regions during the time course of VPL.
Collapse
Affiliation(s)
- Wu Di
- Department of Medical Psychology, Air Force Medical University, Xi'an, China; Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Wang Yifan
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Liu Na
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Zhang Pan
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
11
|
Bello UM, Wang J, Park ASY, Tan KWS, Cheung BWS, Thompson B, Cheong AMY. Can visual cortex non-invasive brain stimulation improve normal visual function? A systematic review and meta-analysis. Front Neurosci 2023; 17:1119200. [PMID: 36937668 PMCID: PMC10017867 DOI: 10.3389/fnins.2023.1119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective Multiple studies have explored the use of visual cortex non-invasive brain stimulation (NIBS) to enhance visual function. These studies vary in sample size, outcome measures, and methodology. We conducted a systematic review and meta-analyses to assess the effects of NIBS on visual functions in human participants with normal vision. Methods We followed the PRISMA guidelines, and a review protocol was registered with PROSPERO before study commencement (CRD42021255882). We searched Embase, Medline, PsychInfo, PubMed, OpenGrey and Web of Science using relevant keywords. The search covered the period from 1st January 2000 until 1st September 2021. Comprehensive meta-analysis (CMA) software was used for quantitative analysis. Results Fifty studies were included in the systematic review. Only five studies utilized transcranial magnetic stimulation (TMS) and no TMS studies met our pre-specified criteria for meta-analysis. Nineteen transcranial electrical stimulation studies (tES, 38%) met the criteria for meta-analysis and were the focus of our review. Meta-analysis indicated acute effects (Hedges's g = 0.232, 95% CI: 0.023-0.442, p = 0.029) and aftereffects (0.590, 95% CI: 0.182-0.998, p = 0.005) of tES on contrast sensitivity. Visual evoked potential (VEP) amplitudes were significantly enhanced immediately after tES (0.383, 95% CI: 0.110-0.665, p = 0.006). Both tES (0.563, 95% CI: 0.230-0.896, p = 0.001) and anodal-transcranial direct current stimulation (a-tDCS) alone (0.655, 95% CI: 0.273-1.038, p = 0.001) reduced crowding in peripheral vision. The effects of tES on visual acuity, motion perception and reaction time were not statistically significant. Conclusion There are significant effects of visual cortex tES on contrast sensitivity, VEP amplitude, an index of cortical excitability, and crowding among normally sighted individuals. Additional studies are required to enable a comparable meta-analysis of TMS effects. Future studies with robust experimental designs are needed to extend these findings to populations with vision loss. Clinical trial registration ClinicalTrials.gov/, identifier CRD42021255882.
Collapse
Affiliation(s)
- Umar M. Bello
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jingying Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Adela S. Y. Park
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Ken W. S. Tan
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Blossom W. S. Cheung
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Benjamin Thompson
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Allen M. Y. Cheong
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Allen M. Y. Cheong,
| |
Collapse
|
12
|
Battaglini L, Di Ponzio M, Ghiani A, Mena F, Santacesaria P, Casco C. Vision recovery with perceptual learning and non-invasive brain stimulation: Experimental set-ups and recent results, a review of the literature. Restor Neurol Neurosci 2022; 40:137-168. [PMID: 35964213 DOI: 10.3233/rnn-221261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vision is the sense which we rely on the most to interact with the environment and its integrity is fundamental for the quality of our life. However, around the globe, more than 1 billion people are affected by debilitating vision deficits. Therefore, finding a way to treat (or mitigate) them successfully is necessary. OBJECTIVE This narrative review aims to examine options for innovative treatment of visual disorders (retinitis pigmentosa, macular degeneration, optic neuropathy, refractory disorders, hemianopia, amblyopia), especially with Perceptual Learning (PL) and Electrical Stimulation (ES). METHODS ES and PL can enhance visual abilities in clinical populations, inducing plastic changes. We describe the experimental set-ups and discuss the results of studies using ES or PL or their combination in order to suggest, based on literature, which treatment is the best option for each clinical condition. RESULTS Positive results were obtained using ES and PL to enhance visual functions. For example, repetitive transorbital Alternating Current Stimulation (rtACS) appeared as the most effective treatment for pre-chiasmatic disorders such as optic neuropathy. A combination of transcranial Direct Current Stimulation (tDCS) and visual training seems helpful for people with hemianopia, while transcranial Random Noise Stimulation (tRNS) makes visual training more efficient in people with amblyopia and mild myopia. CONCLUSIONS This narrative review highlights the effect of different ES montages and PL in the treatment of visual disorders. Furthermore, new options for treatment are suggested. It is noteworthy to mention that, in some cases, unclear results emerged and others need to be more deeply investigated.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Michele Di Ponzio
- Department of General Psychology, University of Padova, Italy.,Istituto di Neuroscienze, Florence, Italy
| | - Andrea Ghiani
- Department of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Federica Mena
- Department of General Psychology, University of Padova, Italy
| | | | - Clara Casco
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Phasic Alertness and Multisensory Integration Contribute to Visual Awareness of Weak Visual Targets in Audio-Visual Stimulation under Continuous Flash Suppression. Vision (Basel) 2022; 6:vision6020031. [PMID: 35737418 PMCID: PMC9228768 DOI: 10.3390/vision6020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Multisensory stimulation is associated with behavioural benefits, including faster processing speed, higher detection accuracy, and increased subjective awareness. These effects are most likely explained by multisensory integration, alertness, or a combination of the two. To examine changes in subjective awareness under multisensory stimulation, we conducted three experiments in which we used Continuous Flash Suppression to mask subthreshold visual targets for healthy observers. Using the Perceptual Awareness Scale, participants reported their level of awareness of the visual target on a trial-by-trial basis. The first experiment had an audio-visual Redundant Signal Effect paradigm, in which we found faster reaction times in the audio-visual condition compared to responses to auditory or visual signals alone. In two following experiments, we separated the auditory and visual signals, first spatially (experiment 2) and then temporally (experiment 3), to test whether the behavioural benefits in our multisensory stimulation paradigm could best be explained by multisensory integration or increased phasic alerting. Based on the findings, we conclude that the largest contributing factor to increased awareness of visual stimuli accompanied by auditory tones is a rise in phasic alertness and a reduction in temporal uncertainty with a small but significant contribution of multisensory integration.
Collapse
|
14
|
He Q, Yang XY, Zhao D, Fang F. Enhancement of visual perception by combining transcranial electrical stimulation and visual perceptual training. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:271-284. [PMID: 37724187 PMCID: PMC10388778 DOI: 10.1515/mr-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 09/20/2023]
Abstract
The visual system remains highly malleable even after its maturity or impairment. Our visual function can be enhanced through many ways, such as transcranial electrical stimulation (tES) and visual perceptual learning (VPL). TES can change visual function rapidly, but its modulation effect is short-lived and unstable. By contrast, VPL can lead to a substantial and long-lasting improvement in visual function, but extensive training is typically required. Theoretically, visual function could be further improved in a shorter time frame by combining tES and VPL than by solely using tES or VPL. Vision enhancement by combining these two methods concurrently is both theoretically and practically significant. In this review, we firstly introduced the basic concept and possible mechanisms of VPL and tES; then we reviewed the current research progress of visual enhancement using the combination of two methods in both general and clinical population; finally, we discussed the limitations and future directions in this field. Our review provides a guide for future research and application of vision enhancement and restoration by combining VPL and tES.
Collapse
Affiliation(s)
- Qing He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xin-Yue Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daiqing Zhao
- Department of Psychology, The Pennsylvania State University, University Park, State College, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Saionz EL, Busza A, Huxlin KR. Rehabilitation of visual perception in cortical blindness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:357-373. [PMID: 35034749 PMCID: PMC9682408 DOI: 10.1016/b978-0-12-819410-2.00030-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blindness is a common sequela after stroke affecting the primary visual cortex, presenting as a contralesional, homonymous, visual field cut. This can occur unilaterally or, less commonly, bilaterally. While it has been widely assumed that after a brief period of spontaneous improvement, vision loss becomes stable and permanent, accumulating data show that visual training can recover some of the vision loss, even long after the stroke. Here, we review the different approaches to rehabilitation employed in adult-onset cortical blindness (CB), focusing on visual restoration methods. Most of this work was conducted in chronic stroke patients, partially restoring visual discrimination and luminance detection. However, to achieve this, patients had to train for extended periods (usually many months), and the vision restored was not entirely normal. Several adjuvants to training such as noninvasive, transcranial brain stimulation, and pharmacology are starting to be investigated for their potential to increase the efficacy of training in CB patients. However, these approaches are still exploratory and require considerably more research before being adopted. Nonetheless, having established that the adult visual system retains the capacity for restorative plasticity, attention recently turned toward the subacute poststroke period. Drawing inspiration from sensorimotor stroke rehabilitation, visual training was recently attempted for the first time in subacute poststroke patients. It improved vision faster, over larger portions of the blind field, and for a larger number of visual discrimination abilities than identical training initiated more than 6 months poststroke (i.e., in the chronic period). In conclusion, evidence now suggests that visual neuroplasticity after occipital stroke can be reliably recruited by a range of visual training approaches. In addition, it appears that poststroke visual plasticity is dynamic, with a critical window of opportunity in the early postdamage period to attain more rapid, more extensive recovery of a larger set of visual perceptual abilities.
