1
|
Pan H, Ding P, Wang F, Li T, Zhao L, Nan W, Fu Y, Gong A. Comprehensive evaluation methods for translating BCI into practical applications: usability, user satisfaction and usage of online BCI systems. Front Hum Neurosci 2024; 18:1429130. [PMID: 38903409 PMCID: PMC11188342 DOI: 10.3389/fnhum.2024.1429130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Although brain-computer interface (BCI) is considered a revolutionary advancement in human-computer interaction and has achieved significant progress, a considerable gap remains between the current technological capabilities and their practical applications. To promote the translation of BCI into practical applications, the gold standard for online evaluation for classification algorithms of BCI has been proposed in some studies. However, few studies have proposed a more comprehensive evaluation method for the entire online BCI system, and it has not yet received sufficient attention from the BCI research and development community. Therefore, the qualitative leap from analyzing and modeling for offline BCI data to the construction of online BCI systems and optimizing their performance is elaborated, and then user-centred is emphasized, and then the comprehensive evaluation methods for translating BCI into practical applications are detailed and reviewed in the article, including the evaluation of the usability (including effectiveness and efficiency of systems), the evaluation of the user satisfaction (including BCI-related aspects, etc.), and the evaluation of the usage (including the match between the system and user, etc.) of online BCI systems. Finally, the challenges faced in the evaluation of the usability and user satisfaction of online BCI systems, the efficacy of online BCI systems, and the integration of BCI and artificial intelligence (AI) and/or virtual reality (VR) and other technologies to enhance the intelligence and user experience of the system are discussed. It is expected that the evaluation methods for online BCI systems elaborated in this review will promote the translation of BCI into practical applications.
Collapse
Affiliation(s)
- He Pan
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Wenya Nan
- Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People's Armed Police Force Engineering University, Xi’an, China
| |
Collapse
|
2
|
Gutzeit J, Weller L, Muth F, Kürten J, Huestegge L. Eye did this! Sense of agency in eye movements. Acta Psychol (Amst) 2024; 243:104121. [PMID: 38199168 DOI: 10.1016/j.actpsy.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/28/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This study investigates the sense of agency (SoA) for saccades with implicit and explicit agency measures. In two eye tracking experiments, participants moved their eyes towards on-screen stimuli that subsequently changed color. Participants then either reproduced the temporal interval between saccade and color-change (Experiment 1) or reported the time points of these events with an auditory Libet clock (Experiment 2) to measure temporal binding effects as implicit indices of SoA. Participants were either made to believe to exert control over the color change or not (agency manipulation). Explicit ratings indicated that the manipulation of causal beliefs and hence agency was successful. However, temporal binding was only evident for caused effects, and only when a sufficiently sensitive procedure was used (auditory Libet clock). This suggests a feebler connection between temporal binding and SoA than previously proposed. The results also provide evidence for a relatively fast acquisition of sense of agency for previously never experienced types of action-effect associations. This indicates that the underlying processes of action control may be rooted in more intricate and adaptable cognitive models than previously thought. Oculomotor SoA as addressed in the present study presumably represents an important cognitive foundation of gaze-based social interaction (social sense of agency) or gaze-based human-machine interaction scenarios. PUBLIC SIGNIFICANCE STATEMENT: In this study, sense of agency for eye movements in the non-social domain is investigated in detail, using both explicit and implicit measures. Therefore, it offers novel and specific insights into comprehending sense of agency concerning effects induced by eye movements, as well as broader insights into agency pertaining to entirely newly acquired types of action-effect associations. Oculomotor sense of agency presumably represents an important cognitive foundation of gaze-based social interaction (social agency) or gaze-based human-machine interaction scenarios. Due to peculiarities of the oculomotor domain such as the varying degree of volitional control, eye movements could provide new information regarding more general theories of sense of agency in future research.
Collapse
Affiliation(s)
- Julian Gutzeit
- Julius-Maximilians-Universität Würzburg, 11, 97070 Würzburg, Germany.
| | - Lisa Weller
- Julius-Maximilians-Universität Würzburg, 11, 97070 Würzburg, Germany.
| | - Felicitas Muth
- Julius-Maximilians-Universität Würzburg, 11, 97070 Würzburg, Germany.
| | - Jens Kürten
- Julius-Maximilians-Universität Würzburg, 11, 97070 Würzburg, Germany.
| | - Lynn Huestegge
- Julius-Maximilians-Universität Würzburg, 11, 97070 Würzburg, Germany.
| |
Collapse
|
3
|
Fischer-Janzen A, Wendt TM, Van Laerhoven K. A scoping review of gaze and eye tracking-based control methods for assistive robotic arms. Front Robot AI 2024; 11:1326670. [PMID: 38440775 PMCID: PMC10909843 DOI: 10.3389/frobt.2024.1326670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview. Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years. Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted. Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking. Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.
Collapse
Affiliation(s)
- Anke Fischer-Janzen
- Faculty Economy, Work-Life Robotics Institute, University of Applied Sciences Offenburg, Offenburg, Germany
| | - Thomas M. Wendt
- Faculty Economy, Work-Life Robotics Institute, University of Applied Sciences Offenburg, Offenburg, Germany
| | - Kristof Van Laerhoven
- Ubiquitous Computing, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| |
Collapse
|
4
|
Ezzat M, Maged M, Gamal Y, Adel M, Alrahmawy M, El-Metwally S. Blink-To-Live eye-based communication system for users with speech impairments. Sci Rep 2023; 13:7961. [PMID: 37198193 PMCID: PMC10192441 DOI: 10.1038/s41598-023-34310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Eye-based communication languages such as Blink-To-Speak play a key role in expressing the needs and emotions of patients with motor neuron disorders. Most invented eye-based tracking systems are complex and not affordable in low-income countries. Blink-To-Live is an eye-tracking system based on a modified Blink-To-Speak language and computer vision for patients with speech impairments. A mobile phone camera tracks the patient's eyes by sending real-time video frames to computer vision modules for facial landmarks detection, eye identification and tracking. There are four defined key alphabets in the Blink-To-Live eye-based communication language: Left, Right, Up, and Blink. These eye gestures encode more than 60 daily life commands expressed by a sequence of three eye movement states. Once the eye gestures encoded sentences are generated, the translation module will display the phrases in the patient's native speech on the phone screen, and the synthesized voice can be heard. A prototype of the Blink-To-Live system is evaluated using normal cases with different demographic characteristics. Unlike the other sensor-based eye-tracking systems, Blink-To-Live is simple, flexible, and cost-efficient, with no dependency on specific software or hardware requirements. The software and its source are available from the GitHub repository ( https://github.com/ZW01f/Blink-To-Live ).
Collapse
Affiliation(s)
- Mohamed Ezzat
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Mohamed Maged
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Youssef Gamal
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Mustafa Adel
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Mohammed Alrahmawy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Sara El-Metwally
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, P.O. Box: 35516, Mansoura, Egypt.
| |
Collapse
|
5
|
Towards clinical application of implantable brain-computer interfaces for people with late-stage ALS: medical and ethical considerations. J Neurol 2023; 270:1323-1336. [PMID: 36450968 PMCID: PMC9971103 DOI: 10.1007/s00415-022-11464-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022]
Abstract
Individuals with amyotrophic lateral sclerosis (ALS) frequently develop speech and communication problems in the course of their disease. Currently available augmentative and alternative communication technologies do not present a solution for many people with advanced ALS, because these devices depend on residual and reliable motor activity. Brain-computer interfaces (BCIs) use neural signals for computer control and may allow people with late-stage ALS to communicate even when conventional technology falls short. Recent years have witnessed fast progression in the development and validation of implanted BCIs, which place neural signal recording electrodes in or on the cortex. Eventual widespread clinical application of implanted BCIs as an assistive communication technology for people with ALS will have significant consequences for their daily life, as well as for the clinical management of the disease, among others because of the potential interaction between the BCI and other procedures people with ALS undergo, such as tracheostomy. This article aims to facilitate responsible real-world implementation of implanted BCIs. We review the state of the art of research on implanted BCIs for communication, as well as the medical and ethical implications of the clinical application of this technology. We conclude that the contribution of all BCI stakeholders, including clinicians of the various ALS-related disciplines, will be needed to develop procedures for, and shape the process of, the responsible clinical application of implanted BCIs.