Collapse
Affiliation(s)
- Elizabeth L Saionz
- Medical Scientist Training Program, University of Rochester, Rochester, NY, United States
| | - Ania Busza
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
16
|
Non-invasive brain stimulation for treating neurogenic dysarthria: A systematic review. Ann Phys Rehabil Med 2021; 65:101580. [PMID: 34626861 DOI: 10.1016/j.rehab.2021.101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although non-invasive central and peripheral stimulations are accruing support as promising treatments in different neurological conditions, their effects on dysarthria have not been systematically investigated. OBJECTIVE The purpose of this review was to examine the evidence base of non-invasive stimulation for treating dysarthria, identify which stimulation parameters have the most potential for treatment and determine safety risks. METHODS A systematic review with meta-analysis, when possible, involving publications indexed in MEDLINE, PsychINFO, EMBASE CINHAL the Linguistics and Language Behavioral Abstracts, Web of Science, Cochrane Register of Control Trials and 2 trial registries was completed. Articles were searched in December 2018 and updated in June 2021 using keywords related to brain and electrical stimulation, dysarthria and research design. We included trials with randomised, cross-over or quasi-experimental designs; involving a control group; and investigating treatment of neurogenic dysarthria with non-invasive stimulation. Methodological quality was determined with the Cochrane's Risk of Bias-2 tool. RESULTS In total, 6186 studies were identified; 10 studies (6 randomised controlled trials and 4 cross-over studies) fulfilled the inclusion criteria. All 10 trials (268 adults with Parkinson's disease, stroke and neurodegenerative cerebellar ataxia) focused on brain stimulation (6 repetitive transcranial magnetic stimulation; 3 transcranial direct current stimulation; and 1 repetitive transorbital alternating current stimulation). Adjunct speech-language therapy was delivered in 2 trials. Most trials reported one or more positive effects of stimulation on dysarthria-related features; however, given the overall high risk of bias and heterogeneity in participant, trial and outcome measurement characteristics, no conclusions can be drawn. Post-treatment size effects for 2 stroke trials demonstrated no statistically significant differences between active and sham stimulation across 3 dysarthria outcomes. CONCLUSIONS Evidence for use of non-invasive brain stimulation in treating dysarthria remains inconclusive. Research trials that provide reliable and replicable findings are required.
Collapse
|
17
|
Xu J, Wu Z, Nürnberger A, Sabel BA. Reorganization of Brain Functional Connectivity Network and Vision Restoration Following Combined tACS-tDCS Treatment After Occipital Stroke. Front Neurol 2021; 12:729703. [PMID: 34777199 PMCID: PMC8580405 DOI: 10.3389/fneur.2021.729703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Non-invasive brain stimulation (NIBS) is already known to improve visual field functions in patients with optic nerve damage and partially restores the organization of brain functional connectivity networks (FCNs). However, because little is known if NIBS is effective also following brain damage, we now studied the correlation between visual field recovery and FCN reorganization in patients with stroke of the central visual pathway. Method: In a controlled, exploratory trial, 24 patients with hemianopia were randomly assigned to one of three brain stimulation groups: transcranial direct current stimulation (tDCS)/transcranial alternating current stimulation (tACS) (ACDC); sham tDCS/tACS (AC); sham tDCS/sham tACS (Sham), which were compared to age-matched controls (n = 24). Resting-state electroencephalogram (EEG) was collected at baseline, after 10 days stimulation and at 2 months follow-up. EEG recordings were analyzed for FCN measures using graph theory parameters, and FCN small worldness of the network and long pairwise coherence parameter alterations were then correlated with visual field performance. Result: ACDC enhanced alpha-band FCN strength in the superior occipital lobe of the lesioned hemisphere at follow-up. A negative correlation (r = −0.80) was found between the intact visual field size and characteristic path length (CPL) after ACDC with a trend of decreased alpha-band centrality of the intact middle occipital cortex. ACDC also significantly decreased delta band coherence between the lesion and the intact occipital lobe, and coherence was enhanced between occipital and temporal lobe of the intact hemisphere in the low beta band. Responders showed significantly higher strength in the low alpha band at follow-up in the intact lingual and calcarine cortex and in the superior occipital region of the lesioned hemisphere. Conclusion: While ACDC decreases delta band coherence between intact and damaged occipital brain areas indicating inhibition of low-frequency neural oscillations, ACDC increases FCN connectivity between the occipital and temporal lobe in the intact hemisphere. When taken together with the lower global clustering coefficient in responders, these findings suggest that FCN reorganization (here induced by NIBS) is adaptive in stroke. It leads to greater efficiency of neural processing, where the FCN requires fewer connections for visual processing.
Collapse
Affiliation(s)
- Jiahua Xu
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany.,Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Zheng Wu
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany.,Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Andreas Nürnberger
- Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
El Nahas N, Elbokl AM, Abd Eldayem EH, Roushdy TM, Amin RM, Helmy SM, Akl AZ, Ashour AA, Samy S, Amgad A, Emara TH, Nowara M, Kenawy FF. Navigated perilesional transcranial magnetic stimulation can improve post-stroke visual field defect: A double-blind sham-controlled study. Restor Neurol Neurosci 2021; 39:199-207. [PMID: 34024791 DOI: 10.3233/rnn-211181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Visual field defects (VFD) usually do not show improvement beyond 12 weeks from their onset. It has been shown that repetitive presentation of a stimulus to areas of residual vision in cases of visual field defect can improve vision. The counterpart of these areas in the brain are the partially damaged brain regions at the perilesional areas where plasticity can be enhanced. OBJECTIVE We aimed to study the effect of navigated repetitive transcranial magnetic stimulation (rTMS) applied to perilesional areas on the recovery of patients with cortical VFD. METHODS Thirty-two patients with cortical VFD secondary to stroke of more than 3 months duration received 16 sessions of either active or sham high frequency navigated perilesional rTMS. Automated perimetry and visual functioning questionnaire (VFQ-25) were performed at baseline and after completion of the sessions. RESULTS The active group showed significant improvement after intervention, compared to the sham group, in both mean deviation (MD), visual field index (VFI) and in the VFQ-25 scores. CONCLUSIONS Navigated rTMS is a new treatment option for post-stroke VFD as it can selectively stimulate areas of residual vision around the infarcted tissue, improving the threshold of visual stimulus detection which could be used alone or in combination with existing therapies.
Collapse
Affiliation(s)
- Nevine El Nahas
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elbokl
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Hamid Abd Eldayem
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer M Roushdy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Randa M Amin
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shahinaz M Helmy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Zaki Akl
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Aya Ahmed Ashour
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shady Samy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alaa Amgad
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer H Emara
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Fatma Fathalla Kenawy
- Ain Shams Neuromodulation Research Lab, Neurology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Räty S, Borrmann C, Granata G, Cárdenas-Morales L, Schoenfeld A, Sailer M, Silvennoinen K, Holopainen J, De Rossi F, Antal A, Rossini PM, Tatlisumak T, Sabel BA. Non-invasive electrical brain stimulation for vision restoration after stroke: An exploratory randomized trial (REVIS). Restor Neurol Neurosci 2021; 39:221-235. [PMID: 34219679 PMCID: PMC8461672 DOI: 10.3233/rnn-211198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Occipital strokes often cause permanent homonymous hemianopia leading to significant disability. In previous studies, non-invasive electrical brain stimulation (NIBS) has improved vision after optic nerve damage and in combination with training after stroke. Objective: We explored different NIBS modalities for rehabilitation of hemianopia after chronic stroke. Methods: In a randomized, double-blinded, sham-controlled, three-armed trial, altogether 56 patients with homonymous hemianopia were recruited. The three experiments were: i) repetitive transorbital alternating current stimulation (rtACS, n = 8) vs. rtACS with prior cathodal transcranial direct current stimulation over the intact visual cortex (tDCS/rtACS, n = 8) vs. sham (n = 8); ii) rtACS (n = 9) vs. sham (n = 9); and iii) tDCS of the visual cortex (n = 7) vs. sham (n = 7). Visual functions were evaluated before and after the intervention, and after eight weeks follow-up. The primary outcome was change in visual field assessed by high-resolution and standard perimetries. The individual modalities were compared within each experimental arm. Results: Primary outcomes in Experiments 1 and 2 were negative. Only significant between-group change was observed in Experiment 3, where tDCS increased visual field of the contralesional eye compared to sham. tDCS/rtACS improved dynamic vision, reading, and visual field of the contralesional eye, but was not superior to other groups. rtACS alone increased foveal sensitivity, but was otherwise ineffective. All trial-related procedures were tolerated well. Conclusions: This exploratory trial showed safety but no main effect of NIBS on vision restoration after stroke. However, tDCS and combined tDCS/rtACS induced improvements in visually guided performance that need to be confirmed in larger-sample trials. NCT01418820 (clinicaltrials.gov)
Collapse
Affiliation(s)
- Silja Räty
- HUS Neurocenter, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Carolin Borrmann
- Institute of Medical Psychology, Otto-v.-Guericke University of Magdeburg Medical Faculty, Magdeburg, Germany
| | - Giuseppe Granata
- Institute of Neurology, Policlinic A. Gemelli Foundation-IRCCS, Rome, Italy
| | - Lizbeth Cárdenas-Morales
- Institute of Medical Psychology, Otto-v.-Guericke University of Magdeburg Medical Faculty, Magdeburg, Germany.,Department of Forensic Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| | - Ariel Schoenfeld
- Clinic of Neurorehabilitation, Kliniken Schmieder, Heidelberg, Germany
| | - Michael Sailer
- MEDIAN Klinik NRZ Magdeburg, An-Institut für Neurorehabilitation, Otto-von-Guericke University, Magdeburg, Germany
| | - Katri Silvennoinen
- HUS Neurocenter, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Juha Holopainen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Francesca De Rossi
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Low Vision Patients - IAPB, Italian Branch, Rome, Italy
| | - Andrea Antal
- HUS Neurocenter, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Clinic for Neurology, University Medical Center of Göttingen, Germany
| | - Paolo M Rossini
- Department Neuroscience & Neurorehabilitation, IRCCS San Raffaele-Pisana, Rome, Italy
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernhard A Sabel
- Institute of Medical Psychology, Otto-v.-Guericke University of Magdeburg Medical Faculty, Magdeburg, Germany
| |
Collapse
|
20
|
Elshout JA, Bergsma DP, van den Berg AV, Haak KV. Functional MRI of visual cortex predicts training-induced recovery in stroke patients with homonymous visual field defects. NEUROIMAGE-CLINICAL 2021; 31:102703. [PMID: 34062384 PMCID: PMC8173295 DOI: 10.1016/j.nicl.2021.102703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
Damage to the visual brain typically leads to vision loss. Vision loss may be partially recovered with visual restitution training (VRT) Cortical responses to visual stimulation do not always lead to visual awareness. A mismatch between Humphrey and neural perimetry predicts training outcome. This finding has important implications for better rehabilitation strategies.