Collapse
|
6
|
Elliott C, Sutherland D, Gerhard D, Theys C. An Evaluation of the P300 Brain-Computer Interface, EyeLink Board, and Eye-Tracking Camera as Augmentative and Alternative Communication Devices. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:4280-4290. [PMID: 36251867 DOI: 10.1044/2022_jslhr-21-00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE Augmentative and alternative communication (AAC) systems are important to support communication for individuals with complex communication needs. A recent addition to AAC system options is the brain-computer interface (BCI). This study aimed to compare the clinical application of the P300 speller BCI with two more common AAC systems, the EyeLink board, and an eye-tracking camera. METHOD Ten participants without communication impairment (18-35 years of age) used each of the three AAC systems to spell three-letter words in one session. Accuracy and speed of letter selection were measured, and questionnaires were administered to evaluate usability, cognitive workload, and user preferences. RESULTS The results showed that the BCI was significantly less accurate, slower, and with lower usability and higher cognitive workload compared to the eye-tracking camera and EyeLink board. Participants rated the eye-tracking camera as the most favorable AAC system on all measures. CONCLUSIONS The results demonstrated that while the P300 speller BCI was usable by most participants, it did not function as well as the eye-tracking camera and EyeLink board. The clinical use of the BCI is, therefore, currently difficult to justify for most individuals, particularly when considering the substantial cost and setup resourcing needed. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21291384.
Collapse
Affiliation(s)
| | - Dean Sutherland
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Daniel Gerhard
- Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Catherine Theys
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Initiation and Withdrawal of Invasive Ventilation for Patients with Amyotrophic Lateral Sclerosis: A Narrative Literature Review. J 2022. [DOI: 10.3390/j5030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Decisions regarding invasive ventilation with tracheostomy (TIV) in patients with amyotrophic lateral sclerosis (ALS) involve serious ethical issues. Cultural differences in the attitudes of patients, caregivers, and physicians toward TIV initiation and withdrawal decisions have been analyzed based on a narrative review approach, comparing the situation between Japan and the U.S. Three main issues were identified regarding the implementation of TIV. The first is the lack of Advance Care Planning. Second, some patients may choose TIV based on the wishes of their physicians or caregivers, even if the patients themselves do not want TIV in the Japanese context. Third is the influence of patient associations, which advocate for the protection of patients’ rights. Next, this study identifies the following issues related to TIV discontinuation. The main concern here is cultural differences in legislation and ethical intuitions regarding the discontinuation of TIV. The treatment guidelines for patients with ALS advise physicians to reassure patients that TIV can be withdrawn at any point. However, TIV withdrawal is not explicitly discussed in Japan. Moreover, Japanese ALS treatment guidelines state that ventilation withdrawal is currently impossible, due to a lack of legal support. Most Japanese physicians have told patients that they are not allowed to stop ventilation via such a request. Unlike in the U.S., withholding and withdrawing ventilators are not ethically equivalent in Japan. In conclusion, the decision-making process regarding TIV is difficult, not only for the patients and caregivers, but also for physicians. Even if patients are legally entitled to refuse unwanted treatment, there have been cases in which Japanese physicians have felt an ethical dilemma in stopping TIV for patients with ALS. However, few studies have investigated in detail why physicians oppose the patient’s right to discontinue TIV in Japan.
Collapse
|
8
|
Gannouni S, Belwafi K, Al-Sulmi MR, Al-Farhood MD, Al-Obaid OA, Al-Awadh AM, Aboalsamh H, Belghith A. A Brain Controlled Command-Line Interface to Enhance the Accessibility of Severe Motor Disabled People to Personnel Computer. Brain Sci 2022; 12:brainsci12070926. [PMID: 35884732 PMCID: PMC9313199 DOI: 10.3390/brainsci12070926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are many applications controlled by the brain signals to bridge the gap in the digital divide between the disabled and the non-disabled people. The deployment of novel assistive technologies using brain-computer interface (BCI) will go a long way toward achieving this lofty goal, especially after the successes demonstrated by these technologies in the daily life of people with severe disabilities. This paper contributes in this direction by proposing an integrated framework to control the operating system functionalities using Electroencephalography signals. Different signal processing algorithms were applied to remove artifacts, extract features, and classify trials. The proposed approach includes different classification algorithms dedicated to detecting the P300 responses efficiently. The predicted commands passed through a socket to the API system, permitting the control of the operating system functionalities. The proposed system outperformed those obtained by the winners of the BCI competition and reached an accuracy average of 94.5% according to the offline approach. The framework was evaluated according to the online process and achieved an excellent accuracy attaining 97% for some users but not less than 90% for others. The suggested framework enhances the information accessibility for people with severe disabilities and helps them perform their daily tasks efficiently. It permits the interaction between the user and personal computers through the brain signals without any muscular efforts.
Collapse
Affiliation(s)
- Sofien Gannouni
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| | - Kais Belwafi
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
- Electrical Engineering and Computer Science department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: or
| | - Mohammad Reshood Al-Sulmi
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| | - Meshal Dawood Al-Farhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| | - Omar Ali Al-Obaid
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| | - Abdullah Mohammed Al-Awadh
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| | - Hatim Aboalsamh
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| | - Abdelfettah Belghith
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (S.G.); (M.R.A.-S.); (M.D.A.-F.); (O.A.A.-O.); (A.M.A.-A.); (H.A.); (A.B.)
| |
Collapse
|
9
|
Rybář M, Daly I. Neural decoding of semantic concepts: A systematic literature review. J Neural Eng 2022; 19. [PMID: 35344941 DOI: 10.1088/1741-2552/ac619a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/27/2022] [Indexed: 11/12/2022]
Abstract
Objective Semantic concepts are coherent entities within our minds. They underpin our thought processes and are a part of the basis for our understanding of the world. Modern neuroscience research is increasingly exploring how individual semantic concepts are encoded within our brains and a number of studies are beginning to reveal key patterns of neural activity that underpin specific concepts. Building upon this basic understanding of the process of semantic neural encoding, neural engineers are beginning to explore tools and methods for semantic decoding: identifying which semantic concepts an individual is focused on at a given moment in time from recordings of their neural activity. In this paper we review the current literature on semantic neural decoding. Approach We conducted this review according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. Specifically, we assess the eligibility of published peer-reviewed reports via a search of PubMed and Google Scholar. We identify a total of 74 studies in which semantic neural decoding is used to attempt to identify individual semantic concepts from neural activity. Results Our review reveals how modern neuroscientific tools have been developed to allow decoding of individual concepts from a range of neuroimaging modalities. We discuss specific neuroimaging methods, experimental designs, and machine learning pipelines that are employed to aid the decoding of semantic concepts. We quantify the efficacy of semantic decoders by measuring information transfer rates. We also discuss current challenges presented by this research area and present some possible solutions. Finally, we discuss some possible emerging and speculative future directions for this research area. Significance Semantic decoding is a rapidly growing area of research. However, despite its increasingly widespread popularity and use in neuroscientific research this is the first literature review focusing on this topic across neuroimaging modalities and with a focus on quantifying the efficacy of semantic decoders.
Collapse
Affiliation(s)
- Milan Rybář
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ian Daly
- University of Essex, School of Computer Science and Electronic Engineering, Wivenhoe Park, Colchester, Colchester, Essex, CO4 3SQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
10
|
Han Y, Ziebell P, Riccio A, Halder S. Two sides of the same coin: adaptation of BCIs to internal states with user-centered design and electrophysiological features. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2041294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiyuan Han
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Philipp Ziebell
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Angela Riccio
- Neuroelectrical Imaging and Brain Computer Interface Laboratory,Fondazione Santa Lucia, Irccs, Rome, Italy
| | - Sebastian Halder
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| |
Collapse
|
11
|
Pugliese R, Sala R, Regondi S, Beltrami B, Lunetta C. Emerging technologies for management of patients with amyotrophic lateral sclerosis: from telehealth to assistive robotics and neural interfaces. J Neurol 2022; 269:2910-2921. [PMID: 35059816 PMCID: PMC8776511 DOI: 10.1007/s00415-022-10971-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is characterized by the degeneration of both upper and lower motor neurons, which leads to muscle weakness and subsequently paralysis. It begins subtly with focal weakness but spreads relentlessly to involve most muscles, thus proving to be effectively incurable. Typically, death due to respiratory paralysis occurs in 3–5 years. To date, it has been shown that the management of ALS patients is best achieved with a multidisciplinary approach, and with the help of emerging technologies ranging from multidisciplinary teleconsults (for monitoring the dysphagia, respiratory function, and nutritional status) to brain-computer interfaces and eye tracking for alternative augmentative communication, until robotics, it may increase effectiveness. The COVID-19 pandemic created a spasmodic need to accelerate the development and implementation of such technologies in clinical practice, to improve the daily lives of both ALS patients and caregivers. However, despite the remarkable strides that have been made in the field, there are still issues to be addressed. This review will be discussed on the eureka moment of emerging technologies for ALS, used as a blueprint not only for neurodegenerative diseases, examining the current technologies already in place or being evaluated, highlighting the pros and cons for future clinical applications.
Collapse
Affiliation(s)
| | - Riccardo Sala
- NeMO Lab, ASST Niguarda Cà Granda Hospital, Milan, Italy
| | - Stefano Regondi
- NeMO Lab, ASST Niguarda Cà Granda Hospital, Milan, Italy
- NEuroMuscolar Omnicentre, Milan, Italy
| | | | - Christian Lunetta
- NeMO Lab, ASST Niguarda Cà Granda Hospital, Milan, Italy.
- NEuroMuscolar Omnicentre, Milan, Italy.
| |
Collapse
|
12
|
Pitt KM, Dietz A. Applying Implementation Science to Support Active Collaboration in Noninvasive Brain-Computer Interface Development and Translation for Augmentative and Alternative Communication. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:515-526. [PMID: 34958737 DOI: 10.1044/2021_ajslp-21-00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE The purpose of this article is to consider how, alongside engineering advancements, noninvasive brain-computer interface (BCI) for augmentative and alternative communication (AAC; BCI-AAC) developments can leverage implementation science to increase the clinical impact of this technology. We offer the Consolidated Framework for Implementation Research (CFIR) as a structure to help guide future BCI-AAC research. Specifically, we discuss CFIR primary domains that include intervention characteristics, the outer and inner settings, the individuals involved in the intervention, and the process of implementation, alongside pertinent subdomains including adaptability, cost, patient needs and recourses, implementation climate, other personal attributes, and the process of engaging. The authors support their view with current citations from both the AAC and BCI-AAC fields. CONCLUSIONS The article aimed to provide thoughtful considerations for how future research may leverage the CFIR to support meaningful BCI-AAC translation for those with severe physical impairments. We believe that, although significant barriers to BCI-AAC development still exist, incorporating implementation research may be timely for the field of BCI-AAC and help account for diversity in end users, navigate implementation obstacles, and support a smooth and efficient translation of BCI-AAC technology. Moreover, the sooner clinicians, individuals who use AAC, their support networks, and engineers collectively improve BCI-AAC outcomes and the efficiency of translation, the sooner BCI-AAC may become an everyday tool in the AAC arsenal.
Collapse
Affiliation(s)
- Kevin M Pitt
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Aimee Dietz
- Department of Communication Sciences and Disorders, Georgia State University, Atlanta
| |
Collapse
|
13
|
Malik SA, Aburahmah L, Azuddin M. An Exploratory Study on the Use of Social Companion Robot for Adults with Motor Disabilities. ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING 2022:616-629. [DOI: 10.1007/978-3-030-98741-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Tarek N, Mandour MA, El-Madah N, Ali R, Yahia S, Mohamed B, Mostafa D, El-Metwally S. Morse glasses: an IoT communication system based on Morse code for users with speech impairments. COMPUTING 2022; 104:789-808. [PMCID: PMC8202051 DOI: 10.1007/s00607-021-00959-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
The advent of internet of things has opened the opportunities for people with disabilities, increased their inclusion and productivity in their living society. Most of the invented smart sensing devices including the wearable ones for users with speech impairments are expensive and not affordable for patients in the low income countries such as Egypt. Morse Glasses is a cost efficient wearable device based on IoT technology and a modified Morse code that tracks the patient’s eyes blinks and translates it into a generated speech. A sequence of Morse encoded alphabets/sentences along with the frequently used ones is displayed and heard on any android supported device that is installed Morse Glasses mobile application. With cost less than 30$, patients with motor neuron diseases such as Amyotrophic Lateral Sclerosis (ALS) can communicate easily with the others, express their needs and simply live their life normally.
Collapse
Affiliation(s)
- Nayera Tarek
- Medical Informatics Program, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Mariam Abo Mandour
- Medical Informatics Program, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Nada El-Madah
- Computer Science Department, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Reem Ali
- Medical Informatics Program, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Sara Yahia
- Medical Informatics Program, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Bassant Mohamed
- Medical Informatics Program, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Dina Mostafa
- Medical Informatics Program, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| | - Sara El-Metwally
- Computer Science Department, Faculty of Computers and Information, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
15
|
Rybář M, Poli R, Daly I. Decoding of semantic categories of imagined concepts of animals and tools in fNIRS. J Neural Eng 2021; 18:046035. [PMID: 33780916 DOI: 10.1088/1741-2552/abf2e5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 11/11/2022]
Abstract
Objective.Semantic decoding refers to the identification of semantic concepts from recordings of an individual's brain activity. It has been previously reported in functional magnetic resonance imaging and electroencephalography. We investigate whether semantic decoding is possible with functional near-infrared spectroscopy (fNIRS). Specifically, we attempt to differentiate between the semantic categories of animals and tools. We also identify suitable mental tasks for potential brain-computer interface (BCI) applications.Approach.We explore the feasibility of a silent naming task, for the first time in fNIRS, and propose three novel intuitive mental tasks based on imagining concepts using three sensory modalities: visual, auditory, and tactile. Participants are asked to visualize an object in their minds, imagine the sounds made by the object, and imagine the feeling of touching the object. A general linear model is used to extract hemodynamic responses that are then classified via logistic regression in a univariate and multivariate manner.Main results.We successfully classify all tasks with mean accuracies of 76.2% for the silent naming task, 80.9% for the visual imagery task, 72.8% for the auditory imagery task, and 70.4% for the tactile imagery task. Furthermore, we show that consistent neural representations of semantic categories exist by applying classifiers across tasks.Significance.These findings show that semantic decoding is possible in fNIRS. The study is the first step toward the use of semantic decoding for intuitive BCI applications for communication.
Collapse
Affiliation(s)
- Milan Rybář
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Riccardo Poli
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| |
Collapse
|
16
|
Abstract
In this paper, authors present a novel architecture for controlling an industrial robot via an eye tracking interface for artistic purposes. Humans and robots interact thanks to an acquisition system based on an eye tracker device that allows the user to control the motion of a robotic manipulator with his gaze. The feasibility of the robotic system is evaluated with experimental tests in which the robot is teleoperated to draw artistic images. The tool can be used by artists to investigate novel forms of art and by amputees or people with movement disorders or muscular paralysis, as an assistive technology for artistic drawing and painting, since, in these cases, eye motion is usually preserved.