Post-chiasmatic damage to the visual system leads to homonymous visual field defects (HVDs), which can severely interfere with daily life activities. Visual Restitution Training (VRT) can recover parts of the affected visual field in patients with chronic HVDs, but training outcome is variable. An untested hypothesis suggests that training potential may be largest in regions with ‘neural reserve’, where cortical responses to visual stimulation do not lead to visual awareness as assessed by Humphrey perimetry—a standard behavioural visual field test. Here, we tested this hypothesis in a sample of twenty-seven hemianopic stroke patients, who participated in an assiduous 80-hour VRT program. For each patient, we collected Humphrey perimetry and wide-field fMRI-based retinotopic mapping data prior to training. In addition, we used Goal Attainment Scaling to assess whether personal activities in daily living improved. After training, we assessed with a second Humphrey perimetry measurement whether the visual field was improved and evaluated which personal goals were attained. Confirming the hypothesis, we found significantly larger improvements of visual sensitivity at field locations with neural reserve. These visual field improvements implicated both regions in primary visual cortex and higher order visual areas. In addition, improvement in daily life activities correlated with the extent of visual field enlargement. Our findings are an important step toward understanding the mechanisms of visual restitution as well as predicting training efficacy in stroke patients with chronic hemianopia.
Collapse
Affiliation(s)
- J A Elshout
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - D P Bergsma
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A V van den Berg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Mena-Garcia L, Pastor-Jimeno JC, Maldonado MJ, Coco-Martin MB, Fernandez I, Arenillas JF. Multitasking Compensatory Saccadic Training Program for Hemianopia Patients: A New Approach With 3-Dimensional Real-World Objects. Transl Vis Sci Technol 2021; 10:3. [PMID: 34003888 PMCID: PMC7873505 DOI: 10.1167/tvst.10.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/25/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine whether a noncomputerized multitasking compensatory saccadic training program (MCSTP) for patients with hemianopia, based on a reading regimen and eight exercises that recreate everyday visuomotor activities using three-dimensional (3D) real-world objects, improves the visual ability/function, quality of life (QL), and functional independence (FI). Methods The 3D-MCSTP included four in-office visits and two customized home-based daily training sessions over 12 weeks. A quasiexperimental, pretest/posttest study design was carried out with an intervention group (IG) (n = 20) and a no-training group (NTG) (n = 20) matched for age, hemianopia type, and brain injury duration. Results The groups were comparable for the main baseline variables and all participants (n = 40) completed the study. The IG mainly showed significant improvements in visual-processing speed (57.34% ± 19.28%; P < 0.0001) and visual attention/retention ability (26.67% ± 19.21%; P < 0.0001), which also were significantly greater (P < 0.05) than in the NTG. Moreover, the IG showed large effect sizes (Cohen's d) in 75% of the total QL and FI dimensions analyzed; in contrast to the NTG that showed negligible mean effect sizes in 96% of these dimensions. Conclusions The customized 3D-MCSTP was associated with a satisfactory response in the IG for improving complex visual processing, QL, and FI. Translational Relevance Neurovisual rehabilitation of patients with hemianopia seems more efficient when programs combine in-office visits and customized home-based training sessions based on real objects and simulating real-life conditions, than no treatment or previously reported computer-screen approaches, probably because of better stimulation of patients´ motivation and visual-processing speed brain mechanisms.
Collapse
Affiliation(s)
- Laura Mena-Garcia
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
| | - Jose C. Pastor-Jimeno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Red Temática de Investigación Colaborativa en Oftalmología (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel J. Maldonado
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
- Red Temática de Investigación Colaborativa en Oftalmología (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria B. Coco-Martin
- Universidad de Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Itziar Fernandez
- Universidad de Valladolid, Valladolid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Juan F. Arenillas
- Universidad de Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Homonymous visual field defects are a common sequela of stroke, and are assumed to be permanent within a few weeks of the event. Because consensus about the efficacy of rehabilitation is lacking, visual therapy is rarely prescribed. Here, we review current rehabilitation options and strategies in the translational pipeline that could change these perspectives. RECENT FINDINGS The mainstays of available therapy for homonymous visual defects are compensation training and substitution, which allow patients to better use their spared vision. However, early clinical studies suggest that vision can partially recover following intensive training inside the blind field. Research into the relative efficacy of different restorative approaches continues, providing insights into neurophysiologic substrates of recovery and its limitations. This, in turn, has led to new work examining the possible benefits of earlier intervention, advanced training procedures, noninvasive brain stimulation, and pharmacological adjuvants, all of which remain to be vetted through properly powered, randomized, clinical trials. SUMMARY Research has uncovered substantial visual plasticity after occipital strokes, suggesting that rehabilitative strategies for this condition should be more aggressive. For maximal benefit, poststroke vision-restorative interventions should begin early, and in parallel with strategies that optimize everyday use of an expanding field of view.
Collapse
Affiliation(s)
| | - Steven E Feldon
- Flaum Eye Institute
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Flaum Eye Institute
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
23
|
Differential Circuit Mechanisms of Young and Aged Visual Cortex in the Mammalian Brain. NEUROSCI 2021. [DOI: 10.3390/neurosci2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The main goal of this review is to summarize and discuss (1) age-dependent structural reorganization of mammalian visual cortical circuits underlying complex visual behavior functions in primary visual cortex (V1) and multiple extrastriate visual areas, and (2) current evidence supporting the notion of compensatory mechanisms in aged visual circuits as well as the use of rehabilitative therapy for the recovery of neural plasticity in normal and diseased aging visual circuit mechanisms in different species. It is well known that aging significantly modulates both the structural and physiological properties of visual cortical neurons in V1 and other visual cortical areas in various species. Compensatory aged neural mechanisms correlate with the complexity of visual functions; however, they do not always result in major circuit alterations resulting in age-dependent decline in performance of a visual task or neurodegenerative disorders. Computational load and neural processing gradually increase with age, and the complexity of compensatory mechanisms correlates with the intricacy of higher form visual perceptions that are more evident in higher-order visual areas. It is particularly interesting to note that the visual perceptual processing of certain visual behavior functions does not change with age. This review aims to comprehensively discuss the effect of normal aging on neuroanatomical alterations that underlie critical visual functions and more importantly to highlight differences between compensatory mechanisms in aged neural circuits and neural processes related to visual disorders. This type of approach will further enhance our understanding of inter-areal and cortico-cortical connectivity of visual circuits in normal aging and identify major circuit alterations that occur in different visual deficits, thus facilitating the design and evaluation of potential rehabilitation therapies as well as the assessment of the extent of their rejuvenation.