Collapse
|
17
|
Pinto S, Quintarelli S, Silani V. New technologies and Amyotrophic Lateral Sclerosis - Which step forward rushed by the COVID-19 pandemic? J Neurol Sci 2020; 418:117081. [PMID: 32882437 PMCID: PMC7403097 DOI: 10.1016/j.jns.2020.117081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fast-progressive neurodegenerative disease leading to progressive physical immobility with usually normal or mild cognitive and/or behavioural involvement. Many patients are relatively young, instructed, sensitive to new technologies, and professionally active when developing the first symptoms. Older patients usually require more time, encouragement, reinforcement and a closer support but, nevertheless, selecting user-friendly devices, provided earlier in the course of the disease, and engaging motivated carers may overcome many technological barriers. ALS may be considered a model for neurodegenerative diseases to further develop and test new technologies. From multidisciplinary teleconsults to telemonitoring of the respiratory function, telemedicine has the potentiality to embrace other fields, including nutrition, physical mobility, and the interaction with the environment. Brain-computer interfaces and eye tracking expanded the field of augmentative and alternative communication in ALS but their potentialities go beyond communication, to cognition and robotics. Virtual reality and different forms of artificial intelligence present further interesting possibilities that deserve to be investigated. COVID-19 pandemic is an unprecedented opportunity to speed up the development and implementation of new technologies in clinical practice, improving the daily living of both ALS patients and carers. The present work reviews the current technologies for ALS patients already in place or being under evaluation with published publications, prompted by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Susana Pinto
- Translational and Clinical Physiology Unit, Instituto de Medicina Molecular, Lisbon, Portugal.
| | - Stefano Quintarelli
- AgID - Italian digital agency and Clusit - Italian Computer Security Association, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS - Department of Pathophysiology and Transplantation, “Dino Ferrari” Center and Center for Neurotechnology and Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Medina-Juliá MT, Fernández-Rodríguez Á, Velasco-Álvarez F, Ron-Angevin R. P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients. Front Hum Neurosci 2020; 14:583358. [PMID: 33192417 PMCID: PMC7658534 DOI: 10.3389/fnhum.2020.583358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Brain-computer interface (BCI) spellers allow severe motor-disabled patients to communicate using their brain activity without muscular mobility. Different visual configurations of the widely studied P300-based BCI speller had been assessed with healthy and motor-disabled users. However, the speller size (in terms of cm) had only been assessed for healthy subjects. We think that the speller size might be limiting for some severely motor-disabled patients with restricted head and eye movements. The usability of three speller sizes was assessed for seven patients diagnosed with amyotrophic lateral sclerosis (ALS) and a participant diagnosed with Duchenne muscular dystrophy (DMD). This is the first usability evaluation of speller size with severely motor-disabled participants. Effectiveness (in the online results) and efficiency (in the workload test) of the medium speller was remarkably better. Satisfaction was significantly the highest with the medium size speller and the lowest with the small size. These results correlate with previously described findings in healthy subjects. In conclusion, the speller size should be considered when designing a speller paradigm, especially for motor-disabled individuals, since it might affect their performance and user experience while controlling a BCI speller.
Collapse
Affiliation(s)
| | | | | | - Ricardo Ron-Angevin
- Departamento de Tecnología Electrónica, Universidad de Málaga, Malaga, Spain
| |
Collapse
|
19
|
Modi N, Singh J. A survey of research trends in assistive technologies using information modelling techniques. Disabil Rehabil Assist Technol 2020; 17:605-623. [PMID: 32996798 DOI: 10.1080/17483107.2020.1817992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite the rapid proliferation and emphasis on technology, the use of assistive technology among individuals with varying disabilities and age is different. This situation instigates the need for a systematic review to gain a realistic understanding of prominent issues, research trends and assistive technology applications with minimal bias. OBJECTIVE Identification of leading researchers and prominent publications in assistive technologies. Subsequently, semantic relation between qualitative and quantitative research literature on assistive technologies was explored to future research directions. METHODS A manual search across reputed research databases was done to find out relevant literature from January 2005 to April 2020. In this paper, latent semantic analysis (LSA) was done to develop an information model for achieving defined objectives. RESULTS A corpus of 367 research papers published during 2005-2020 was processed using LSA. Term frequency, inverse document frequency of high loading terms provided five major topic solutions. Marcia Scherer, Rory Cooper and Stefano Federici are most noticed authors in assistive technology research. "Smart Assistive Technologies" and "Wearable Technologies for Rehabilitation" came out as contemporary research trends within assistive technologies. CONCLUSIONS The manuscript concludes the fact that assistive technologies for rehabilitation are experiencing a transition from standalone mechanical devices towards smart, wearable and connected devices.Implications for RehabilitationCustomized assistive devices could be programmed for multiple uses.User data privacy and internet dependency of smart assistive technologies must be taken care of while designing smart assistive devices for rehabilitation.Fog devices could eliminate the latency issues associated with cloud-based rehabilitation services.
Collapse
Affiliation(s)
- Nandini Modi
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Jaiteg Singh
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| |
Collapse
|
20
|
McFarland DJ. Brain-computer interfaces for amyotrophic lateral sclerosis. Muscle Nerve 2020; 61:702-707. [PMID: 32034787 DOI: 10.1002/mus.26828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
A brain-computer interface (BCI) is a device that detects signals from the brain and transforms them into useful commands. Researchers have developed BCIs that utilize different kinds of brain signals. These different BCI systems have differing characteristics, such as the amount of training required and the degree to which they are or are not invasive. Much of the research on BCIs to date has involved healthy individuals and evaluation of classification algorithms. Some BCIs have been shown to have potential benefit for users with minimal muscular function as a result of amyotrophic lateral sclerosis. However, there are still several challenges that need to be successfully addressed before BCIs can be clinically useful.
Collapse
|
21
|
Berget G, MacFarlane A. What Is Known About the Impact of Impairments on Information Seeking and Searching? J Assoc Inf Sci Technol 2020. [DOI: 10.1002/asi.24256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gerd Berget
- Department of Archivistics, Library and Information ScienceOslo Metropolitan University Postboks 4 Olavs plass, Oslo N‐0130 Norway
| | - Andrew MacFarlane
- Centre for HCI Design, Department of Computer ScienceCity, University of London Northampton Square, London EC1V 0HB United Kingdom
| |
Collapse
|
22
|
Tao L, Wang Q, Liu D, Wang J, Zhu Z, Feng L. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol Sci 2020; 41:1697-1704. [PMID: 32125540 DOI: 10.1007/s10072-020-04310-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Eye tracking is a powerful method to investigate the relationship between behavior and neural mechanisms. In recent years, eye movement analysis has been used in patients with neurological disorders to assess cognitive function. In this review, we explore the latest eye tracking researches in neurological disorders that are commonly associated with cognitive deficits, specifically, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and epilepsy. We focus on the application of ocular measures in these disorders, with the goal of understanding how eye tracking technology can be used in the clinical setting. FINDINGS Eye tracking tasks (especially saccadic tasks) are often used as an adjunct to traditional scales for cognitive assessment. Eye tracking data confirmed that executive dysfunction is common in PD and ALS, whereas AD and MS are characterized by attention deficits. Research in evaluating cognitive function in epilepsy using eye tracking is still in its early stages, but this approach has shown advantages as a sensitive quantitative method with high temporal and spatial resolution. Eye tracking technology can facilitate the assessment of cognitive impairment with higher temporal resolution and finer granularity than traditional cognitive assessment. Oculomotor data collected during cognitive tasks can provide insight into biological processes. Eye tracking provides a nonverbal and less cognitively demanding method of measuring disease progression in cognitively impaired patients.
Collapse
Affiliation(s)
- Ling Tao
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Quan Wang
- Key Laboratory of Biomedical Spectroscopy of Xi' An, Key Laboratory of Spectral Imaging technology, Xi'an, Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi' An, China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziqing Zhu
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Mannan MMN, Kamran MA, Kang S, Choi HS, Jeong MY. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface. SENSORS 2020; 20:s20030891. [PMID: 32046131 PMCID: PMC7039291 DOI: 10.3390/s20030891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Steady-state visual evoked potentials (SSVEPs) have been extensively utilized to develop brain-computer interfaces (BCIs) due to the advantages of robustness, large number of commands, high classification accuracies, and information transfer rates (ITRs). However, the use of several simultaneous flickering stimuli often causes high levels of user discomfort, tiredness, annoyingness, and fatigue. Here we propose to design a stimuli-responsive hybrid speller by using electroencephalography (EEG) and video-based eye-tracking to increase user comfortability levels when presented with large numbers of simultaneously flickering stimuli. Interestingly, a canonical correlation analysis (CCA)-based framework was useful to identify target frequency with a 1 s duration of flickering signal. Our proposed BCI-speller uses only six frequencies to classify forty-eight targets, thus achieve greatly increased ITR, whereas basic SSVEP BCI-spellers use an equal number of frequencies to the number of targets. Using this speller, we obtained an average classification accuracy of 90.35 ± 3.597% with an average ITR of 184.06 ± 12.761 bits per minute in a cued-spelling task and an ITR of 190.73 ± 17.849 bits per minute in a free-spelling task. Consequently, our proposed speller is superior to the other spellers in terms of targets classified, classification accuracy, and ITR, while producing less fatigue, annoyingness, tiredness and discomfort. Together, our proposed hybrid eye tracking and SSVEP BCI-based system will ultimately enable a truly high-speed communication channel.
Collapse
Affiliation(s)
- Malik M. Naeem Mannan
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 609-735, Korea; (M.M.N.M.); (M.A.K.); (H.S.C.)
| | - M. Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 609-735, Korea; (M.M.N.M.); (M.A.K.); (H.S.C.)
| | - Shinil Kang
- National Center for Optically-Assisted Ultrahigh-Precision Mechanical Systems, Yonsei University, Seoul 03722, Korea;
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Hak Soo Choi
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 609-735, Korea; (M.M.N.M.); (M.A.K.); (H.S.C.)
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 609-735, Korea; (M.M.N.M.); (M.A.K.); (H.S.C.)
- Correspondence:
| |
Collapse
|
24
|
Abstract
In the past 10 years, brain-computer interfaces (BCIs) for controlling assistive devices have seen tremendous progress with respect to reliability and learnability, and numerous exemplary applications were demonstrated to be controllable by a BCI. Yet, BCI-controlled applications are hardly used for patients with neurologic or neurodegenerative disease. Such patient groups are considered potential end-users of BCI, specifically for replacing or improving lost function. We argue that BCI research and development still faces a translational gap, i.e., the knowledge of how to bring BCIs from the laboratory to the field is insufficient. BCI-controlled applications lack usability and accessibility; both constitute two sides of one coin, which is the key to use in daily life and to prevent nonuse. To increase usability, we suggest rigorously adopting the user-centered design in applied BCI research and development. To provide accessibility, assistive technology (AT) experts, providers, and other stakeholders have to be included in the user-centered process. BCI experts have to ensure the transfer of knowledge to AT professionals, and listen to the needs of primary, secondary, and tertiary end-users of BCI technology. Addressing both, usability and accessibility, in applied BCI research and development will bridge the translational gap and ensure that the needs of clinical end-users are heard, understood, addressed, and fulfilled.
Collapse
Affiliation(s)
- Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Femke Nijboer
- Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - Sonja Kleih
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Thompson MC. Critiquing the Concept of BCI Illiteracy. SCIENCE AND ENGINEERING ETHICS 2019; 25:1217-1233. [PMID: 30117107 DOI: 10.1007/s11948-018-0061-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Brain-computer interfaces (BCIs) are a form of technology that read a user's neural signals to perform a task, often with the aim of inferring user intention. They demonstrate potential in a wide range of clinical, commercial, and personal applications. But BCIs are not always simple to operate, and even with training some BCI users do not operate their systems as intended. Many researchers have described this phenomenon as "BCI illiteracy," and a body of research has emerged aiming to characterize, predict, and solve this perceived problem. However, BCI illiteracy is an inadequate concept for explaining difficulty that users face in operating BCI systems. BCI illiteracy is a methodologically weak concept; furthermore, it relies on the flawed assumption that BCI users possess physiological or functional traits that prevent proficient performance during BCI use. Alternative concepts to BCI illiteracy may offer better outcomes for prospective users and may avoid the conceptual pitfalls that BCI illiteracy brings to the BCI research process.
Collapse
Affiliation(s)
- Margaret C Thompson
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Paul Allen Center - Room AE100R, Campus Box 352500, Seattle, WA, 98195-2500, USA.
- Center for Sensorimotor Neural Engineering, Box 37, 1414 NE 42nd St., Suite 204, Seattle, WA, 98105-6271, USA.
| |
Collapse
|
26
|
Petrushin A, Barresi G, Mattos LS. Gaze-controlled Laser Pointer Platform for People with Severe Motor Impairments: Preliminary Test in Telepresence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1813-1816. [PMID: 30440747 DOI: 10.1109/embc.2018.8512722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes the implementation and the preliminary evaluation of a novel interaction solution for people with severe motor impairments, and particularly for those affected by Amyotrophic Laterals Sclerosis (ALS) in Locked-In State (LIS): patients able to control only the ocular muscles. The proposed communication approach allows the person to control a laser beam and interact with the environment or interlocutors in an intuitive way by pointing at objects through their gaze. For this, a tip-tilt laser control device was developed and mounted on a small robot equipped with a high definition video camera. In addition, a gaze-tracking user interface was developed to control of both systems, i.e., laser and robot. This new platform was then preliminary assessed through trials with 14 subjects without disabilities, who performed tasks of robot navigation and pointing at objects along its path. User experience was evaluated with encouraging results, indicating the proposed technology has real potential to assist communication and interaction acts of people with ALS.
Collapse
|
27
|
Peters B, Higger M, Quivira F, Bedrick S, Dudy S, Eddy B, Kinsella M, Memmott T, Wiedrick J, Fried-Oken M, Erdogmus D, Oken B. Effects of simulated visual acuity and ocular motility impairments on SSVEP brain-computer interface performance: An experiment with Shuffle Speller. BRAIN-COMPUTER INTERFACES 2018; 5:58-72. [PMID: 30895198 DOI: 10.1080/2326263x.2018.1504662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Individuals with severe speech and physical impairments may have concomitant visual acuity impairments (VAI) or ocular motility impairments (OMI) impacting visual BCI use. We report on the use of the Shuffle Speller typing interface for an SSVEP BCI copy-spelling task under three conditions: simulated VAI, simulated OMI, and unimpaired vision. To mitigate the effect of visual impairments, we introduce a method that adaptively selects a user-specific trial length to maximize expected information transfer rate (ITR); expected ITR is shown to closely approximate the rate of correct letter selections. All participants could type under the unimpaired and simulated VAI conditions, with no significant differences in typing accuracy or speed. Most participants (31 of 37) could not type under the simulated OMI condition; some achieved high accuracy but with slower typing speeds. Reported workload and discomfort were low, and satisfaction high, under the unimpaired and simulated VAI conditions. Implications and future directions to examine effect of visual impairment on BCI use is discussed.