Collapse
|
24
|
Perin C, Viganò B, Piscitelli D, Matteo BM, Meroni R, Cerri CG. Non-invasive current stimulation in vision recovery: a review of the literature. Restor Neurol Neurosci 2020; 38:239-250. [PMID: 31884495 PMCID: PMC7504999 DOI: 10.3233/rnn-190948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Around 253 million people worldwide suffer from irreversible visual damage. Numerous studies have been carried out in order to unveil the effects of electrical stimulation (ES) as a useful tool for rehabilitation for different visual conditions and pathologies. Objective: This systematic review aimed to 1) examine the current evidence of ES efficacy for the treatment of visual pathologies and 2) define the corresponding degree of the recommendation of different ES techniques. Methods: A systematic review was conducted in MEDLINE and Cochrane Library database to collect documents published between 2000 and 2018. For each study, Level of Evidence of Effectiveness of ES as well as the Class of Quality for the treatment of different visual pathologies were determined. Results: Thirty-eight articles were included. Studies were grouped according to the pathology treated and the type of stimulation administered. The first group included studies treating pre-chiasmatic pathologies (age-related macular degeneration, macular dystrophy, retinal artery occlusion, retinitis pigmentosa, glaucoma, optic nerve damage, and optic neuropathy) using pre-chiasmatic stimulation; the second group included studies treating both pre-chiasmatic pathologies (amblyopia, myopia) and post-chiasmatic pathologies or brain conditions (hemianopsia, brain trauma) by means of post-chiasmatic stimulation. In the first group, repetitive transorbital alternating current stimulation (rtACS) reached level A recommendation, and transcorneal electrical stimulation (tcES) reached level B. In the second group, both high-frequency random noise stimulation (hf-RNS) and transcranial direct current stimulation (tDCS) reached level C recommendation. Conclusions: Study’s findings suggest conclusive evidence for rtACS treatment. For other protocols results are promising but not conclusive since the examined studies assessed different stimulation parameters and endpoints. A comparison of the effects of different combinations of these variables still lacks in the literature. Further studies are needed to optimize existing protocols and determine if different protocols are needed for different diseases.
Collapse
Affiliation(s)
- Cecilia Perin
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
| | | | - Daniele Piscitelli
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Barbara Maria Matteo
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy
| | - Roberto Meroni
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy.,Current Affilation: Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports. Differdange, Luxembourg
| | - Cesare Giuseppe Cerri
- Dipartimento di Medicina e Chirurgia (School of Medicine and Surgery), University of Milan-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Grasso PA, Gallina J, Bertini C. Shaping the visual system: cortical and subcortical plasticity in the intact and the lesioned brain. Neuropsychologia 2020; 142:107464. [PMID: 32289349 DOI: 10.1016/j.neuropsychologia.2020.107464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Visual system is endowed with an incredibly complex organization composed of multiple visual pathway affording both hierarchical and parallel processing. Even if most of the visual information is conveyed by the retina to the lateral geniculate nucleus of the thalamus and then to primary visual cortex, a wealth of alternative subcortical pathways is present. This complex organization is experience dependent and retains plastic properties throughout the lifespan enabling the system with a continuous update of its functions in response to variable external needs. Changes can be induced by several factors including learning and experience but can also be promoted by the use non-invasive brain stimulation techniques. Furthermore, besides the astonishing ability of our visual system to spontaneously reorganize after injuries, we now know that the exposure to specific rehabilitative training can produce not only important functional modifications but also long-lasting changes within cortical and subcortical structures. The present review aims to update and address the current state of the art on these topics gathering studies that reported relevant modifications of visual functioning together with plastic changes within cortical and subcortical structures both in the healthy and in the lesioned visual system.
Collapse
Affiliation(s)
- Paolo A Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, 50135, Italy.
| | - Jessica Gallina
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| |
Collapse
|
26
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
27
|
van Nispen RMA, Virgili G, Hoeben M, Langelaan M, Klevering J, Keunen JEE, van Rens GHMB. Low vision rehabilitation for better quality of life in visually impaired adults. Cochrane Database Syst Rev 2020; 1:CD006543. [PMID: 31985055 PMCID: PMC6984642 DOI: 10.1002/14651858.cd006543.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Low vision rehabilitation aims to optimise the use of residual vision after severe vision loss, but also aims to teach skills in order to improve visual functioning in daily life. Other aims include helping people to adapt to permanent vision loss and improving psychosocial functioning. These skills promote independence and active participation in society. Low vision rehabilitation should ultimately improve quality of life (QOL) for people who have visual impairment. OBJECTIVES To assess the effectiveness of low vision rehabilitation interventions on health-related QOL (HRQOL), vision-related QOL (VRQOL) or visual functioning and other closely related patient-reported outcomes in visually impaired adults. SEARCH METHODS We searched relevant electronic databases and trials registers up to 18 September 2019. SELECTION CRITERIA We included randomised controlled trials (RCTs) investigating HRQOL, VRQOL and related outcomes of adults, with an irreversible visual impairment (World Health Organization criteria). We included studies that compared rehabilitation interventions with active or inactive control. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included 44 studies (73 reports) conducted in North America, Australia, Europe and Asia. Considering the clinical diversity of low vision rehabilitation interventions, the studies were categorised into four groups of related intervention types (and by comparator): (1) psychological therapies and/or group programmes, (2) methods of enhancing vision, (3) multidisciplinary rehabilitation programmes, (4) other programmes. Comparators were no care or waiting list as an inactive control group, usual care or other active control group. Participants included in the reported studies were mainly older adults with visual impairment or blindness, often as a result of age-related macular degeneration (AMD). Study settings were often hospitals or low vision rehabilitation services. Effects were measured at the short-term (six months or less) in most studies. Not all studies reported on funding, but those who did were supported by public or non-profit funders (N = 31), except for two studies. Compared to inactive comparators, we found very low-certainty evidence of no beneficial effects on HRQOL that was imprecisely estimated for psychological therapies and/or group programmes (SMD 0.26, 95% CI -0.28 to 0.80; participants = 183; studies = 1) and an imprecise estimate suggesting little or no effect of multidisciplinary rehabilitation programmes (SMD -0.08, 95% CI -0.37 to 0.21; participants = 183; studies = 2; I2 = 0%); no data were available for methods of enhancing vision or other programmes. Regarding VRQOL, we found low- or very low-certainty evidence of imprecisely estimated benefit with psychological therapies and/or group programmes (SMD -0.23, 95% CI -0.53 to 0.08; studies = 2; I2 = 24%) and methods of enhancing vision (SMD -0.19, 95% CI -0.54 to 0.15; participants = 262; studies = 5; I2 = 34%). Two studies using multidisciplinary rehabilitation programmes showed beneficial but inconsistent results, of which one study, which was at low risk of bias and used intensive rehabilitation, recorded a very large and significant effect (SMD: -1.64, 95% CI -2.05 to -1.24), and the other a small and uncertain effect (SMD -0.42, 95%: -0.90 to 0.07). Compared to active comparators, we found very low-certainty evidence of small or no beneficial effects on HRQOL that were imprecisely estimated with psychological therapies and/or group programmes including no difference (SMD -0.09, 95% CI -0.39 to 0.20; participants = 600; studies = 4; I2 = 67%). We also found very low-certainty evidence of small or no beneficial effects with methods of enhancing vision, that were imprecisely estimated (SMD -0.09, 95% CI -0.28 to 0.09; participants = 443; studies = 2; I2 = 0%) and multidisciplinary rehabilitation programmes (SMD -0.10, 95% CI -0.31 to 0.12; participants = 375; studies = 2; I2 = 0%). Concerning VRQOL, low-certainty evidence of small or no beneficial effects that were imprecisely estimated, was found with psychological therapies and/or group programmes (SMD -0.11, 95% CI -0.24 to 0.01; participants = 1245; studies = 7; I2 = 19%) and moderate-certainty evidence of small effects with methods of enhancing vision (SMD -0.24, 95% CI -0.40 to -0.08; participants = 660; studies = 7; I2 = 16%). No additional benefit was found with multidisciplinary rehabilitation programmes (SMD 0.01, 95% CI -0.18 to 0.20; participants = 464; studies = 3; I2 = 0%; low-certainty evidence). Among secondary outcomes, very low-certainty evidence of a significant and large, but imprecisely estimated benefit on self-efficacy or self-esteem was found for psychological therapies and/or group programmes versus waiting list or no care (SMD -0.85, 95% CI -1.48 to -0.22; participants = 456; studies = 5; I2 = 91%). In addition, very low-certainty evidence of a significant and large estimated benefit on depression was found for psychological therapies and/or group programmes versus waiting list or no care (SMD -1.23, 95% CI -2.18 to -0.28; participants = 456; studies = 5; I2 = 94%), and moderate-certainty evidence of a small benefit versus usual care (SMD -0.14, 95% CI -0.25 to -0.04; participants = 1334; studies = 9; I2 = 0%). ln the few studies in which (serious) adverse events were reported, these seemed unrelated to low vision rehabilitation. AUTHORS' CONCLUSIONS In this Cochrane Review, no evidence of benefit was found of diverse types of low vision rehabilitation interventions on HRQOL. We found low- and moderate-certainty evidence, respectively, of a small benefit on VRQOL in studies comparing psychological therapies or methods for enhancing vision with active comparators. The type of rehabilitation varied among studies, even within intervention groups, but benefits were detected even if compared to active control groups. Studies were conducted on adults with visual impairment mainly of older age, living in high-income countries and often having AMD. Most of the included studies on low vision rehabilitation had a short follow-up, Despite these limitations, the consistent direction of the effects in this review towards benefit justifies further research activities of better methodological quality including longer maintenance effects and costs of several types of low vision rehabilitation. Research on the working mechanisms of components of rehabilitation interventions in different settings, including low-income countries, is also needed.
Collapse
Affiliation(s)
- Ruth MA van Nispen
- Amsterdam University Medical Centers, Vrije UniversiteitDepartment of Ophthalmology, Amsterdam Public Health research instituteAmsterdamNetherlands
| | - Gianni Virgili
- University of FlorenceDepartment of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA)Largo Palagi, 1FlorenceItaly50134
| | - Mirke Hoeben
- Amsterdam University Medical Centers, Vrije UniversiteitDepartment of Ophthalmology, Amsterdam Public Health research instituteAmsterdamNetherlands
| | - Maaike Langelaan
- Netherlands institute for health services, NIVEL researchP.O. Box 1568UtrechtNetherlands3500 BN
| | - Jeroen Klevering
- Radboud University Medical CenterDepartment of OphthalmologyNijmegenNetherlands
| | - Jan EE Keunen
- Radboud University Medical CenterDepartment of OphthalmologyNijmegenNetherlands
| | - Ger HMB van Rens
- Amsterdam University Medical Centers, Vrije UniversiteitDepartment of Ophthalmology, Amsterdam Public Health research instituteAmsterdamNetherlands
- Elkerliek HospitalDepartment of OphthalmologyHelmondNetherlands
| | | |
Collapse
|
28
|
Raffin E, Salamanca-Giron RF, Hummel FC. Perspectives: Hemianopia-Toward Novel Treatment Options Based on Oscillatory Activity? Neurorehabil Neural Repair 2019; 34:13-25. [PMID: 31858874 DOI: 10.1177/1545968319893286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stroke has become one of the main causes of visual impairment, with more than 15 million incidences of first-time strokes, per year, worldwide. One-third of stroke survivors exhibit visual impairment, and most of them will not fully recover. Some recovery is possible, but this usually happens in the first few weeks after a stroke. Most of the rehabilitation options that are offered to patients are compensatory, such as optical aids or eye training. However, these techniques do not seem to provide a sufficient amount of improvement transferable to everyday life. Based on the relatively recent idea that the visual system can actually recover from a chronic lesion, visual retraining protocols have emerged, sometimes even in combination with noninvasive brain stimulation (NIBS), to further boost plastic changes in the residual visual tracts and network. The present article reviews the underlying mechanisms supporting visual retraining and describes the first clinical trials that applied NIBS combined with visual retraining. As a further perspective, it gathers the scientific evidence demonstrating the relevance of interregional functional synchronization of brain networks for visual field recovery, especially the causal role of α and γ oscillations in parieto-occipital regions. Because transcranial alternating current stimulation (tACS) can induce frequency-specific entrainment and modulate spike timing-dependent plasticity, we present a new promising interventional approach, consisting of applying physiologically motivated tACS protocols based on multifocal cross-frequency brain stimulation of the visuoattentional network for visual field recovery.
Collapse
Affiliation(s)
- Estelle Raffin
- Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Clinique Romande de Réadaptation, Sion, Switzerland
| | | | - Friedhelm Christoph Hummel
- Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Clinique Romande de Réadaptation, Sion, Switzerland.,University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
29
|
Pollock A, Hazelton C, Rowe FJ, Jonuscheit S, Kernohan A, Angilley J, Henderson CA, Langhorne P, Campbell P. Interventions for visual field defects in people with stroke. Cochrane Database Syst Rev 2019; 5:CD008388. [PMID: 31120142 PMCID: PMC6532331 DOI: 10.1002/14651858.cd008388.pub3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Visual field defects are estimated to affect 20% to 57% of people who have had a stroke. Visual field defects can affect functional ability in activities of daily living (commonly affecting mobility, reading and driving), quality of life, ability to participate in rehabilitation, and depression and anxiety following stroke. There are many interventions for visual field defects, which are proposed to work by restoring the visual field (restitution); compensating for the visual field defect by changing behaviour or activity (compensation); substituting for the visual field defect by using a device or extraneous modification (substitution); or ensuring appropriate diagnosis, referral and treatment prescription through standardised assessment or screening, or both. OBJECTIVES To determine the effects of interventions for people with visual field defects after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register, the Cochrane Eyes and Vision Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL, AMED, PsycINFO, and PDQT Databse, and clinical trials databases, including ClinicalTrials.gov and WHO Clinical Trials Registry, to May 2018. We also searched reference lists and trials registers, handsearched journals and conference proceedings, and contacted experts. SELECTION CRITERIA Randomised trials in adults after stroke, where the intervention was specifically targeted at improving the visual field defect or improving the ability of the participant to cope with the visual field loss. The primary outcome was functional ability in activities of daily living and secondary outcomes included functional ability in extended activities of daily living, reading ability, visual field measures, balance, falls, depression and anxiety, discharge destination or residence after stroke, quality of life and social isolation, visual scanning, adverse events, and death. DATA COLLECTION AND ANALYSIS Two review authors independently screened abstracts, extracted data and appraised trials. We undertook an assessment of methodological quality for allocation concealment, blinding of outcome assessors, method of dealing with missing data, and other potential sources of bias. We assessed the quality of evidence for each outcome using the GRADE approach. MAIN RESULTS Twenty studies (732 randomised participants, with data for 547 participants with stroke) met the inclusion criteria for this review. However, only 10 of these studies compared the effect of an intervention with a placebo, control, or no treatment group, and eight had data which could be included in meta-analyses. Only two of these eight studies presented data relating to our primary outcome of functional abilities in activities of daily living. One study reported evidence relating to adverse events.Three studies (88 participants) compared a restitutive intervention with a control, but data were only available for one study (19 participants). There was very low-quality evidence that visual restitution therapy had no effect on visual field outcomes, and a statistically significant effect on quality of life, but limitations with these data mean that there is insufficient evidence to draw any conclusions about the effectiveness of restitutive interventions as compared to control.Four studies (193 participants) compared the effect of scanning (compensatory) training with a control or placebo intervention. There was low-quality evidence that scanning training was more beneficial than control or placebo on quality of life, measured using the Visual Function Questionnaire (VFQ-25) (two studies, 96 participants, mean difference (MD) 9.36, 95% confidence interval (CI) 3.10 to 15.62). However, there was low or very-low quality evidence of no effect on measures of visual field, extended activities of daily living, reading, and scanning ability. There was low-quality evidence of no significant increase in adverse events in people doing scanning training, as compared to no treatment.Three studies (166 participants) compared a substitutive intervention (a type of prism) with a control. There was low or very-low quality evidence that prisms did not have an effect on measures of activities of daily living, extended activities of daily living, reading, falls, or quality of life, and very low-quality evidence that they may have an effect on scanning ability (one study, 39 participants, MD 9.80, 95% CI 1.91 to 17.69). There was low-quality evidence of an increased odds of an adverse event (primarily headache) in people wearing prisms, as compared to no treatment.One study (39 participants) compared the effect of assessment by an orthoptist to standard care (no assessment) and found very low-quality evidence that there was no effect on measures of activities of daily living.Due to the quality and quantity of evidence, we remain uncertain about the benefits of assessment interventions. AUTHORS' CONCLUSIONS There is a lack of evidence relating to the effect of interventions on our primary outcome of functional ability in activities of daily living. There is limited low-quality evidence that compensatory scanning training may be more beneficial than placebo or control at improving quality of life, but not other outcomes. There is insufficient evidence to reach any generalised conclusions about the effect of restitutive interventions or substitutive interventions (prisms) as compared to placebo, control, or no treatment. There is low-quality evidence that prisms may cause minor adverse events.
Collapse
Affiliation(s)
- Alex Pollock
- Nursing, Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, 6th Floor, Govan Mbeki Building, Cowcaddens Road, Glasgow, UK, G4 0BA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness - a review. Restor Neurol Neurosci 2019; 36:767-791. [PMID: 30412515 PMCID: PMC6294586 DOI: 10.3233/rnn-180880] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vision loss due to ocular diseases such as glaucoma, optic neuropathy, macular degeneration, or diabetic retinopathy, are generally considered an exclusive affair of the retina and/or optic nerve. However, the brain, through multiple indirect influences, has also a major impact on functional visual impairment. Such indirect influences include intracerebral pressure, eye movements, top-down modulation (attention, cognition), and emotionally triggered stress hormone release affecting blood vessel dysregulation. Therefore, vision loss should be viewed as the result of multiple interactions within a “brain-eye-vascular triad”, and several eye diseases may also be considered as brain diseases in disguise. While the brain is part of the problem, it can also be part of the solution. Neuronal networks of the brain can “amplify” residual vision through neuroplasticity changes of local and global functional connectivity by activating, modulating and strengthening residual visual signals. The activation of residual vision can be achieved by different means such as vision restoration training, non-invasive brain stimulation, or blood flow enhancing medications. Modulating brain functional networks and improving vascular regulation may offer new opportunities to recover or restore low vision by increasing visual field size, visual acuity and overall functional vision. Hence, neuroscience offers new insights to better understand vision loss, and modulating brain and vascular function is a promising source for new opportunities to activate residual vision to achieve restoration and recovery to improve quality of live in patients suffering from low vision.