Collapse
Affiliation(s)
- Betts Peters
- Institute on Development & Disability, Oregon Health & Science University, Portland, OR
| | - Matt Higger
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Electrical & Computer Engineering, Northeastern University, Boston, MA
| | - Fernando Quivira
- Electrical & Computer Engineering, Northeastern University, Boston, MA
| | - Steven Bedrick
- Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR
| | - Shiran Dudy
- Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR
| | - Brandon Eddy
- Institute on Development & Disability, Oregon Health & Science University, Portland, OR
| | - Michelle Kinsella
- Institute on Development & Disability, Oregon Health & Science University, Portland, OR
| | - Tab Memmott
- Departments of Neurology, Behavioral Neuroscience, and Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR
| | - Melanie Fried-Oken
- Institute on Development & Disability, Oregon Health & Science University, Portland, OR
| | - Deniz Erdogmus
- Electrical & Computer Engineering, Northeastern University, Boston, MA
| | - Barry Oken
- Departments of Neurology, Behavioral Neuroscience, and Biomedical Engineering, Oregon Health & Science University, Portland, OR
| |
Collapse
|
28
|
Code-VEP vs. Eye Tracking: A Comparison Study. Brain Sci 2018; 8:brainsci8070130. [PMID: 29986504 PMCID: PMC6071120 DOI: 10.3390/brainsci8070130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 11/17/2022] Open
Abstract
Even with state-of-the-art techniques there are individuals whose paralysis prevents them from communicating with others. Brain⁻Computer-Interfaces (BCI) aim to utilize brain waves to construct a voice for those whose needs remain unmet. In this paper we compare the efficacy of a BCI input signal, code-VEP via Electroencephalography, against eye gaze tracking, among the most popular modalities used. These results, on healthy individuals without paralysis, suggest that while eye tracking works well for some, it does not work well or at all for others; the latter group includes individuals with corrected vision or those who squint their eyes unintentionally while focusing on a task. It is also evident that the performance of the interface is more sensitive to head/body movements when eye tracking is used as the input modality, compared to using c-VEP. Sensitivity to head/body movement could be better in eye tracking systems which are tracking the head or mounted on the face and are designed specifically as assistive devices. The sample interface developed for this assessment has the same reaction time when driven with c-VEP or with eye tracking; approximately 0.5⁻1 second is needed to make a selection among the four options simultaneously presented. Factors, such as system reaction time and robustness play a crucial role in participant preferences.
Collapse
|
29
|
Fernández-Rodríguez Á, Velasco-Álvarez F, Bonnet-Save M, Ron-Angevin R. Evaluation of Switch and Continuous Navigation Paradigms to Command a Brain-Controlled Wheelchair. Front Neurosci 2018; 12:438. [PMID: 30002615 PMCID: PMC6031925 DOI: 10.3389/fnins.2018.00438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/11/2018] [Indexed: 11/18/2022] Open
Abstract
A brain-computer interface (BCI) is a technology allowing patients with severe motor dysfunctions to use their electroencephalographic signals to create a communication channel to control devices. The objective of this paper is to study the feasibility of continuous and switch control modes for a brain-controlled wheelchair (BCW) using sensorimotor rhythms (SMR) modulated through a right-hand motor imagery task. Previous studies, which used a continuous navigation control with SMR, have reported the difficulty of maintaining the motor imagery task for a long time, especially for the forward command. The switch control has been presented as a proposal that may help to solve this issue since this task is only used temporary for either disabling or enabling the movement. Regarding the methodology, 10 of 15 able-bodied users, who had overcome the criterion of 30% error rate in the calibration phase, controlled the BCW using both paradigms. The navigation tasks consisted of a straight path divided in five sections: in three of them the users had to move forward, and in the other two the users had to maintain their position. To assess user performance in the device management, a usability approach was adopted, measuring the factors of effectiveness, efficiency, and satisfaction. Then, variables related to the time employed and commands selected by the user or parameters related to the confusion matrix were applied. In addition, the scores in NASA-TLX and two ad hoc questionnaires were considered to discuss the user experience controlling the wheelchair. Despite the results showed that the best system for a specific user relies on his/her abilities and preferences, the switch control mode obtained better accuracy (0.59 ± 0.17 for continuous and 0.72 ± 0.05 for switch). Furthermore, the switch paradigm can be recommended for the advance sections as with it users could complete the advance sections in less time (42.2 ± 28.7 s for continuous and 15.47 ± 3.43 s for switch), while the continuous mode seems to be better at keeping the wheelchair stopped (42.45 ± 16.01 s for continuous and 24.35 ± 10.94 s for switch).
Collapse
Affiliation(s)
| | | | - Manon Bonnet-Save
- IMS UMR Centre National de la Recherche Scientifique 5218, Cognitique et Ingénierie Humaine, Bordeaux INP-ENSC, Bordeaux, France
| | | |
Collapse
|
30
|
Halder S, Takano K, Kansaku K. Comparison of Four Control Methods for a Five-Choice Assistive Technology. Front Hum Neurosci 2018; 12:228. [PMID: 29928196 PMCID: PMC5997833 DOI: 10.3389/fnhum.2018.00228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.
Collapse
Affiliation(s)
- Sebastian Halder
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
- Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
31
|
Brumberg JS, Pitt KM, Mantie-Kozlowski A, Burnison JD. Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2018; 27:1-12. [PMID: 29318256 PMCID: PMC5968329 DOI: 10.1044/2017_ajslp-16-0244] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/14/2017] [Indexed: 05/10/2023]
Abstract
PURPOSE Brain-computer interfaces (BCIs) have the potential to improve communication for people who require but are unable to use traditional augmentative and alternative communication (AAC) devices. As BCIs move toward clinical practice, speech-language pathologists (SLPs) will need to consider their appropriateness for AAC intervention. METHOD This tutorial provides a background on BCI approaches to provide AAC specialists foundational knowledge necessary for clinical application of BCI. Tutorial descriptions were generated based on a literature review of BCIs for restoring communication. RESULTS The tutorial responses directly address 4 major areas of interest for SLPs who specialize in AAC: (a) the current state of BCI with emphasis on SLP scope of practice (including the subareas: the way in which individuals access AAC with BCI, the efficacy of BCI for AAC, and the effects of fatigue), (b) populations for whom BCI is best suited, (c) the future of BCI as an addition to AAC access strategies, and (d) limitations of BCI. CONCLUSION Current BCIs have been designed as access methods for AAC rather than a replacement; therefore, SLPs can use existing knowledge in AAC as a starting point for clinical application. Additional training is recommended to stay updated with rapid advances in BCI.
Collapse
Affiliation(s)
- Jonathan S. Brumberg
- Department of Speech-Language-Hearing: Sciences and Disorders, Neuroscience Graduate Program, The University of Kansas, Lawrence
| | - Kevin M. Pitt
- Department of Speech-Language-Hearing: Sciences and Disorders, The University of Kansas, Lawrence
| | | | | |
Collapse
|
32
|
Lazarou I, Nikolopoulos S, Petrantonakis PC, Kompatsiaris I, Tsolaki M. EEG-Based Brain-Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21 st Century. Front Hum Neurosci 2018; 12:14. [PMID: 29472849 PMCID: PMC5810272 DOI: 10.3389/fnhum.2018.00014] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
People with severe neurological impairments face many challenges in sensorimotor functions and communication with the environment; therefore they have increased demand for advanced, adaptive and personalized rehabilitation. During the last several decades, numerous studies have developed brain-computer interfaces (BCIs) with the goals ranging from providing means of communication to functional rehabilitation. Here we review the research on non-invasive, electroencephalography (EEG)-based BCI systems for communication and rehabilitation. We focus on the approaches intended to help severely paralyzed and locked-in patients regain communication using three different BCI modalities: slow cortical potentials, sensorimotor rhythms and P300 potentials, as operational mechanisms. We also review BCI systems for restoration of motor function in patients with spinal cord injury and chronic stroke. We discuss the advantages and limitations of these approaches and the challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Ioulietta Lazarou
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.,1st Department of Neurology, University Hospital "AHEPA", School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| | - Spiros Nikolopoulos
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Magda Tsolaki
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.,1st Department of Neurology, University Hospital "AHEPA", School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| |
Collapse
|
33
|
Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med 2017; 61:5-11. [PMID: 29024794 DOI: 10.1016/j.rehab.2017.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, restricts patients' communication capacity a few years after onset. A proof-of-concept of brain-computer interface (BCI) has shown promise in ALS and "locked-in" patients, mostly in pre-clinical studies or with only a few patients, but performance was estimated not high enough to support adoption by people with physical limitation of speech. Here, we evaluated a visual BCI device in a clinical study to determine whether disabled people with multiple deficiencies related to ALS would be able to use BCI to communicate in a daily environment. METHODS After clinical evaluation of physical, cognitive and language capacities, 20 patients with ALS were included. The P300 speller BCI system consisted of electroencephalography acquisition connected to real-time processing software and separate keyboard-display control software. It was equipped with original features such as optimal stopping of flashes and word prediction. The study consisted of two 3-block sessions (copy spelling, free spelling and free use) with the system in several modes of operation to evaluate its usability in terms of effectiveness, efficiency and satisfaction. RESULTS The system was effective in that all participants successfully achieved all spelling tasks and was efficient in that 65% of participants selected more than 95% of the correct symbols. The mean number of correct symbols selected per minute ranged from 3.6 (without word prediction) to 5.04 (with word prediction). Participants expressed satisfaction: the mean score was 8.7 on a 10-point visual analog scale assessing comfort, ease of use and utility. Patients quickly learned how to operate the system, which did not require much learning effort. CONCLUSION With its word prediction and optimal stopping of flashes, which improves information transfer rate, the BCI system may be competitive with alternative communication systems such as eye-trackers. Remaining requirements to improve the device for suitable ergonomic use are in progress.