Collapse
Affiliation(s)
- Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lotfi B Merabet
- Department of Ophthalmology, The Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| |
Collapse
|
31
|
Mehta UM. Refining strategies to drive cognitive gains through transcranial electrical stimulation. Schizophr Res 2018; 202:46-47. [PMID: 30025759 PMCID: PMC7610502 DOI: 10.1016/j.schres.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Urvakhsh Meherwan Mehta
- Assistant Professor of Psychiatry & Wellcome Trust/DBT India Alliance Early Career Fellow, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
32
|
Casco C, Barollo M, Contemori G, Battaglini L. Neural Restoration Training improves visual functions and expands visual field of patients with homonymous visual field defects. Restor Neurol Neurosci 2018. [PMID: 29526854 DOI: 10.3233/rnn-170752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In recent years, the introduction of visual rehabilitation for patients with homonymous visual field defects has been met with both enthusiasm and caution. Despite the evidence that restitutive training results in expansion of the visual field, several concerns have been raised. OBJECTIVE We tested the effectiveness of a new rehabilitative protocol called "Neuro Restoration Training" (NRT) in reducing visual field defects and in restituting visual functions in the restored hemianopic area. METHODS Ten patients with homonymous visual field defects (lesion age >6 months) where trained in detecting low contrast Gabor patches randomly presented in the blind field, which refers to regions of 0 dB sensitivity, and along the hemianopic boundary between absolute (0 dB) and partial blindness (>0 dB). Training included static, drifting, and flickering Gabors in different blocks. Positions along the hemianopic boundary were systematically shifted toward the blind field according to the threshold reduction during the training. Before and after the training, we assessed visual field expansion and improvement in different high-level transfer tasks (i.e., letter identification and shape recognition) performed in the hemianopic boundary and in the blind field. RESULTS NRT led to significant visual field enlargement (≈5 deg), as indicated by the conventional Humphrey perimetry, and two custom made evaluations of visual field expansion with eye movement control (one static and one dynamic). The restored area acquired new visual functions such as small letter recognition and perception of moving shapes. Finally, for some patients, NRT also improved detection, either aware or not, of high contrast flickering grating and recognition of geometrical shapes entirely presented within the blind field. CONCLUSION These results suggest that NRT may lead to visual field enlargement and translate into untrained visual functions.
Collapse
Affiliation(s)
- Clara Casco
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Michele Barollo
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Howard C, Rowe FJ. Adaptation to poststroke visual field loss: A systematic review. Brain Behav 2018; 8:e01041. [PMID: 30004186 PMCID: PMC6086007 DOI: 10.1002/brb3.1041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 11/08/2022] Open
Abstract
AIM To provide a systematic overview of the factors that influence how a person adapts to visual field loss following stroke. METHOD A systematic review was undertaken (data search period 1861-2016) inclusive of systematic reviews, randomized controlled trials, controlled trials, cohort studies, observational studies, and case controlled studies. Studies including adult subjects with hemifield visual field loss, which occured as a direct consequence of stroke, were included. Search terms included a range of MESH terms as well as alternative terms relating to stroke, visual field loss, visual functions, visual perception, and adaptation. Articles were selected by two authors independently, and data were extracted by one author, being verified by the second. All included articles were assessed for risk of bias and quality using checklists appropriate to the study design. RESULTS Forty-seven articles (2,900 participants) were included in the overall review, categorized into two sections. Section one included seventeen studies where the reviewers were able to identify a factor they considered as likely to be important for the process of adaptation to poststroke visual field loss. Section two included thirty studies detailing interventions for visual field loss that the reviewers deemed likely to have an influence on the adaptation process. There were no studies identified which specifically investigated and summarized the factors that influence how a person adapts to visual field loss following stroke. CONCLUSION There is a substantial amount of evidence that patients can be supported to compensate and adapt to visual field loss following stroke using a range of strategies and methods. However, this systematic review highlights the fact that many unanswered questions in the area of adaptation to visual field loss remain. Further research is required on strategies and methods to improve adaptation to aid clinicians in supporting these patients along their rehabilitation journey.
Collapse
Affiliation(s)
- Claire Howard
- Department of Health Services Research, University of Liverpool, Liverpool, UK.,Department of Orthoptics, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Fiona J Rowe
- Department of Health Services Research, University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Liu KPY, Hanly J, Fahey P, Fong SSM, Bye R. A Systematic Review and Meta-Analysis of Rehabilitative Interventions for Unilateral Spatial Neglect and Hemianopia Poststroke From 2006 Through 2016. Arch Phys Med Rehabil 2018; 100:956-979. [PMID: 31030733 DOI: 10.1016/j.apmr.2018.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of activity-based, nonactivity-based, and combined activity- and nonactivity-based rehabilitative interventions for individuals presenting with unilateral spatial neglect (USN) and hemianopia. DATA SOURCES We searched CINAHL, Cochrane Library, EMBASE, MEDLINE, and PubMed from 2006 to 2016. STUDY SELECTION Randomized controlled trials (RCTs) with a score of 6 or more in the Physiotherapy Evidence Database Scale that examined the effects of activity-based and nonactivity-based rehabilitation interventions for people with USN or hemianopia. Two reviewers selected studies independently. DATA EXTRACTION Extracted data from the published RCTs. Mean differences (MD) or standardized mean differences (SMD), and 95% confidence intervals (CIs) were calculated. Heterogeneity was assessed using the I2 statistic. DATA SYNTHESIS A total of 20 RCTs for USN and 5 for hemianopia, involving 594 and 206 stroke participants respectively, were identified. Encouraging results were found in relation to activity-based interventions for visual scanning training and compensatory training for hemianopia (MD=5.11; 95% confidence intervals [95% CI], 0.83-9.4; P=.019; I2=25.16% on visual outcomes), and optokinetic stimulation and smooth pursuit training for USN (SMD=0.49; 95% CI, 0.01-0.97; P=.045; I2=49.35%) on functional performance in activities of daily living, (SMD=0.96; 95% CI, 0.09-1.82; P=.031; I2=89.57%) on neglect. CONCLUSIONS Activity-based interventions are effective and commonly used in the treatment of USN and hemianopia. Nonactivity-based and combined approaches, for both impairments, have not been refuted, because more studies are required for substantiated conclusions to be drawn.
Collapse
Affiliation(s)
- Karen P Y Liu
- School of Science and Health, Western Sydney University, Penrith, Australia; Translational Health Research Institute, Western Sydney University, Penrith, Australia.
| | - Jessica Hanly
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Paul Fahey
- School of Science and Health, Western Sydney University, Penrith, Australia; Translational Health Research Institute, Western Sydney University, Penrith, Australia
| | - Shirley S M Fong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Rosalind Bye
- School of Science and Health, Western Sydney University, Penrith, Australia
| |
Collapse
|
35
|
Elshout JA, Bergsma DP, Sibbel J, Baars-Elsinga A, Lubbers P, Van Asten F, Visser-Meily J, Van Den Berg AV. Improvement in activities of daily living after visual training in patients with homonymous visual field defects using Goal Attainment Scaling. Restor Neurol Neurosci 2018; 36:1-12. [DOI: 10.3233/rnn-170719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Joris A. Elshout
- Department of Cognitive Neuroscience, Section of Biophysics, Donders Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Douwe P. Bergsma
- Department of Cognitive Neuroscience, Section of Biophysics, Donders Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jacqueline Sibbel
- Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Annette Baars-Elsinga
- Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paula Lubbers
- St. Maartenskliniek Rehabilitation, Nijmegen, The Netherlands
| | - Freekje Van Asten
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Visser-Meily
- Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Albert V. Van Den Berg
- Department of Cognitive Neuroscience, Section of Biophysics, Donders Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Sabel BA, Cárdenas-Morales L, Gao Y. Vision Restoration in Glaucoma by Activating Residual Vision with a Holistic, Clinical Approach: A Review. J Curr Glaucoma Pract 2018; 12:1-9. [PMID: 29861576 PMCID: PMC5981087 DOI: 10.5005/jp-journals-10028-1237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
How to cite this article: Sabel BA, Cárdenas-Morales L, Gao Y. Vision Restoration in Glaucoma by activating Residual Vision with a Holistic, Clinical Approach: A Review. J Curr Glaucoma Pract 2018;12(1):1-9.
Collapse
Affiliation(s)
- Bernhard A Sabel
- Professor, SAVIR Center, Magdeburg, Germany; Institute for Medical Psychology, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | - Lizbeth Cárdenas-Morales
- Lecturer, Institute for Medical Psychology, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Ying Gao
- Researcher, SAVIR Center, Magdeburg, Germany; Institute for Medical Psychology, Otto von Guericke University of Magdeburg Magdeburg, Germany
| |
Collapse
|
37
|
Abstract
BACKGROUND Spontaneous recovery of visual loss resulting from injury to the brain is variable. A variety of traditional rehabilitative strategies, including the use of prisms or compensatory saccadic eye movements, have been used successfully to improve visual function and quality-of-life for patients with homonymous hemianopia. More recently, repetitive visual stimulation of the blind area has been reported to be of benefit in expanding the field of vision. EVIDENCE ACQUISITION We performed a literature review with main focus on clinical studies spanning from 1963 to 2016, including 52 peer-reviewed articles, relevant cross-referenced citations, editorials, and reviews. RESULTS Repetitive visual stimulation is reported to expand the visual field, although the interpretation of results is confounded by a variety of methodological factors and conflicting outcomes from different research groups. Many studies used subjective assessments of vision and did not include a sufficient number of subjects or controls. CONCLUSIONS The available clinical evidence does not strongly support claims of visual restoration using repetitive visual stimulation beyond the time that spontaneous visual recovery might occur. This lack of firm supportive evidence does not preclude the potential of real benefit demonstrated in laboratories. Additional well-designed clinical studies with adequate controls and methods to record ocular fixation are needed.
Collapse
|
38
|
Behrens JR, Kraft A, Irlbacher K, Gerhardt H, Olma MC, Brandt SA. Long-Lasting Enhancement of Visual Perception with Repetitive Noninvasive Transcranial Direct Current Stimulation. Front Cell Neurosci 2017; 11:238. [PMID: 28860969 PMCID: PMC5559806 DOI: 10.3389/fncel.2017.00238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/26/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding processes performed by an intact visual cortex as the basis for developing methods that enhance or restore visual perception is of great interest to both researchers and medical practitioners. Here, we explore whether contrast sensitivity, a main function of the primary visual cortex (V1), can be improved in healthy subjects by repetitive, noninvasive anodal transcranial direct current stimulation (tDCS). Contrast perception was measured via threshold perimetry directly before and after intervention (tDCS or sham stimulation) on each day over 5 consecutive days (24 subjects, double-blind study). tDCS improved contrast sensitivity from the second day onwards, with significant effects lasting 24 h. After the last stimulation on day 5, the anodal group showed a significantly greater improvement in contrast perception than the sham group (23 vs. 5%). We found significant long-term effects in only the central 2–4° of the visual field 4 weeks after the last stimulation. We suspect a combination of two factors contributes to these lasting effects. First, the V1 area that represents the central retina was located closer to the polarization electrode, resulting in higher current density. Second, the central visual field is represented by a larger cortical area relative to the peripheral visual field (cortical magnification). This is the first study showing that tDCS over V1 enhances contrast perception in healthy subjects for several weeks. This study contributes to the investigation of the causal relationship between the external modulation of neuronal membrane potential and behavior (in our case, visual perception). Because the vast majority of human studies only show temporary effects after single tDCS sessions targeting the visual system, our study underpins the potential for lasting effects of repetitive tDCS-induced modulation of neuronal excitability.
Collapse
Affiliation(s)
- Janina R Behrens
- Charité Universitätsmedizin BerlinBerlin, Germany.,NeuroCare Clinical Research Center, Charité Universitätsmedizin BerlinBerlin, Germany
| | - Antje Kraft
- Department of Psychiatry, Psychiatric University Hospital St. Hedwig, Charité Universitätsmedizin BerlinBerlin, Germany
| | | | - Holger Gerhardt
- Center for Economics and Neuroscience, Rheinische Friedrich-Wilhelms-Universität BonnBonn, Germany
| | | | | |
Collapse
|
39
|
Hanna KL, Hepworth LR, Rowe FJ. The treatment methods for post-stroke visual impairment: A systematic review. Brain Behav 2017; 7:e00682. [PMID: 28523224 PMCID: PMC5434187 DOI: 10.1002/brb3.682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/23/2022] Open
Abstract
AIM To provide a systematic overview of interventions for stroke related visual impairments. METHOD A systematic review of the literature was conducted including randomized controlled trials, controlled trials, cohort studies, observational studies, systematic reviews, and retrospective medical note reviews. All languages were included and translation obtained. This review covers adult participants (aged 18 years or over) diagnosed with a visual impairment as a direct cause of a stroke. Studies which included mixed populations were included if over 50% of the participants had a diagnosis of stroke and were discussed separately. We searched scholarly online resources and hand searched articles and registers of published, unpublished, and ongoing trials. Search terms included a variety of MESH terms and alternatives in relation to stroke and visual conditions. Article selection was performed by two authors independently. Data were extracted by one author and verified by a second. The quality of the evidence and risk of bias was assessed using appropriate tools dependant on the type of article. RESULTS Forty-nine articles (4142 subjects) were included in the review, including an overview of four Cochrane systematic reviews. Interventions appraised included those for visual field loss, ocular motility deficits, reduced central vision, and visual perceptual deficits. CONCLUSION Further high quality randomized controlled trials are required to determine the effectiveness of interventions for treating post-stroke visual impairments. For interventions which are used in practice but do not yet have an evidence base in the literature, it is imperative that these treatments be addressed and evaluated in future studies.
Collapse
Affiliation(s)
- Kerry Louise Hanna
- Department of Health Services ResearchUniversity of LiverpoolLiverpoolUK
| | | | - Fiona J. Rowe
- Department of Health Services ResearchUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
40
|
Talsma LJ, Kroese HA, Slagter HA. Boosting Cognition: Effects of Multiple-Session Transcranial Direct Current Stimulation on Working Memory. J Cogn Neurosci 2017; 29:755-768. [DOI: 10.1162/jocn_a_01077] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool for neurocognitive enhancement. Several studies have shown that just a single session of tDCS over the left dorsolateral pFC (lDLPFC) can improve the core cognitive function of working memory (WM) in healthy adults. Yet, recent studies combining multiple sessions of anodal tDCS over lDLPFC with verbal WM training did not observe additional benefits of tDCS in subsequent stimulation sessions nor transfer of benefits to novel WM tasks posttraining. Using an enhanced stimulation protocol as well as a design that included a baseline measure each day, the current study aimed to further investigate the effects of multiple sessions of tDCS on WM. Specifically, we investigated the effects of three subsequent days of stimulation with anodal (20 min, 1 mA) versus sham tDCS (1 min, 1 mA) over lDLPFC (with a right supraorbital reference) paired with a challenging verbal WM task. WM performance was measured with a verbal WM updating task (the letter n-back) in the stimulation sessions and several WM transfer tasks (different letter set n-back, spatial n-back, operation span) before and 2 days after stimulation. Anodal tDCS over lDLPFC enhanced WM performance in the first stimulation session, an effect that remained visible 24 hr later. However, no further gains of anodal tDCS were observed in the second and third stimulation sessions, nor did benefits transfer to other WM tasks at the group level. Yet, interestingly, post hoc individual difference analyses revealed that in the anodal stimulation group the extent of change in WM performance on the first day of stimulation predicted pre to post changes on both the verbal and the spatial transfer task. Notably, this relationship was not observed in the sham group. Performance of two individuals worsened during anodal stimulation and on the transfer tasks. Together, these findings suggest that repeated anodal tDCS over lDLPFC combined with a challenging WM task may be an effective method to enhance domain-independent WM functioning in some individuals, but not others, or can even impair WM. They thus call for a thorough investigation into individual differences in tDCS respondence as well as further research into the design of multisession tDCS protocols that may be optimal for boosting cognition across a wide range of individuals.
Collapse
|
41
|
Alber R, Moser H, Gall C, Sabel BA. Combined Transcranial Direct Current Stimulation and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study. PM R 2017; 9:787-794. [DOI: 10.1016/j.pmrj.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 01/04/2023]
|
42
|
Heinrichs-Graham E, McDermott TJ, Mills MS, Coolidge NM, Wilson TW. Transcranial direct-current stimulation modulates offline visual oscillatory activity: A magnetoencephalography study. Cortex 2016; 88:19-31. [PMID: 28042984 DOI: 10.1016/j.cortex.2016.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive neuromodulatory method that involves delivering low amplitude, direct current to specific regions of the brain. While a wealth of literature shows changes in behavior and cognition following tDCS administration, the underlying neuronal mechanisms remain largely unknown. Neuroimaging studies have generally used fMRI and shown only limited consensus to date, while the few electrophysiological studies have reported mostly null or counterintuitive findings. The goal of the current investigation was to quantify tDCS-induced alterations in the oscillatory dynamics of visual processing. To this end, we performed either active or sham tDCS using an occipital-frontal electrode configuration, and then recorded magnetoencephalography (MEG) offline during a visual entrainment task. Significant oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on absolute and relative power were assessed. The results indicated significantly increased basal alpha levels in the occipital cortex following anodal tDCS, as well as reduced occipital synchronization at the second harmonic of the stimulus-flicker frequency relative to sham stimulation. In addition, we found reduced power in brain regions near the cathode (e.g., right inferior frontal gyrus [IFG]) following active tDCS, which was absent in the sham group. Taken together, these results suggest that anodal tDCS of the occipital cortices differentially modulates spontaneous and induced activity, and may interfere with the entrainment of neuronal populations by a visual-flicker stimulus. These findings also demonstrate the importance of electrode configuration on whole-brain dynamics, and highlight the deceptively complicated nature of tDCS in the context of neurophysiology.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA
| | | | | | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA.
| |
Collapse
|
43
|
Cunningham DA, Varnerin N, Machado A, Bonnett C, Janini D, Roelle S, Potter-Baker K, Sankarasubramanian V, Wang X, Yue G, Plow EB. Stimulation targeting higher motor areas in stroke rehabilitation: A proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms. Restor Neurol Neurosci 2016; 33:911-26. [PMID: 26484700 DOI: 10.3233/rnn-150574] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. METHODS In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (n = 6) or sham (n = 6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. RESULTS Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. CONCLUSIONS Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices.