Collapse
|
34
|
Abstract
Brain-computer interfaces (BCIs) can enable communication for persons in severe paralysis including locked-in syndrome (LIS); that is, being unable to move or speak while aware. In cases of complete loss of muscle control, termed "complete locked-in syndrome," a BCI may be the only viable solution to restore communication. However, a widespread ignorance regarding quality of life in LIS, current BCIs, and their potential as an assistive technology for persons in LIS, needlessly causes a harmful situation for this cohort. In addition to their medical condition, these persons also face social barriers often perceived as more impairing than their physical condition. Through social exclusion, stigmatization, and frequently being underestimated in their abilities, these persons are being locked out in addition to being locked-in. In this article, we (1) show how persons in LIS are being locked out, including how key issues addressed in the existing literature on ethics, LIS, and BCIs for communication, such as autonomy, quality of life, and advance directives, may reinforce these confinements; (2) show how these practices violate the United Nations Convention on the Rights of Persons with Disabilities, and suggest that we have a moral responsibility to prevent and stop this exclusion; and (3) discuss the role of BCIs for communication as one means to this end and suggest that a novel approach to BCI research is necessary to acknowledge the moral responsibility toward the end users and avoid violating the human rights of persons in LIS.
Collapse
|
35
|
Pinegger A, Hiebel H, Wriessnegger SC, Müller-Putz GR. Composing only by thought: Novel application of the P300 brain-computer interface. PLoS One 2017; 12:e0181584. [PMID: 28877175 PMCID: PMC5587109 DOI: 10.1371/journal.pone.0181584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people.
Collapse
Affiliation(s)
- Andreas Pinegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Hannah Hiebel
- Institute of Psychology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
36
|
Lim JH, Kim YW, Lee JH, An KO, Hwang HJ, Cha HS, Han CH, Im CH. An emergency call system for patients in locked-in state using an SSVEP-based brain switch. Psychophysiology 2017; 54:1632-1643. [PMID: 28696536 DOI: 10.1111/psyp.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
Patients in a locked-in state (LIS) due to severe neurological disorders such as amyotrophic lateral sclerosis (ALS) require seamless emergency care by their caregivers or guardians. However, it is a difficult job for the guardians to continuously monitor the patients' state, especially when direct communication is not possible. In the present study, we developed an emergency call system for such patients using a steady-state visual evoked potential (SSVEP)-based brain switch. Although there have been previous studies to implement SSVEP-based brain switch system, they have not been applied to patients in LIS, and thus their clinical value has not been validated. In this study, we verified whether the SSVEP-based brain switch system can be practically used as an emergency call system for patients in LIS. The brain switch used for our system adopted a chromatic visual stimulus, which proved to be visually less stimulating than conventional checkerboard-type stimuli but could generate SSVEP responses strong enough to be used for brain-computer interface (BCI) applications. To verify the feasibility of our emergency call system, 14 healthy participants and 3 patients with severe ALS took part in online experiments. All three ALS patients successfully called their guardians to their bedsides in about 6.56 seconds. Furthermore, additional experiments with one of these patients demonstrated that our emergency call system maintains fairly good performance even up to 4 weeks after the first experiment without renewing initial calibration data. Our results suggest that our SSVEP-based emergency call system might be successfully used in practical scenarios.
Collapse
Affiliation(s)
- Jeong-Hwan Lim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong-Wook Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jun-Hak Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Kwang-Ok An
- Department of Rehabilitative Assistive Technology, National Rehabilitation Center, Seoul, Korea
| | - Han-Jeong Hwang
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Ho-Seung Cha
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chang-Hee Han
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
37
|
Characterizing Computer Access Using a One-Channel EEG Wireless Sensor. SENSORS 2017; 17:s17071525. [PMID: 28661425 PMCID: PMC5539498 DOI: 10.3390/s17071525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022]
Abstract
This work studies the feasibility of using mental attention to access a computer. Brain activity was measured with an electrode placed at the Fp1 position and the reference on the left ear; seven normally developed people and three subjects with cerebral palsy (CP) took part in the experimentation. They were asked to keep their attention high and low for as long as possible during several trials. We recorded attention levels and power bands conveyed by the sensor, but only the first was used for feedback purposes. All of the information was statistically analyzed to find the most significant parameters and a classifier based on linear discriminant analysis (LDA) was also set up. In addition, 60% of the participants were potential users of this technology with an accuracy of over 70%. Including power bands in the classifier did not improve the accuracy in discriminating between the two attentional states. For most people, the best results were obtained by using only the attention indicator in classification. Tiredness was higher in the group with disabilities (2.7 in a scale of 3) than in the other (1.5 in the same scale); and modulating the attention to access a communication board requires that it does not contain many pictograms (between 4 and 7) on screen and has a scanning period of a relatively high tscan≈ 10 s. The information transfer rate (ITR) is similar to the one obtained by other brain computer interfaces (BCI), like those based on sensorimotor rhythms (SMR) or slow cortical potentials (SCP), and makes it suitable as an eye-gaze independent BCI.
Collapse
|
38
|
Kalika D, Collins L, Caves K, Throckmorton C. Fusion of P300 and eye-tracker data for spelling using BCI2000. J Neural Eng 2017; 14:056010. [PMID: 28585523 DOI: 10.1088/1741-2552/aa776b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Various augmentative and alternative communication (AAC) devices have been developed in order to aid communication for individuals with communication disorders. Recently, there has been interest in combining EEG data and eye-gaze data with the goal of developing a hybrid (or 'fused') BCI (hBCI) AAC system. This work explores the effectiveness of a speller that fuses data from an eye-tracker and the P300 speller in order to create a hybrid P300 speller. APPROACH This hybrid speller collects both eye-tracking and EEG data in parallel, and the user spells characters on the screen in the same way that they would if they were only using the P300 speller. Online and offline experiments were performed. The online experiments measured the performance of the speller for sixteen non-disabled participants, while the offline simulations were used to assess the robustness of the hybrid system. MAIN RESULTS Online results showed that for fifteen non-disabled participants, using eye-gaze in a Bayesian framework with EEG data from the P300 speller improved accuracy ([Formula: see text], [Formula: see text], [Formula: see text] for estimated, medium and high variance configurations) and reduced the average number of flashes required to spell a character compared to the standard P300 speller that relies solely on EEG data ([Formula: see text], [Formula: see text], [Formula: see text] for estimated, medium and high variance configurations). Offline simulations indicate that the system provides more robust performance than a standalone eye gaze system. SIGNIFICANCE The results of this work on non-disabled participants shows the potential efficacy of hybrid P300 and eye-tracker speller. Further validation on the amyotrophic lateral sceloris population is needed to assess the benefit of this hybrid system.
Collapse
Affiliation(s)
- Dmitry Kalika
- Duke University, Durham, NC 27708, United States of America
| | | | | | | |
Collapse
|
39
|
Choi I, Rhiu I, Lee Y, Yun MH, Nam CS. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLoS One 2017; 12:e0176674. [PMID: 28453547 PMCID: PMC5409179 DOI: 10.1371/journal.pone.0176674] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation.
Collapse
Affiliation(s)
- Inchul Choi
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ilsun Rhiu
- Division of Global Management Engineering, Hoseo University, Asan, Korea
| | - Yushin Lee
- Department of Industrial Engineering, Seoul National University, Seoul, Korea
| | - Myung Hwan Yun
- Department of Industrial Engineering, Seoul National University, Seoul, Korea
| | - Chang S. Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI. Brain Sci 2017; 7:brainsci7040035. [PMID: 28379187 PMCID: PMC5406692 DOI: 10.3390/brainsci7040035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/14/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022] Open
Abstract
Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.
Collapse
|
41
|
Suefusa K, Tanaka T. A comparison study of visually stimulated brain–computer and eye-tracking interfaces. J Neural Eng 2017; 14:036009. [DOI: 10.1088/1741-2552/aa6086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Spataro R, Chella A, Allison B, Giardina M, Sorbello R, Tramonte S, Guger C, La Bella V. Reaching and Grasping a Glass of Water by Locked-In ALS Patients through a BCI-Controlled Humanoid Robot. Front Hum Neurosci 2017; 11:68. [PMID: 28298888 PMCID: PMC5331030 DOI: 10.3389/fnhum.2017.00068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place.
Collapse
Affiliation(s)
- Rossella Spataro
- Department of Experimental Biomedicine and Clinical Neurosciences, ALS Clinical Research Center, University of PalermoPalermo, Italy
| | - Antonio Chella
- Department of Chemical, Management, Computer, Mechanical Engineering, University of PalermoPalermo, Italy
- Instituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR)Palermo, Italy
| | - Brendan Allison
- Guger Technologies OGGraz, Austria
- Cognitive Science Department, University of California at San DiegoLa Jolla, CA, USA
| | - Marcello Giardina
- Department of Chemical, Management, Computer, Mechanical Engineering, University of PalermoPalermo, Italy
| | - Rosario Sorbello
- Department of Chemical, Management, Computer, Mechanical Engineering, University of PalermoPalermo, Italy
| | - Salvatore Tramonte
- Department of Chemical, Management, Computer, Mechanical Engineering, University of PalermoPalermo, Italy
| | - Christoph Guger
- Guger Technologies OGGraz, Austria
- g.tec Medical Engineering GmbHSchiedlberg, Austria
| | - Vincenzo La Bella
- Department of Experimental Biomedicine and Clinical Neurosciences, ALS Clinical Research Center, University of PalermoPalermo, Italy
| |
Collapse
|
43
|
Poletti B, Carelli L, Solca F, Lafronza A, Pedroli E, Faini A, Zago S, Ticozzi N, Ciammola A, Morelli C, Meriggi P, Cipresso P, Lulé D, Ludolph AC, Riva G, Silani V. An eye-tracking controlled neuropsychological battery for cognitive assessment in neurological diseases. Neurol Sci 2017; 38:595-603. [PMID: 28078566 DOI: 10.1007/s10072-016-2807-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022]
Abstract
Traditional cognitive assessment in neurological conditions involving physical disability is often prevented by the presence of verbal-motor impairment; to date, an extensive motor-verbal-free neuropsychological battery is not available for such purposes. We adapted a set of neuropsychological tests, assessing language, attentional abilities, executive functions and social cognition, for eye-tracking (ET) control, and explored its feasibility in a sample of healthy participants. Thirty healthy subjects performed a neuropsychological assessment, using an ET-based neuropsychological battery, together with standard "paper and pencil" cognitive measures for frontal (Frontal Assessment Battery-FAB) and working memory abilities (Digit Sequencing Task) and for global cognitive efficiency (Montreal Cognitive Assessment-MoCA). Psychological measures of anxiety (State-Trait Anxiety Inventory-Y-STAI-Y) and depression (Beck Depression Inventory-BDI) were also collected, and a usability questionnaire was administered. Significant correlations were observed between the "paper and pencil" screening of working memory abilities and the ET-based neuropsychological measures. The ET-based battery also correlated with the MoCA, while poor correlations were observed with the FAB. Usability aspects were found to be influenced by both working memory abilities and psychological components. The ET-based neuropsychological battery developed could provide an extensive assessment of cognitive functions, allowing participants to perform tasks independently from the integrity of motor or verbal channels. Further studies will be aimed at investigating validity and usability components in neurological populations with motor-verbal impairments.
Collapse
Affiliation(s)
- Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Laura Carelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Annalisa Lafronza
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefano Zago
- Department of Neuroscience and Mental Health, Università degli Studi di Milano, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Meriggi
- ICT and Biomedical Technology Integration Unit, Centre for Innovation and Technology Transfer (CITT), Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Halder S, Takano K, Ora H, Onishi A, Utsumi K, Kansaku K. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary. Front Neurosci 2016; 10:446. [PMID: 27746716 PMCID: PMC5043244 DOI: 10.3389/fnins.2016.00446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/16/2016] [Indexed: 12/03/2022] Open
Abstract
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.
Collapse
Affiliation(s)
- Sebastian Halder
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
- Department of Psychology I, Institute of Psychology, University of WürzburgWürzburg, Germany
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
| | - Hiroki Ora
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-CommunicationsChofu, Japan
| | - Akinari Onishi
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
| | - Kota Utsumi
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
- Department of Neurology, Brain Research Institute, Niigata UniversityNiigata, Japan
| | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-CommunicationsChofu, Japan
| |
Collapse
|
45
|
Riccio A, Pichiorri F, Schettini F, Toppi J, Risetti M, Formisano R, Molinari M, Astolfi L, Cincotti F, Mattia D. Interfacing brain with computer to improve communication and rehabilitation after brain damage. PROGRESS IN BRAIN RESEARCH 2016; 228:357-87. [PMID: 27590975 DOI: 10.1016/bs.pbr.2016.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm.
Collapse
Affiliation(s)
- A Riccio
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - F Pichiorri
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - F Schettini
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - J Toppi
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - M Risetti
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - R Formisano
- Post-Coma Unit, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - M Molinari
- Spinal Cord Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - L Astolfi
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - F Cincotti
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Sapienza University of Rome, Rome, Italy
| | - D Mattia
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy.
| |
Collapse
|
46
|
Halder S, Käthner I, Kübler A. Training leads to increased auditory brain–computer interface performance of end-users with motor impairments. Clin Neurophysiol 2016; 127:1288-1296. [DOI: 10.1016/j.clinph.2015.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/16/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
|
47
|
Liberati G, Federici S, Pasqualotto E. Extracting neurophysiological signals reflecting users’ emotional and affective responses to BCI use: A systematic literature review. NeuroRehabilitation 2015; 37:341-58. [DOI: 10.3233/nre-151266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Giulia Liberati
- Université Catholique de Louvain, Institute of Neuroscience, Louvain, Belgium
| | - Stefano Federici
- Università di Perugia, Department of Philosophy, Social & Human Sciences and Education, Perugia, Italy
| | | |
Collapse
|
48
|
Käthner I, Kübler A, Halder S. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state. J Neuroeng Rehabil 2015; 12:76. [PMID: 26338101 PMCID: PMC4560087 DOI: 10.1186/s12984-015-0071-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology. METHODS Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems. RESULTS The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI. CONCLUSIONS In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices.
Collapse
Affiliation(s)
- Ivo Käthner
- Institute of Psychology, University of Würzburg, Marcusstr. 9-11, 97070, Würzburg, Germany.
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Marcusstr. 9-11, 97070, Würzburg, Germany.
| | - Sebastian Halder
- Institute of Psychology, University of Würzburg, Marcusstr. 9-11, 97070, Würzburg, Germany.
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, 359-8555, Japan.
| |
Collapse
|