Collapse
Affiliation(s)
- David A Cunningham
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Andre Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Corin Bonnett
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Janini
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Roelle
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Kelsey Potter-Baker
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | | | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, OH, USA
| | - Guang Yue
- Human Performance & Engineering Laboratory, Kessler Foundation Research Center, West Orange, NJ, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA.,Center for Neurological Restoration, Neurosurgery, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA.,Department of Physical Medicine & Rehab, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Abstract
Low vision is any type of visual impairment that affects activities of daily living. In the context of low vision, we define plasticity as changes in brain or perceptual behavior that follow the onset of visual impairment and that are not directly due to the underlying pathology. An important goal of low-vision research is to determine how plasticity affects visual performance of everyday activities. In this review, we consider the levels of the visual system at which plasticity occurs, the impact of age and visual experience on plasticity, and whether plastic changes are spontaneous or require explicit training. We also discuss how plasticity may affect low-vision rehabilitation. Developments in retinal imaging, noninvasive brain imaging, and eye tracking have supplemented traditional clinical and psychophysical methods for assessing how the visual system adapts to visual impairment. Findings from contemporary research are providing tools to guide people with low vision in adopting appropriate rehabilitation strategies.
Collapse
Affiliation(s)
- Gordon E Legge
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455;
| | - Susana T L Chung
- School of Optometry, University of California, Berkeley, California 94720;
| |
Collapse
|
45
|
Gall C, Schmidt S, Schittkowski MP, Antal A, Ambrus GG, Paulus W, Dannhauer M, Michalik R, Mante A, Bola M, Lux A, Kropf S, Brandt SA, Sabel BA. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial. PLoS One 2016; 11:e0156134. [PMID: 27355577 PMCID: PMC4927182 DOI: 10.1371/journal.pone.0156134] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/10/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Vision loss after optic neuropathy is considered irreversible. Here, repetitive transorbital alternating current stimulation (rtACS) was applied in partially blind patients with the goal of activating their residual vision. METHODS We conducted a multicenter, prospective, randomized, double-blind, sham-controlled trial in an ambulatory setting with daily application of rtACS (n = 45) or sham-stimulation (n = 37) for 50 min for a duration of 10 week days. A volunteer sample of patients with optic nerve damage (mean age 59.1 yrs) was recruited. The primary outcome measure for efficacy was super-threshold visual fields with 48 hrs after the last treatment day and at 2-months follow-up. Secondary outcome measures were near-threshold visual fields, reaction time, visual acuity, and resting-state EEGs to assess changes in brain physiology. RESULTS The rtACS-treated group had a mean improvement in visual field of 24.0% which was significantly greater than after sham-stimulation (2.5%). This improvement persisted for at least 2 months in terms of both within- and between-group comparisons. Secondary analyses revealed improvements of near-threshold visual fields in the central 5° and increased thresholds in static perimetry after rtACS and improved reaction times, but visual acuity did not change compared to shams. Visual field improvement induced by rtACS was associated with EEG power-spectra and coherence alterations in visual cortical networks which are interpreted as signs of neuromodulation. Current flow simulation indicates current in the frontal cortex, eye, and optic nerve and in the subcortical but not in the cortical regions. CONCLUSION rtACS treatment is a safe and effective means to partially restore vision after optic nerve damage probably by modulating brain plasticity. This class 1 evidence suggests that visual fields can be improved in a clinically meaningful way. TRIAL REGISTRATION ClinicalTrials.gov NCT01280877.
Collapse
Affiliation(s)
- Carolin Gall
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- * E-mail:
| | - Sein Schmidt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael P. Schittkowski
- Department of Ophthalmology, University Medical Center, Georg-August University of Goettingen, Goettingen, Germany
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Goettingen, Germany
| | - Géza Gergely Ambrus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Goettingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Goettingen, Germany
| | - Moritz Dannhauer
- Center for Integrative Biomedical Computing and the Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Romualda Michalik
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alf Mante
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michal Bola
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anke Lux
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stephan A. Brandt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard A. Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
46
|
Elshout JA, van Asten F, Hoyng CB, Bergsma DP, van den Berg AV. Visual Rehabilitation in Chronic Cerebral Blindness: A Randomized Controlled Crossover Study. Front Neurol 2016; 7:92. [PMID: 27379011 PMCID: PMC4911356 DOI: 10.3389/fneur.2016.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/03/2016] [Indexed: 01/22/2023] Open
Abstract
The treatment of patients suffering from cerebral blindness following stroke is a topic of much recent interest. Several types of treatment are under investigation, such as substitution with prisms and compensation training of saccades. A third approach, aimed at vision restitution is controversial, as a proper controlled study design is missing. In the current study, 27 chronic stroke patients with homonymous visual field defects were trained at home with a visual training device. We used a discrimination task for two types of stimuli: a static point stimulus and a new optic flow-discontinuity stimulus. Using a randomized controlled crossover design, each patient received two successive training rounds, one with high contrast stimuli in their affected hemifield (test) and one round with low-contrast stimuli in their intact hemifield (control). Goldmann and Humphrey perimetry were performed at the start of the study and following each training round. In addition, reading performance was measured. Goldmann perimetry revealed a statistically significant reduction of the visual field defect after the test training, but not after the control training or after no intervention. For both training rounds combined, Humphrey perimetry revealed that the effect of a directed training (sensitivity change in trained hemifield) exceeded that of an undirected training (sensitivity change in untrained hemifield). The interaction between trained and tested hemifield was just above the threshold of significance (p = 0.058). Interestingly, reduction of the field defect assessed by Goldmann perimetry increases with the difference between defect size as measured by Humphrey and Goldmann perimetry prior to training. Moreover, improvement of visual sensitivity measured by Humphrey perimetry increases with the fraction of non-responsive elements (i.e., more relative field loss) in Humphrey perimetry prior to training. Reading speed revealed a significant improvement after training. Our findings demonstrate that our training can result in reduction of the visual field. Improved reading performance after defect training further supports the significance of our training for improvement in daily life activities.
Collapse
Affiliation(s)
- Joris A Elshout
- Section of Biophysics, Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre , Nijmegen , Netherlands
| | - Freekje van Asten
- Department of Ophthalmology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Douwe P Bergsma
- Section of Biophysics, Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre , Nijmegen , Netherlands
| | - Albert V van den Berg
- Section of Biophysics, Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre , Nijmegen , Netherlands
| |
Collapse
|
47
|
Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Höffken O. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study. Front Behav Neurosci 2016; 10:116. [PMID: 27375452 PMCID: PMC4891342 DOI: 10.3389/fnbeh.2016.00116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/24/2016] [Indexed: 12/03/2022] Open
Abstract
Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.
Collapse
Affiliation(s)
| | - Katharina Beckhaus
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Germany
| | - Hubert R Dinse
- Institute of Neuroinformatics, Ruhr-University Bochum Bochum, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Germany
| |
Collapse
|
48
|
Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing. Atten Percept Psychophys 2016; 77:1813-40. [PMID: 26139152 DOI: 10.3758/s13414-015-0932-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique with increasing popularity in the fields of basic research and rehabilitation. It is an affordable and safe procedure that is beginning to be used in the clinic, and is a tool with potential to contribute to the understanding of neural mechanisms in the fields of psychology, neuroscience, and medical research. This review presents examples of investigations in the fields of perception, basic sensory processes, and sensory rehabilitation that employed tDCS. We highlight some of the most relevant efforts in this area and discuss possible limitations and gaps in contemporary tDCS research. Topics include the five senses, pain, and multimodal integration. The present work aims to present the state of the art of this field of research and to inspire future investigations of perception using tDCS.
Collapse
|
49
|
Models to Tailor Brain Stimulation Therapies in Stroke. Neural Plast 2016; 2016:4071620. [PMID: 27006833 PMCID: PMC4781989 DOI: 10.1155/2016/4071620] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.
Collapse
|
50
|
Convento S, Russo C, Zigiotto L, Bolognini N. Transcranial Electrical Stimulation in Post-Stroke Cognitive Rehabilitation. EUROPEAN PSYCHOLOGIST 2016. [DOI: 10.1027/1016-9040/a000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract. Cognitive rehabilitation is an important area of neurological rehabilitation, which aims at the treatment of cognitive disorders due to acquired brain damage of different etiology, including stroke. Although the importance of cognitive rehabilitation for stroke survivors is well recognized, available cognitive treatments for neuropsychological disorders, such as spatial neglect, hemianopia, apraxia, and working memory, are overall still unsatisfactory. The growing body of evidence supporting the potential of the transcranial Electrical Stimulation (tES) as tool for interacting with neuroplasticity in the human brain, in turn for enhancing perceptual and cognitive functions, has obvious implications for the translation of this noninvasive brain stimulation technique into clinical settings, in particular for the development of tES as adjuvant tool for cognitive rehabilitation. The present review aims at presenting the current state of art concerning the use of tES for the improvement of post-stroke visual and cognitive deficits (except for aphasia and memory disorders), showing the therapeutic promises of this technique and offering some suggestions for the design of future clinical trials. Although this line of research is still in infancy, as compared to the progresses made in the last years in other neurorehabilitation domains, current findings appear very encouraging, supporting the development of tES for the treatment of post-stroke cognitive impairments.
Collapse
Affiliation(s)
- Silvia Convento
- Department of Psychology, University of Milano Bicocca, Milan, Italy
| | - Cristina Russo
- Department of Psychology, University of Milano Bicocca, Milan, Italy
| | - Luca Zigiotto
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
- NeuroMi – Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|